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Hyperspace Dynamics
of Generic Maps of the Cantor Space

Nilson C. Bernardes Jr. and Rômulo M. Vermersch

Abstract. We study the hyperspace dynamics induced from generic continuous maps and from generic
homeomorphisms of the Cantor space, with emphasis on the notions of Li–Yorke chaos, distributional
chaos, topological entropy, chain continuity, shadowing, and recurrence.

1 Introduction

The study of generic dynamics is a classical topic in the area of dynamical systems.
In the context of topological dynamics, such a study has been developed during the
last forty years by several authors. For the generic dynamics of continuous maps of
the closed unit interval, see [4, 34], for instance. For the case of continuous maps
and homeomorphisms of compact manifolds, we refer the reader to [7, 29, 32, 35],
where further references can be found. Properties of generic continuous maps and
of generic homeomorphisms of compact topological manifolds that hold almost ev-
erywhere with respect to a given Borel probability measure on the manifold were
studied in [9–14]. A similar point of view was considered in [1]. Finally, for the
generic dynamics of maps of the Cantor space, see [6, 15, 21, 22, 24, 26], for instance.

On the other hand, the study of collective dynamics is also an important topic in
the area of dynamical systems. While the action of a system on points of the phase
space can be thought of as individual dynamics, the action of the system on subsets of
the phase space is a kind of collective dynamics, and it is natural to compare individ-
ual with collective dynamics. The most usual context for collective dynamics is that
of the induced map on the hyperspace of all nonempty compact subsets endowed
with the Hausdorff metric. We refer the reader to [2, 8, 25], where further references
can be found.

It is natural to combine both topics and study the collective dynamics of generic
maps. In order to state this in a more precise way, let us now fix some notations.

Given a compact metric space M with metric d, we denote by C(M) (resp. H(M))
the space of all continuous maps from M into M (resp. of all homeomorphisms from
M onto M) endowed with the metric

d̃( f , g) := max
x∈M

d
(

f (x), g(x)
)
.
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Moreover, we denote by K(M) the hyperspace of all nonempty closed subsets of M
endowed with the Hausdorff metric

dH(X,Y ) := max
{

max
x∈X

d(x,Y ),max
y∈Y

d(y,X)
}
.

It is well known that K(M) is also a compact metric space. Given f ∈ C(M), the
induced map f : K(M)→ K(M) is defined by

f (X) := f (X)
(

= { f (x) : x ∈ X}
)
.

Note that f ∈ C(K(M)). Moreover, if f is a homeomorphism, then so is f . The
book [27] contains a detailed treatment of hyperspaces.

Given a Baire space Z, to say that “the generic element of Z has a certain property
P” means that the set of all elements of Z that satisfy property P is comeager in Z, that
is, is the complement of a meager (i.e., first category) set in Z. The word “typical” is
sometimes used instead of the word “generic”.

As mentioned before, it is natural to study the dynamics of the induced map f
for the generic map f ∈ C(M) (resp. f ∈ H(M)). In this paper we develop such a
study in the case where M is the Cantor space. Recall that a Cantor space is a zero-
dimensional compact metrizable space without isolated points. A classical result due
to Brouwer [20] asserts that any Cantor space is homeomorphic to Cantor’s ternary
set. In particular, any two Cantor spaces are homeomorphic to each other. This
explains why we often use the definite article “the” before the expression “Cantor
space”. In this paper we will work with the product space {0, 1}N, where {0, 1} is
endowed with the discrete topology. We consider the Cantor space {0, 1}N endowed
with the compatible metric d given by d(σ, σ) := 0 and d(σ, τ ) := 1

n , where n is
the least positive integer such that σ(n) 6= τ (n) (σ, τ ∈ {0, 1}N, σ 6= τ ). If M is a
Cantor space, it is well known that K(M) is a Cantor space as well. The following
nice proof of this fact was suggested by the anonymous referee. Let {B1,B2, . . . }
be the countable set of all clopen subsets of M and define c : K(M) → {0, 1}N by
c(X)n := 1 if X ⊂ Bn, and c(X)n := 0 otherwise. Since c is continuous and injective,
it is an embedding. Moreover, it is easy to see that K(M) has no isolated point. Thus,
K(M) is also a Cantor space.

Due to its importance, the dynamics of maps of the Cantor space has been ex-
tensively studied by several authors from different points of view. In the case of the
generic dynamics of homeomorphisms, one of the most impressive results is the ex-
istence of a comeager conjugacy class for the group H({0, 1}N). So, the dynamics of
the generic element of H({0, 1}N) reduces to the dynamics of a single element of this
class. This result was first proved by Kechris and Rosendal [28] using model theoretic
techniques, and a specific element of this class was described later by Akin, Glasner,
and Weiss [6]. Bernardes and Darji [15] obtained a new proof of the existence of this
class by giving a graph theoretic description of its elements, and applied this descrip-
tion to obtain many old and new dynamical properties of the elements of this class.
Moreover, by using their graph theoretic techniques, they were also able to prove the
somewhat surprising fact that there is a comeager subset of C({0, 1}N) such that any
two of its elements are conjugate by an element of H({0, 1}N).
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This work complements the previous works on the generic dynamics of maps of
the Cantor space by establishing several new dynamical properties of these maps,
from the point of view of collective dynamics.

2 Preliminaries

The main tools used in this paper are the graph theoretic descriptions of the generic
continuous map and of the generic homeomorphism of the Cantor space obtained
in [15]. In order to state these descriptions we need to recall some terminology from
[15].

By a partition of {0, 1}N, we mean a finite collection of pairwise disjoint nonempty
clopen sets whose union is {0, 1}N. The mesh of a partition P of {0, 1}N is defined by

mesh(P) := max
a∈P

diam(a).

For each f ∈ C({0, 1}N) and each partition P of {0, 1}N, we consider the digraph
Gr( f ,P) whose vertex set is P and whose edge set is{−→

ab : a, b ∈ P and f (a) ∩ b 6= ∅
}
.

By a component of a digraph G we mean a largest (in vertices and edges) subgraph
H of G such that given any two vertices a, b in H, there are vertices a1, . . . , an in H
such that a1 = a, an = b and, for each 1 ≤ i < n,−−−→aiai+1 or−−−→ai+1ai is an edge of H.

A digraph ` is a loop of length n if the vertex set of ` is a set {v1, . . . , vn} with n
elements and the edges of ` are−−→vnv1 and−−−→vivi+1 for 1 ≤ i < n.

