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On the Maximum and Minimum Modulus
of Rational Functions
D. S. Lubinsky

Abstract. We show that if m, n ≥ 0, λ > 1, and R is a rational function with numerator, denominator of
degree≤ m, n, respectively, then there exists a set S ⊂ [0, 1] of linear measure≥ 1

4 exp(− 13
log λ ) such that for

r ∈ S,

max
|z|=r
|R(z)|/ min

|z|=r
|R(z)| ≤ λm+n.

Here, one may not replace 1
4 exp(− 13

log λ ) by exp(− 2−ε
log λ ), for any ε > 0. As our motivating application, we

prove a convergence result for diagonal Padé approximants for functions meromorphic in the unit ball.

1 Introduction and Results

The ratio of maximum modulus to minimum modulus,

max
|z|=r
| f (z)|/min

|z|=r
| f (z)|, r > 0,

for entire or meromorphic functions f , plays a role in complex function theory in topics
ranging from distribution of zeros and deficient values, to gap series. More specifically, the
ratio of maximum modulus to minimum modulus for polynomials P plays a crucial role in
several questions in rational approximation [1], [4], [10].

The usual way to estimate this ratio in the case of polynomials is to apply a classic lemma
of Cartan [1, 11]: if P is a monic polynomial of degree n, then the lemniscate {z : |P(z)| ≤
εn} can be covered by at most n balls, the sum of whose diameters is at most 4eε. By
grouping the zeros of P into sets “near to” and “far from” the circle |z| = r, one can prove
that given s > 0,

max
|z|=r
|P(z)|/min

|z|=r
|P(z)| ≤ (24e)n, r ∈ S ⊂ [0, s](1.1)

where meas(S) ≥ s/2. Here meas denotes linear Lebesgue measure. See, for example,
[10, Lemma 2.1, p. 3152]. While estimates of this type are sufficient for some purposes,
the drawback is that no matter how small is s, we still obtain a geometric factor (24e)n in
(1.1). In contrast, for an individual polynomial P, the left-hand side of (1.1) approaches 1
as r → 0+.

We prove in this paper a more appropriate inequality, not only for polynomials, but also
for rational functions. Recall that a rational function is of type (m, n), if its numerator and
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denominator have degree ≤ m, n respectively, and of course, its denominator should not
be identically 0.

Theorem 1 Let λ > 1 and m, n ≥ 0. Then for rational functions R of type (m, n),

max
|z|=r
|R(z)|/min

|z|=r
|R(z)| ≤ λm+n, r ∈ S,(1.2)

where S ⊂ [0, 1] satisfies

meas(S) ≥
1

4
exp
(
−

13

logλ

)
.(1.3)

This is sharp in form in the following sense: let 0 < ε < 1. Then for λ close enough to 1 and
m large enough, there exists a polynomial R of degree m for which the set S ⊂ [0, 1] on which
(1.2) holds, satisfies

meas(S) ≤ exp
(
−

2− ε

logλ

)
.(1.4)

Remarks (a) Let ρ > 0. By replacing R(z) by R(ρz), we deduce that (1.2) holds on a set
S ⊂ [0, ρ] with

meas(S) ≥
ρ

4
exp
(
−

13

logλ

)
.(1.5)

(b) Initially the above seems related to the Zolotarev numbers studied in [7], [14].
However, there the maxima and minima are taken over disjoint sets.

(c) The following Cartan type lemma is an essential ingredient of Theorem 1:

Theorem 2 Let n ≥ 1, a1, a2, . . . , an ∈ C and 0 < ε ≤ 1
6 . Let

E :=
{

x ∈ [0,∞) :
∣∣∣

n∏
j=1

(x − a j

x + a j

)∣∣∣ ≤ εn
}
.(1.6)

Then

∫
E

dx

x
≤ 37ε.(1.7)

In particular, given s > 0,

meas(E ∩ [0, s]) ≤ 37εs.(1.8)

The inequality (1.7) is sharp in form in the sense that one may not replace 37 by any constant
smaller than 4

√
2.
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Remarks (a) The author’s initial (unsuccessful) attempt at proving Theorem 2 involved
the ideas behind Loomis’ Lemmas [2, p. 129], [3, p. 345]. The Cartan type method used
here can yield estimates for more general measures than linear measure.

