The Fundamental Formula for the Area of a Triangle in Analytical Geometry.

By C. Twerdie.

(Read and Received 8th March 1912).

The algebraic methods employed are usually defective in explaining the sign to be attached to an area; while the trigonometrical method with the transformation of a trigonometrical formula has always seemed a little far fetched so early in analytical geometry.

The following algebraic demonstration is direct enough, and successfully suggests the sign to be attached.

Case I. Let G_{1}, G_{2} be two points ($1, y_{1}$) and ($1, y_{2}$) on the line $x=1$.

Then the area of $O G_{1} G_{2}=\frac{1}{2} G_{1} G_{2}=\frac{1}{2}\left(y_{2}-y_{1}\right)$ in magnitude and sign.

Case II. Let $\mathrm{P}_{1}, \mathrm{P}_{2}$ be any two points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and let $O P_{1}$ and $O P_{2}$ cut the line $x=1$ in G_{1} and G_{2}, so that G_{1} and G_{2} are given by $\left(1, \frac{y_{1}}{x_{1}}\right)$ and $\left(1, \frac{y_{2}}{x_{2}}\right)$, while

$$
\frac{O G_{1}}{O P_{1}}=\frac{1}{x_{1}}, \frac{O G_{2}}{O P_{2}}=\frac{1}{x_{2}} .
$$

Hence

$$
\begin{aligned}
\Delta \mathrm{OP}_{1} \mathrm{P}_{2} & =x_{1} x_{2} \cdot \Delta \mathrm{OG}_{1} \mathrm{G}_{2} \\
& =\frac{1}{2}\left(x_{1} y_{2}-x_{2} y_{1}\right) .
\end{aligned}
$$

There remains the question of sign. When x_{1} and x_{2} are both like in sign, $O G_{1} G_{2}$ and $O P_{1} P_{2}$ are of like sense of rotation and $x_{1} x_{2}$ is positive. (Fig. 1).

Fig. 1.
If x_{1}, say, is positive, and x_{2} negative, then $\mathrm{OG}_{1} \mathrm{G}_{2}$ and $\mathrm{OP}_{1} \mathrm{P}_{2}$ are of opposite sense of rotation, and $x_{1} x_{2}$ is negative. (Fig. 2).

Fig. 2.
Hence in all cases the usual law for the sign of the area follows.

This is extended to the triangle $\mathbf{P}_{1} \mathbf{P}_{2} \mathbf{P}_{3}$, and to polygons, in the usual manner.