A digraph B is a balloon of type (s, t) if the vertex set of B is the union of two
disjoint sets p = {v1, . . . , vs}, and ` = {w1, . . . ,wt}, and the edges of B are

• the edges of the path p, i.e.,−−−→vivi+1 for 1 ≤ i < s,
• the edges of the loop formed by `, and
• −−→vsw1.

We call v1 the initial vertex of B. Unless otherwise specified, whenever we write a
balloon B simply as

B = {v1, . . . , vs} ∪ {w1, . . . ,wt},
we implicitly assume that it is the balloon described above.

A digraph D is a dumbbell of type (r, s, t) if the vertex set of D is the union of three
disjoint sets `1 = {u1, . . . , ur}, p = {v1, . . . , vs} and `2 = {w1, . . . ,wt}, and the
edges of D are

• the edges of the loops formed by `1 and `2,
• the edges of the path p, and
• −−→u1v1,−−→vsw1.

We say that s is the length of the bar of the dumbbell. If r = t , then we say that the
dumbbell is balanced with plate weight r. Unless otherwise specified, whenever we
write a dumbbell D simply as

D = {u1, . . . , ur} ∪ {v1, . . . , vs} ∪ {w1, . . . ,wt},
we implicitly assume that it is the dumbbell described above.
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Suppose that f ∈ C({0, 1}N), P is a partition of {0, 1}N, and B is a component of
Gr( f ,P) that is a balloon. Write

B = {v1, . . . , vs} ∪ {w1, . . . ,wt}

with usual labeling. We say that the balloon B is strict relative to f if f (vi) ( vi+1 for
every 1 ≤ i < s, f (w j) ( w j+1 for every 1 ≤ j < t , and f (vs) ∪ f (wt ) ( w1.

Suppose that h ∈ H({0, 1}N), P is a partition of {0, 1}N, and D is a component
of Gr(h,P) that is a dumbbell. Write

D = {u1, . . . , ur} ∪ {v1, . . . , vs} ∪ {w1, . . . ,wt}

with the usual labeling. We say that the dumbbell D contains a left loop of h (resp.
a right loop of h) if there is a nonempty clopen subset a of u1 (resp. of w1) such that
hr(a) = a (resp. ht (a) = a).

We are now in position to state the above-mentioned results from [15].

Theorem A The generic f ∈ C({0, 1}N) has the following property:

(Q) For every m ∈ N, there are a partition P of {0, 1}N of mesh< 1/m and a multiple
q ∈ N of m such that every component of Gr( f ,P) is a balloon of type (q!, q!) that
is strict relative to f .

Theorem B The generic h ∈ H({0, 1}N) has the following property:

(P) For every m ∈ N, there are a partition P of {0, 1}N of mesh< 1/m and a multiple
q ∈ N of m such that every component of Gr(h,P) is a balanced dumbbell with
plate weight q! that contains both a left and a right loop of h.

Moreover, it was proved in [15] that any two maps f , g ∈ C({0, 1}N) (resp.
f , g ∈ H({0, 1}N)) with property (Q) (resp. property (P)) are topologically conju-
gate to each other; that is, f = h−1gh for some h ∈ H({0, 1}N).

Let us now introduce some further terminology and state a few simple facts. Given
a partition P of {0, 1}N, we define

δ(P) := min{d(a, b) : a, b ∈ P, a 6= b},
IP(X) := {a ∈ P : a ∩ X 6= ∅} (X ⊂ {0, 1}N).

Note that δ(P) > 0. The next two results follow immediately from the definitions.

Lemma 2.1 For every X,Y ∈ K({0, 1}N),

dH(X,Y ) < δ(P) =⇒ IP(X) = IP(Y ).

Lemma 2.2 For every X,Y ∈ K({0, 1}N),

IP(X) = IP(Y ) =⇒ dH(X,Y ) ≤ mesh(P).
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3 Main Results

If f : M → M is a continuous map of a metric space M, recall that a pair (x, y) ∈
M ×M is called a Li–Yorke pair for f if

lim inf
n→∞

d
(

f n(x), f n(y)
)

= 0 and lim sup
n→∞

d
(

f n(x), f n(y)
)
> 0.

A scrambled set for f is a subset S of M such that (x, y) is a Li–Yorke pair for f
whenever x and y are distinct points in S. The map f is said to be Li–Yorke chaotic if
there exists an uncountable scrambled set for f . This notion of chaos was introduced
by Li and Yorke in [30].

It was proved in [15] that the generic f ∈ C({0, 1}N) has no Li–Yorke pair (in
particular, f is not Li–Yorke chaotic). We shall now extend this result by proving that
the same property is satisfied by the induced map f .

Theorem 3.1 For the generic f ∈ C({0, 1}N), f has no Li–Yorke pair.

Proof Let f ∈ C({0, 1}N) satisfy property (Q) of Theorem A. Suppose that X,Y ∈
K({0, 1}N) satisfy

(3.1) lim inf
n→∞

dH

(
f

n
(X), f

n
(Y )
)

= 0.

Given ε > 0, there is a partition P of {0, 1}N of mesh< ε such that every component
of Gr( f ,P) is a balloon. Moreover, by (3.1), there exists n0 ∈ N such that

dH

(
f n0 (X), f n0 (Y )

)
< δ(P).

By Lemma 2.1, IP( f n0 (X)) = IP( f n0 (Y )). Since each component B of Gr( f ,P) is a
balloon, f maps each vertex of B into a vertex of B, and so IP( f n(X)) = IP( f n(Y ))
for every n ≥ n0. Hence, by Lemma 2.2,

dH

(
f n(X), f n(Y )

)
< ε for every n ≥ n0.

This proves that

lim
n→∞

dH

(
f

n
(X), f

n
(Y )
)

= 0,

and so (X,Y ) is not a Li–Yorke pair for f .

It was proved in [15] that the generic h ∈ H({0, 1}N) has no Li–Yorke pair (in
particular, h is not Li–Yorke chaotic). In strong contrast to this fact and to the previ-
ous theorem, we will see that for the generic h ∈ H({0, 1}N), the induced map h is
Li–Yorke chaotic. In fact, we will see that h is even uniformly distributionally chaotic.

Let us recall the definition of uniform distributional chaos. Given A ⊂ N, the
upper density of A is defined by

dens(A) := lim sup
n→∞

card([1, n] ∩ A)

n
.

If f : M → M is a continuous map of a metric space M, a pair (x, y) ∈ M × M is
called a distributionally ε-chaotic pair for f (ε > 0) if

dens{n ∈ N : d( f n(x), f n(y)) ≥ ε} = 1
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and
dens{n ∈ N : d( f n(x), f n(y)) < δ} = 1,

for all δ > 0. A distributionally ε-scrambled set for f is a subset S of M such that (x, y)
is a distributionally ε-chaotic pair for f whenever x and y are distinct points in S. The
map f is said to be uniformly distributionally chaotic if there exists an uncountable
distributionally ε-scrambled set for f , for some ε > 0. The notion of distributional
chaos was introduced by Schweizer and Smı́tal in [33] (see also Oprocha [31]).

Theorem 3.2 There is a dense open subset O of H({0, 1}N) such that, for all h ∈ O,
h is uniformly distributionally chaotic. In particular, for the generic h ∈ H({0, 1}N), h
is uniformly distributionally chaotic.

Proof Let O be the set of all h ∈ H({0, 1}N) for which there is a partition P of
{0, 1}N such that some component of Gr(h,P) is a balanced dumbbell with plate
weight ≥ 2. Clearly, the set O is open in H({0, 1}N). By Theorem B, O is also dense
in H({0, 1}N). Fix h ∈ O and let P be a partition of {0, 1}N such that there is a
component D of Gr(h,P) that is a balanced dumbbell with plate weight q ≥ 2. Write

D = {u1, . . . , uq} ∪ {v1, . . . , vs} ∪ {w1, . . . ,wq},

with usual labeling. Since

u1 ⊃ h−q(u1) ⊃ h−2q(u1) ⊃ · · · and w1 ⊃ hq(w1) ⊃ h2q(w1) ⊃ · · · ,

it follows that the intersections

F :=
∞⋂

n=0
h−nq(u1) and G :=

∞⋂
n=0

hnq(w1)

are nonempty. Moreover, hq(F) = F and hq(G) = G. We define

X := F ∪ h(F) ∪ · · · ∪ hq−1(F) and Y := G ∪ h(G) ∪ · · · ∪ hq−1(G).

It is not difficult to verify that the following properties hold:

(a) X is a nonempty closed subset of u1 ∪ · · · ∪ uq with h(X) = X;
(b) (u1∪· · ·∪uq)\X is exactly the set of all σ ∈ u1∪· · ·∪uq whose forward trajectory

eventually goes to the bar of the dumbbell D (i.e., there exists r ∈ N such that
hr(σ) ∈ v1);

(a′) Y is a nonempty closed subset of w1 ∪ · · · ∪ wq with h(Y ) = Y ;
(b′) (w1 ∪ · · · ∪ wq)\Y is exactly the set of all σ ∈ w1 ∪ · · · ∪ wq whose backward

trajectory eventually goes to the bar of the dumbbell D (i.e., there exists r ∈ N
such that h−r(σ) ∈ vs).

Moreover, we claim that:

(c) limm→∞maxσ∈v1 d(h−m(σ),X) = 0;
(c′) limm→∞maxσ∈v1 d(hm(σ),Y ) = 0.

Indeed, suppose that (c) is false. Then there exist ε > 0 and an increasing sequence
(m j) j∈N of positive integers such that maxσ∈v1 d(h−m j (σ),X) > ε for every j ∈ N.
Hence, for each j ∈ N, there exists σ j ∈ v1 such that

(3.2) d(h−m j (σ j),X) > ε.
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Note that h−m j (σ j) ∈ u1 ∪ · · · ∪ uq for every j ∈ N. By passing to a subsequence, if
necessary, we may assume that there exists

τ := lim
j→∞

h−m j (σ j) ∈ u1 ∪ · · · ∪ uq.

By (3.2), τ 6∈ X. Thus, it follows from (b) that there exists r ∈ N such that hr(τ ) ∈ v1.
By continuity,

lim
j→∞

hr−m j (σ j) = hr(τ ) ∈ v1.

Therefore, hr−m j (σ j) ∈ v1 for every sufficiently large j. But this is impossible, since
hn(v1) ∩ v1 = ∅ for every negative n. This proves (c). The proof of (c′) is analogous.

Now we fix a point σ0 ∈ v1. By (c) and (c′),

(3.3) lim
m→∞

d(h−m(σ0),X) = 0 and lim
m→∞

d(hm(σ0),Y ) = 0.

Therefore, we can construct an increasing sequence

a1 < b1 < c1 < d1 < a2 < b2 < c2 < d2 < · · ·
of positive integers so that the following properties hold:

(d) d(hn−t (σ0),X) < 1
j whenever n ≤ a j and t ≥ b j ;

(e) lim j→∞
c j−b j

c j
= 1;

(d′) d(hn−t (σ0),Y ) < 1
j whenever n ≥ d j and t ≤ c j ;

(e′) lim j→∞
a j+1−d j

a j+1
= 1.

Let H be a set of subsequences of the sequence (b j) such that H has the cardi-
nality of the continuum and any two distinct elements of H differ at infinitely many
coordinates. Each element θ of H is a sequence of the form

θ = (b j1 , b j2 , b j3 , . . . ),

with j1 < j2 < j3 < · · · . We associate with such a sequence θ, the sequence θ̃ given
by

θ̃ := (b j1 , b j1 + 1, . . . , c j1 , b j2 , b j2 + 1, . . . , c j2 , . . . ).

For each θ ∈ H, let

Cθ := X ∪ Y ∪ {h−θ̃(k)(σ0) : k ∈ N}.
It follows from (3.3) that each Cθ is a closed set; that is,

Cθ ∈ K({0, 1}N) for every θ ∈ H.

The set S := {Cθ : θ ∈ H} has the cardinality of the continuum, and we shall prove
that it is a distributionally δ(P)-scrambled set for h.

Let φ, θ ∈ H with φ 6= θ. By the definition of H, we may assume that there are
infinitely many b j ’s that are terms of φ but not terms of θ. For each such b j , we have
that

hn(Cφ) ∩ v1 = {σ0} and hn(Cθ) ∩ v1 = ∅ for all n ∈ {b j , b j + 1, . . . , c j},
which implies that

dH

(
h

n
(Cφ), h

n
(Cθ)

)
≥ δ(P) for all n ∈ {b j , b j + 1, . . . , c j}.
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By (e), we conclude that

(3.4) dens
{

n ∈ N : dH

(
h

n
(Cφ), h

n
(Cθ)

)
≥ δ(P)

}
= 1.

Given θ ∈ H, j ∈ N, and n ∈ {d j , d j + 1, . . . , a j+1}, we can write

hn(Cθ) = X ∪ Y ∪ {hn−θ̃(k)(σ0) : θ̃(k) ≤ c j} ∪ {hn−θ̃(k)(σ0) : θ̃(k) ≥ b j+1}.
By (d),

d(hn−θ̃(k)(σ0),X) <
1

j + 1
whenever θ̃(k) ≥ b j+1.

By (d′),

d(hn−θ̃(k)(σ0),Y ) <
1

j
whenever θ̃(k) ≤ c j .

Therefore,

dH

(
h

n
(Cθ),X ∪ Y

)
<

1

j
.

Finally, let φ, θ ∈ H. By what we have just seen,

dH

(
h

n
(Cφ), h

n
(Cθ)

)
<

2

j

whenever j ∈ N and n ∈ {d j , d j + 1, . . . , a j+1}. Thus, (e′) implies that

(3.5) dens
{

n ∈ N : dH

(
h

n
(Cφ), h

n
(Cθ)

)
< δ
}

= 1

for every δ > 0. By (3.4) and (3.5), S is a distributionally δ(P)-scrambled set for
h.

Let us now recall the notion of topological entropy. Let f : M → M be a contin-
uous map of a compact metric space M. For each n ∈ N, we define an equivalent
metric dn on M by

dn(x, y) := max
0≤k<n

d
(

f k(x), f k(y)
)
.

A subset A of M is said to be (n, ε, f )-separated if dn(x, y) ≥ ε for every x, y ∈ A
with x 6= y. Let N(n, ε, f ) be the maximum cardinality of an (n, ε, f )-separated set.
The topological entropy of f is defined by

ent( f ) := lim
ε→0+

(
lim sup

n→∞

1

n
log N(n, ε, f )

)
.

The map f is said to be topologically chaotic if ent( f ) > 0. The notion of topolog-
ical entropy was introduced by Adler, Konheim, and McAndrew [3]. Here, we are
adopting the equivalent definition formulated by Bowen [17] and Dinaburg [23].

Theorem 3.3 For the generic f ∈ C({0, 1}N), ent( f ) = 0.

Proof Suppose that f ∈ C({0, 1}N) satisfies property (Q), and fix ε > 0. Then there
exists a partition P of {0, 1}N of mesh < ε such that every component of Gr( f ,P) is
a balloon. If X,Y ∈ K({0, 1}N) and IP(X) = IP(Y ), then IP( f n(X)) = IP( f n(Y ))
for every n ∈ N, and so

dH

(
f n(X), f n(Y )

)
≤ mesh(P) < ε for every n ∈ N.
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This implies that N(n, ε, f ) ≤ 2card(P) for every n ∈ N. Thus, ent( f ) = 0.

Related to the previous theorem, let us mention that Blanchard, Glasner, Kolyada
and Maass [16] solved a long-standing open question by proving that topological
chaos implies Li–Yorke chaos. With this result, we see that Theorem 3.1 actually
implies Theorem 3.3. However, we think it is instructive to establish Theorem 3.3
directly from Theorem A.

In contrast to the previous theorem, we have the following result.

Theorem 3.4 For the generic h ∈ H({0, 1}N), ent(h) =∞.

Proof Let h ∈ H({0, 1}N) satisfy property (P). For each n ∈ N, define

dn(X,Y ) := max
0≤k<n

dH

(
h

k
(X), h

k
(Y )
)

(X,Y ∈ K({0, 1}N)).

Given m ∈ N, there is a partition P of {0, 1}N of mesh < 1/m such that every
component of Gr(h,P) is a balanced dumbbell with plate weight q ≥ 2. Put δ :=
δ(P) > 0. Let

Di = {ui,1, . . . , ui,q} ∪ {vi,1, . . . , vi,si} ∪ {wi,1, . . . ,wi,q} (1 ≤ i ≤ N)

be the components (dumbbells) of Gr(h,P). In order to simplify the indexing in the
sequel, we do not use the usual labeling for these dumbbells. The only difference is
that we consider −−−→ui,qvi,1 as an edge of Gr(h,P) instead of −−−→ui,1vi,1. For each t ∈ N, let
Pt be the partition of {0, 1}N obtained from P by replacing each ui, j by its partition
given by the sets

h−kq+ j−1(vi,1) (1 ≤ k ≤ t) and ui, j\
( t⋃

k=1
h−kq+ j−1(vi,1)

)
.

Note that card(Pt ) = card(P) + tqN. Now, we claim that the following property
holds:

(∗) If C1 and C2 are distinct nonempty subsets of Pt , then dtq+1(
⋃

C1,
⋃

C2) ≥ δ.

In fact, let X :=
⋃
C1 and Y :=

⋃
C2. Without loss of generality, let us assume that

there exists a ∈ C1 such that a 6∈ C2. If a is some vi, j or some wi, j , then

dH(X,Y ) ≥ δ.
If a = h−kq+ j−1(vi,1) for some i, j, k, then vi,1 ⊂ hkq− j+1(X) and vi,1 ∩ hkq− j+1(Y ) =
∅, implying that

dH

(
h

kq− j+1
(X), h

kq− j+1
(Y )
)
≥ δ.

Finally, if a = ui, j\
( ⋃t

k=1 h−kq+ j−1(vi,1)
)

for some i, j, then htq− j+1(a) = ui,1.
Hence, ui,1 ⊂ htq− j+1(X) and ui,1 ∩ htq− j+1(Y ) = ∅, which gives

dH

(
h

tq− j+1
(X), h

tq− j+1
(Y )
)
≥ δ.

In any case, we see that dtq+1(X,Y ) ≥ δ.
Now, for every t ∈ N, (∗) tells us that the set {

⋃
C;C ⊂ Pt ,C 6= ∅} is

(tq + 1, δ, h)-separated, and so

N(tq + 1, δ, h) ≥ 2card(Pt ) − 1 = 2card(P)+tqN − 1 ≥ 2card(P)+tqN−1.
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Thus,

1

tq + 1
log N(tq + 1, δ, h) ≥ card(P) + tqN − 1

tq + 1
log 2 (t ∈ N),

which implies that

lim sup
n→∞

1

n
log N(n, δ, h) ≥ N log 2.

Hence, ent(h) ≥ N log 2. Since N → ∞ as m → ∞, we conclude that ent(h) =∞.

Given a map f from a metric space M into itself, recall that f is said to be equicon-
tinuous at a point x ∈ M if for every ε > 0 there exists δ > 0 such that

d(y, x) < δ =⇒ d
(

f n(y), f n(x)
)
< ε for all n ≥ 0.

Moreover, f is said to be chain continuous at x [5, 9] if for every ε > 0 there exists
δ > 0 such that for any choice of points

x0 ∈ B(x; δ), x1 ∈ B( f (x0); δ), x2 ∈ B( f (x1); δ), . . . ,

we have that

d(xn, f n(x)) < ε for all n ≥ 0.

Of course, chain continuity is a much stronger property than equicontinuity. It was
proved in [15] that the generic f ∈ C({0, 1}N) is chain continuous at every point.
We shall now see that the induced map f has the same property.

Theorem 3.5 For the generic f ∈ C({0, 1}N), f is chain continuous at every point.

Proof Let f ∈ C({0, 1}N) satisfy property (Q) and fix ε > 0. There is a partition
P of {0, 1}N of mesh < ε such that every component of Gr( f ,P) is a balloon. Put
δ := δ(P) > 0. Fix X ∈ K({0, 1}N) and let

X0 ∈ B(X; δ),X1 ∈ B( f (X0); δ),X2 ∈ B( f (X1); δ), . . . .

We have to prove that dH

(
Xn, f

n
(X)
)
< ε for all n ≥ 0. In view of Lemma 2.2, it is

enough to prove that

(3.6) IP(Xn) = IP
(

f
n
(X)
)

for all n ≥ 0. Since dH(X0,X) < δ, Lemma 2.1 shows that (3.6) holds for n = 0.
Assume that (3.6) holds for a certain n ≥ 0. Since every component of Gr( f ,P) is a
balloon, it follows that

(3.7) IP
(

f (Xn)
)

= IP
(

f
n+1

(X)
)
.

On the other hand,

(3.8) IP(Xn+1) = IP
(

f (Xn)
)
,

because dH

(
Xn+1, f (Xn)

)
< δ. Equalities (3.7) and (3.8) show that (3.6) also holds

with n + 1 in place of n. By induction we have the desired result.
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It was proved in [15] that the generic h ∈ H({0, 1}N) is not equicontinuous at
each point of an uncountable set, and so the same property holds for the induced
map h. However, we have the following result, where R(h) denotes the set of all
recurrent points of h.

Theorem 3.6 For the generic h ∈ H({0, 1}N), h is chain continuous at every point
X ∈ K({0, 1}N) with X ∩R(h) = ∅; in particular, h is chain continuous at every point
of a dense open set.

Proof Let h ∈ H({0, 1}N) satisfy property (P). Fix X ∈ K({0, 1}N) with X∩R(h) =
∅. For each σ ∈ X, there exists t ′σ > 0 such that

B(σ; t ′σ) ∩ {h(σ), h2(σ), . . . } = ∅.

Moreover, since h is equicontinuous at every nonrecurrent point [15, Theorem 4.6],
there exists t ′′σ > 0 such that

d(τ , σ) < t ′′σ =⇒ d
(

hn(τ ), hn(σ)
)
<

t ′σ
2

for all n ∈ N.

Define tσ := min
{ t′σ

2 , t
′′
σ

}
for each σ ∈ X. Then

B(σ; tσ) ∩ {h(τ ), h2(τ ), . . . } = ∅ whenever σ ∈ X and τ ∈ B(σ; tσ).

Now a simple compactness argument shows that there exists t > 0 such that

(3.9) B(σ; t) ∩ {h(σ), h2(σ), . . . } = ∅ for all σ ∈ X.

Fix ε > 0 and let P be a partition of {0, 1}N of mesh < min{ε, t} such that every
component of Gr(h,P) is a balanced dumbbell with plate weight q ≥ 2. Let

Di = {ui,1, . . . , ui,q} ∪ {vi,1, . . . , vi,si} ∪ {wi,1, . . . ,wi,q} (1 ≤ i ≤ N)

be the components (dumbbells) of Gr(h,P). As in the proof of Theorem 3.4, we
consider−−−→ui,qvi,1 as an edge of Gr(h,P) instead of−−−→ui,1vi,1. By (3.9), we must have

(3.10) hq− j+1(X ∩ ui, j) ⊂ vi,1 whenever i ∈ {1, . . . ,N} and j ∈ {1, . . . , q}.

Let P′ be the partition of {0, 1}N obtained from P by replacing each ui, j by{
h−(q− j+1)(vi,1), ui, j\h−(q− j+1)(vi,1)

}
.

Define δ := δ(P′) > 0. It follows from (3.10) that the relations

X0 ∈ B(X; δ), X1 ∈ B
(

h(X0); δ
)
,X2 ∈ B

(
h(X1); δ

)
, . . .

imply

d
(

Xn, h
n
(X)
)
< ε for all n ≥ 0.

This proves that h is chain continuous at X.
Finally, since R(h) is closed and has empty interior in {0, 1}N [15, Theorem 4.5],

the set of all X ∈ K({0, 1}N) with X∩R(h) = ∅ is open and dense in K({0, 1}N).
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Given a homeomorphism h : M → M of a metric space M, recall that a sequence
(xn)n∈Z is called a δ-pseudotrajectory (δ > 0) of h if

d(h(xn), xn+1) ≤ δ for all n ∈ Z.

The homeomorphism h is said to have the shadowing property [18, 19] (also called
pseudo-orbit tracing property) if for every ε > 0 there exists δ > 0 such that every
δ-pseudotrajectory (xn)n∈Z of h is ε-shadowed by a real trajectory of h; i.e., there
exists x ∈ X such that

d(xn, h
n(x)) < ε for all n ∈ Z.

It was proved in [15] that the generic h ∈ H({0, 1}N) has the shadowing property.
In this case, we will see that this property of the generic h is also satisfied by h.

Theorem 3.7 For the generic h ∈ H({0, 1}N), h has the shadowing property.

Proof Suppose h ∈ H({0, 1}N) satisfies property (P) and fix ε > 0. Then there
exists a partition P of {0, 1}N of mesh < ε such that every component of Gr(h,P) is
a balanced dumbbell with plate weight q ≥ 2. Choose

0 < δ < δ(P).

Let (Xn)n∈Z be a δ-pseudotrajectory of h. We have to find X ∈ K({0, 1}N) such that

dH

(
Xn, h

n
(X)
)
< ε for all n ∈ Z.

In view of Lemma 2.2, it is enough to find X ∈ K({0, 1}N) such that

IP(Xn) = IP
(

h
n
(X)
)

for all n ∈ Z.

Let us fix a component

D = {u1, . . . , uq} ∪ {v1, . . . , vs} ∪ {w1, . . . ,wq}
of Gr(h,P). In order to simplify the indexing in the sequel, we do not use the usual
labeling for this dumbbell. As in the proofs of Theorems 3.4 and 3.6, the only differ-
ence is that we consider −−→uqv1 as an edge of Gr(h,P) instead of −−→u1v1. Note that it is
enough to prove the existence of a closed subset Y of

⋃
D such that

(3.11) IP
(

Xn ∩
(⋃

D
))

= IP
(

h
n
(Y )
)

for all n ∈ Z.

For this purpose, we fix points

σ j ∈
∞⋂

n=0
h−nq(u j) ⊂ u j , σ j,k ∈ h−kq+ j−1(v1) ⊂ u j ,

τ j ∈
∞⋂

n=0
hnq(w j) ⊂ w j , τ j,k ∈ h(k−1)q+ j(vs) ⊂ w j ,

for each j ∈ {1, . . . , q} and each k ∈ N. We also fix a point θi ∈ vi for each
i ∈ {1, . . . , s}. Note that both the forward and the backward trajectories of σ j go
around the “loop” {u1, . . . , uq} forever. The same is true for the backward trajectory
of σ j,k, but the forward trajectory of σ j,k goes around the “loop” {u1, . . . , uq} exactly
k − 1 times, then passes through the bar of the dumbbell, and finally keeps going
around the “loop” {w1, . . . ,wq} forever. We have analogous geometric descriptions
for the trajectories of τ j and τ j,k.
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Now, we define a set A consisting of σ j ’s, σ j,k’s, τ j ’s, τ j,k’s, and θi ’s in the following
way:

• σ j ∈ A⇐⇒ Xnq ∩ u j 6= ∅ for all n ≥ 0,
• σ j,k ∈ A⇐⇒ Xkq− j+1 ∩ v1 6= ∅,
• τ j ∈ A⇐⇒ X−nq ∩ w j 6= ∅ for all n ≥ 0,
• τ j,k ∈ A⇐⇒ X−(k−1)q− j ∩ vs 6= ∅,
• θi ∈ A⇐⇒ X0 ∩ vi 6= ∅.

We claim that

(3.12) IP
(

Xn ∩
( ⋃

D
))

= IP
(

h
n
(A)
)

for all n ∈ Z. In order to prove this assertion, note that

(3.13) IP(Xn+1) = IP
(

h(Xn)
)

for all n ∈ Z,

because of our choice of δ. By (3.13) and the way the set A was defined, it is clear that
(3.12) holds for n = 0. Assume that (3.12) holds for a certain n ≥ 0. We shall prove
that (3.12) also holds with n + 1 in place of n. By (3.13), it is enough to show that

(3.14) IP
(

h
(

Xn ∩
( ⋃

D
)))

= IP
(

h
n+1

(A)
)
.

In view of the dumbbell structure, it follows that

IP
(

h
(

Xn ∩
( ⋃

D
)))
\{u1, v1} = IP

(
h

n+1
(A)
)
\{u1, v1}.

So, we have only to worry about the vertices u1 and v1. Assume that at least one of
these vertices belongs to some of the sets in (3.14). Then we must have

uq ∈ IP
(

Xn ∩
( ⋃

D
))

= IP
(

h
n
(A)
)
.

Write n in the form n = kq− j with j ∈ {1, . . . , q}. Then,

v1 ∈ IP
(

h
(

Xn ∩
( ⋃

D
)))

⇐⇒ v1 ∈ IP(Xn+1)

⇐⇒ Xkq− j+1 ∩ v1 6= ∅
⇐⇒ σ j,k ∈ A

⇐⇒ hkq− j+1(A) ∩ v1 6= ∅

⇐⇒ v1 ∈ IP
(

h
n+1

(A)
)
.

Moreover, u1 ∈ IP(h(Xn ∩ (
⋃

D))) if and only if u1 ∈ IP(Xn+1) = IP(Xkq− j+1), and
this happens if and only if

Xrq ∩ u j 6= ∅ for every r ≥ 0

or

Xk′q− j+1 ∩ v1 6= ∅ for some k′ > k,

which is equivalent to saying that u1 ∈ IP
(

h
n+1

(A)
)

. This completes the proof of
(3.14). By induction we have that (3.12) holds for every n ≥ 0. A similar induction
argument shows that (3.12) also holds for n ≤ 0.

Finally, let Y := A, which is a closed subset of ∪D. We have to prove that (3.11)
holds. By (3.12), it is enough to show that

(3.15) IP
(

h
n
(Y )
)

= IP
(

h
n
(A)
)
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for all n ∈ Z. Since A ⊂ Y , the inclusion “⊃” is clear. In order to prove the reverse
inclusion, suppose y ∈ Y\A. Then either y belongs to some u j of y belongs to some
w j . We will consider only the first case, since the second one is analogous. So assume
that y ∈ u j for a certain j. There must exists a subsequence (σ j,k)k∈N of (σ j,k)k∈N

contained in A such that y is a limit point of this subsequence. Since

hkq− j+1(σ j,k) ∈ v1 for all k ∈ N,

the whole trajectory of y must be contained in the “loop” {u1, . . . , uq}. This infor-
mation together with the fact that the subsequence (σ j,k)k∈N lies in A imply that

IP
(

h
n
({y})

)
⊂ IP

(
h

n
(A)
)

for all n ∈ Z.

Since this holds for each y ∈ Y\A, we conclude that (3.15) is true.

Given a map f from a metric space M into itself, we denote by P( f ) (resp. R( f ),
Ω( f ), CR( f )) the set of all periodic (resp. recurrent, nonwandering, chain recurrent)
points of f .

It was proved in [21] (resp. [7]) that the generic f ∈ C({0, 1}N) (resp. h ∈
H({0, 1}N)) has no periodic point. We will see that the situation is completely dif-
ferent for the induced map f (resp. h).

Theorem 3.8 For the generic f ∈ C({0, 1}N), the following properties hold:

(i) f has uncountably many periodic points of each period p ≥ 1;
(ii) R( f ) = Ω( f ) = CR( f );
(iii) CR( f ) has empty interior in f

(
K({0, 1}N)

)
;

(iv) P( f ) is dense in CR( f ).

Proof Suppose f ∈ C({0, 1}N) satisfies property (Q).
(i) Fix p ∈ N and assume that f has only countably many periodic points of period
p. Let X1,X2,X3, . . . be a list of all these periodic points. There are a partition P1

of {0, 1}N and an integer q1 ≥ p such that every component of Gr( f ,P1) is a bal-
loon of type (q1!, q1!). Moreover, by choosing P1 with mesh(P1) small enough, we
can also guarantee that Gr( f ,P1) has at least two components. So, we can choose
a component B1 of Gr( f ,P1) with X1\(

⋃
B1) 6= ∅. Now, there are a partition P2

of {0, 1}N of mesh < δ(P1) and a positive integer q2 such that every component of
Gr( f ,P2) is a balloon of type (q2!, q2!). The condition mesh(P2) < δ(P1) implies
that P2 is a refinement of P1. Hence, every component B of Gr( f ,P2) is contained
in a component B′ of Gr( f ,P1) in the sense that

⋃
B ⊂

⋃
B′. Moreover, by choos-

ing P2 with mesh(P2) small enough, we can also guarantee that Gr( f ,P2) has at
least two components whose initial vertices are contained in the initial vertex of the
component B1 of Gr( f ,P1). So, we can choose such a component B2 of Gr( f ,P2)
with X2\(

⋃
B2) 6= ∅. We continue this process to obtain the sequences (P j), (q j),

and (B j).
Since B j is a component of Gr( f ,P j), it is a balloon of the form

B j = {v j,1, . . . , v j,q j !} ∪ {w j,1, . . . ,w j,q j !}.
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By construction, P j+1 refines P j and v j+1,1 ⊂ v j,1, which implies that

q j+1 ≥ q j and w j+1,1 ⊂ w j,1 ( j ∈ N).

For each j ∈ N, let

F j :=
∞⋂

n=0
f nq j !(w j,1).

Clearly, F j ∈ K({0, 1}N) and f q j !(F j) = F j . Write q j ! = k j p. Then

Y j := F j ∪ f p(F j) ∪ f 2p(F j) ∪ · · · ∪ f (k j−1)p(F j)

is a periodic point of f of period p. Since Y1 ⊃ Y2 ⊃ Y3 ⊃ · · · , the set

Y :=
∞⋂
j=1

Y j

is also a periodic point of f of period p. Finally, since X j\(
⋃

B j) 6= ∅ and Y ⊂
Y j ⊂

⋃
B j , we have that Y 6= X j ( j ∈ N). This contradiction completes the proof of

item (i).
(ii) Follows from the fact that f is chain continuous at every point (Theorem 3.5).
(iii) Fix X ∈ R( f ) and ε > 0. There are a partition P of {0, 1}N of mesh < ε and a
positive integer q such that every component of Gr( f ,P) is a balloon of type (q, q).
Let

Bi = {vi,1, . . . , vi,q} ∪ {wi,1, . . . ,wi,q} (1 ≤ i ≤ N)

be the components (balloons) of Gr( f ,P). Since X is a recurrent point of f , we must
have

X ⊂
N⋃

i=1

q⋃
j=1

wi, j .

Hence, we may define Y as the unique union of some of the sets

f (vi,q), . . . , f q(vi,q),

with i varying in {1, . . . ,N}, that satisfies IP(Y ) = IP(X). Then

Y ∈ f
(
K({0, 1}N)

)
and dH(Y,X) < ε.

Moreover, it follows from the balloon structure that Y is not a recurrent point of f .
(iv) Let X, ε, P, q, and Bi be as in the proof of (iii). For each i ∈ {1, . . . ,N}, let

Fi :=
∞⋂

n=0
f nq(wi,1).

Then Fi is a periodic point of f of period q. Let Z be the unique union of some of the
sets

Fi , f (Fi), . . . , f q−1(Fi),

with i varying in {1, . . . ,N}, that satisfies IP(Z) = IP(X). Then

f
q
(Z) = Z and dH(Z,X) < ε,

which completes the proof.

Theorem 3.9 For the generic h ∈ H({0, 1}N), the following properties hold:

(i) h has uncountably many periodic points of each period p ≥ 1;
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(ii) R(h) 6= Ω(h) = CR(h);
(iii) CR(h) has empty interior in K({0, 1}N);
(iv) P(h) is dense in CR(h).

Proof Let h ∈ H({0, 1}N) satisfy property (P).
(i) Let P be a partition of {0, 1}N such that every component of Gr(h,P) is a balanced
dumbbell with plate weight q ≥ 2. Fix such a component

D = {u1, . . . , uq} ∪ {v1, . . . , vs} ∪ {w1, . . . ,wq}.

Let X and Y be defined as in the proof of Theorem 3.2. For each σ ∈ v1, let

Zσ := X ∪ Y ∪ {hkp(σ) : k ∈ Z}.

It follows from properties (c) and (c′) in the proof of Theorem 3.2 that each Zσ is a
closed set. Hence, {Zσ : σ ∈ v1} is an uncountable set of periodic points of h with
period p.
(ii) Let P, q, D, X and Y be as in the proof of (i). Define

Z := X ∪ Y ∪ v1 ∈ K({0, 1}N).

Since

dH

(
Z, h

n
(Z)
)
≥ δ(P) for all n ∈ N,

we have that Z is not a recurrent point of h. On the other hand, for each k ∈ N, let

Zk := Z ∪ h−k(v1) ∈ K({0, 1}N).

Then

hk(Zk) = Z ∪ hk(v1),

and it follows from properties (c) and (c′) in the proof of Theorem 3.2 that

Zk → Z and hk(Zk)→ Z.

Thus, Z is a nonwandering point of h.
The equality Ω(h) = CR(h) follows from (iv).

(iii) Fix X ∈ CR(h) and ε > 0. There are a partition P of {0, 1}N of mesh < ε and a
positive integer q such that every component of Gr(h,P) is a balanced dumbbell with
plate weight q. Let

Di = {ui,1, . . . , ui,q} ∪ {vi,1, . . . , vi,si} ∪ {wi,1, . . . ,wi,q} (1 ≤ i ≤ N)

be the components (dumbbells) of Gr(h,P). We define Y as the unique union of
some of the sets

h−q(vi,1), . . . , h−1(vi,1), vi,1, . . . , vi,si , h(vi,si ), . . . , h
q(vi,si ),

with i varying in {1, . . . ,N}, that satisfies IP(Y ) = IP(X). Then

dH(Y,X) < ε.

Moreover, it follows from the dumbbell structure that Y is not a chain recurrent point
of h.

https://doi.org/10.4153/CJM-2014-005-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-005-5


346 N. C. Bernardes and R. M. Vermersch

(iv) Let X, ε, P, q and Di be as in the proof of (iii). For each i ∈ {1, . . . ,N}, we
define

Fi :=
∞⋂

n=0
h−nq(ui,1) and Gi :=

∞⋂
n=0

hnq(wi,1).

Clearly,
hq(Fi) = Fi and hq(Gi) = Gi .

Since X is a chain recurrent point of h, there is a finite sequence X0, . . . ,Xk in
K({0, 1}N) such that

dH(X,X0) < δ(P), dH

(
h(X0),X1

)
< δ(P), . . . , dH

(
h(Xk−1

)
,Xk) < δ(P)

and Xk = X. Therefore,

IP(X) = IP(X0), IP
(

h(X0)
)

= IP(X1), . . . , IP
(

h(Xk−1)
)

= IP(Xk) = IP(X).

(3.16)

Let Z1 be the union of all sets of the form h j(Fi), with i ∈ {1, . . . ,N} and j ∈
{0, . . . , q − 1}, such that ui, j+1 ∩ X 6= ∅. By (3.16), if ui, j+1 ∩ X 6= ∅ and ui,`+1

is the vertex that contains h−k(ui, j+1), then we also have ui,`+1 ∩ X 6= ∅, and so
h−k(h j(Fi)) = h`(Fi) ⊂ Z1. This implies that

(3.17) hk(Z1) = Z1.

Let Z2 be the union of all sets of the form h j(Gi), with i ∈ {1, . . . ,N} and j ∈
{0, . . . , q−1}, such that wi, j+1∩X 6= ∅. By (3.16), if wi, j+1∩X 6= ∅ and wi,`+1 is the
vertex that contains hk(wi, j+1), then wi,`+1∩X 6= ∅, and so hk(h j(Gi)) = h`(Gi) ⊂ Z2.
Thus,

(3.18) hk(Z2) = Z2.

Let Z3 be the union of all sets of the form
⋃

n∈Z hnk(vi, j), with i ∈ {1, . . . ,N} and
j ∈ {1, . . . , si}, such that vi, j ∩ X 6= ∅. Obviously,

(3.19) hk(Z3) = Z3.

Finally, we define Z := Z1 ∪ Z2 ∪ Z3. It folows from (3.16) that

IP(Z) = IP(X).

By properties (c) and (c′) in the proof of Theorem 3.2, Z ∈ K({0, 1}N). By (3.17),
(3.18), and (3.19), hk(Z) = Z. Thus, Z is a periodic point of h and dH(Z,X) < ε.

4 Remarks on the Dynamics Induced on Products

Another very natural context for collective dynamics consists in looking at the action
of a system on k-tuples of points of the phase space. In other words, given f ∈ C(M)
and k ∈ N, it consists in studying the dynamics of the induced product map

f×k : (x1, . . . , xk) ∈ Mk 7→ ( f (x1), . . . , f (xk)) ∈ Mk.

In the case of the generic dynamics of maps of the Cantor space, it turns out that the
dynamics of these induced product maps can be easily derived from the dynamics of
the original maps. In this direction, we have the following results.
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Theorem 4.1 For the generic f ∈ C({0, 1}N), the following properties hold for each
k ∈ N:

(i) f×k has no Li–Yorke pair. In particular, ent( f×k) = 0;
(ii) f×k is chain continuous at every point;
(iii) P( f×k) = ∅;
(iv) R( f×k) = Ω( f×k) = CR( f×k);
(v) R( f×k) is a Cantor set with empty interior in f×k(({0, 1}N)k).

Theorem 4.2 For the generic h ∈ H({0, 1}N), the following properties hold for each
k ∈ N:

(i) h×k has no Li–Yorke pair. In particular, ent(h×k) = 0;
(ii) h×k has the shadowing property;
(iii) h×k is chain continuous at every point of a dense open set, but it is not equicontin-

uous at each point of an uncountable set;
(iv) P(h×k) = ∅;
(v) R(h×k) = Ω(h×k) = CR(h×k);
(vi) R(h×k) is a Cantor set with empty interior in ({0, 1}N)k.

We will say a few words about the proof of Theorem 4.2 (the proof of Theorem 4.1
follows the same reasoning). Properties (i), (ii), (iii), and (iv) follow easily from the
corresponding properties of the map h as presented in [15]. Properties (v) and (vi)
also follow from the corresponding properties of h provided we prove that

R(h×k) = R(h)k.

Since the inclusion “⊂” is obvious, let us take a point (σ1, . . . , σk) ∈ R(h)k. Given
ε > 0, let P be a partition of {0, 1}N of mesh < ε such that every component of
Gr(h,P) is a balanced dumbbell with plate weight q ≥ 2. Let

Di = {ui,1, . . . , ui,q} ∪ {vi,1, . . . , vi,si} ∪ {wi,1, . . . ,wi,q} (1 ≤ i ≤ N)

be the components (dumbbells) of Gr(h,P). For each 1 ≤ j ≤ k, let 1 ≤ i j ≤ N be
such that σ j belongs to a vertex of the dumbbell Di j . Since σ j is a recurrent point of
h, either σ j belongs to ui j ,1 ∪ · · · ∪ ui j ,q or σ j belongs to wi j ,1 ∪ · · · ∪wi j ,q. Moreover,
in the case σ j ∈ ui j ,1 ∪ · · · ∪ ui j ,q, we must have hn(σ j) ∈ ui j ,1 ∪ · · · ∪ ui j ,q for all
n ∈ N. In both cases, we see that

d(hnq(σ j), σ j) < ε for all n ∈ N0.

Since this holds for each 1 ≤ j ≤ k, and since ε > 0 is arbitrary, we conclude that
(σ1, . . . , σk) ∈ R(h×k).
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