(b) Fryntov and Rossi have studied the size of sets on which finite Blaschke products in
the unit disk are small [5]. By a conformal map of the right-half plane onto the unit ball,
one can deduce from their result that if

E :=
{

z : Re z > 0 and
n∏

j=1

∣∣∣ z − a j

z + a j

∣∣∣ ≤ εn
}
,

then ∫ ∫
E

dm(z)

(Re z)2
≤

4πε2

1− ε2
,

with equality iff all a j = a. Here dm denotes planar Lebesgue measure. Is there an analogue
of this elegant result in the context of Theorem 2? If so, the extremal rational functions
minimising the measure above will (at first, surprisingly) not have all a j = a, see Theorem 7
below.

The motivation for Theorem 1 lies in the convergence theory of Padé approximation.
Recall that if n ≥ 1, the (n, n) Padé approximant to a function f analytic at 0, is a rational
function

[n/n](z) = (pn/qn)(z),

where pn, qn are polynomials of degree≤ n with qn not identically zero, and

( f qn − pn)(z) = O(z2n+1).

The order relation indicates that the coefficients of 1, z, z2, . . . , z2n in the Maclaurin series
of the left-hand side vanish. For an introduction to the subject, see [1].

The convergence theory of Padé approximation is rich and complex. It is known that
if f is meromorphic in the whole plane, then {[n/n]}∞n=1 converges in measure, and in
capacity—the Nuttall-Pommerenke Theorem. There are deeper analogues for functions
with branchpoints [15]. On the other hand, there is no such theorem for functions with
finite radius of meromorphy or analyticity [9, 13]. See [10], [12], [16] for reviews of various
aspects of the convergence theory.

As a first step towards positive results for functions with finite radius of meromorphy,
it was shown in [10] that a subsequence of {[n/n]}∞n=1 displays a weak convergence in
capacity property in a small neighbourhood of 0. Here we shall show that Theorem 1
implies a positive result for the full diagonal sequence:

Theorem 3 Let f be meromorphic in the unit ball and analytic at 0. Let 0 < δ < 1. There
exists n0 with the following property: for n ≥ n0, there exists a set Sn ⊂ (0, 1/2) of measure
≥ exp(−40/δ) such that for r ∈ Sn,

max
|z|=r

∣∣∣∣ f (z)− [n/n](z)

zn

∣∣∣∣ ≤ (1 + δ)n.(1.9)
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Moreover, there exists a set An within the ball centre 0, radius 1
2 , of planar measure ≥

π exp(−80/δ) such that

sup
z∈An

∣∣∣∣ f − [n/n]

zn

∣∣∣∣(z) ≤ (1 + δ)n.(1.10)

Thus [n/n] is uniformly close to f on circles whose radii have linear measure bounded
below independent of n and consequently on a set whose planar measure is bounded below
independently of n. It shows that while we cannot expect good approximation outside a
set of small measure or capacity (as in the Nuttall-Pommerenke theorem), nevertheless, we
can expect good approximation on a set which is a positive proportion (depending only on
δ) of the ball of meromorphy, at least in the sense of planar measure.

Strictly speaking, even (1.1) leads to an estimate of the form (1.10), but with 1 + δ
replaced by the much worse factor 25e.

One may replace the factor zn in the denominator in (1.9), (1.10) by an error of ratio-
nal approximation on a suitable disc; this leads one to expect that at least for an infinite
subsequence of integers, one should be able to replace zn by z2n.

This paper is organised as follows: we prove Theorem 2 in Section 2. Then in Section 3,
we prove Theorem 1. Finally in Section 4, we prove Theorem 3.

2 Proof of Theorem 2

We shall base our proof on Cartan’s Lemma applied to the metric space in the following
proposition.

Proposition 4 Let X := (0,∞) and

d(x, t) :=
∣∣∣x − t

x + t

∣∣∣, x, t ∈ X.

Then (X, d) is a metric space.

Proof Let

ρ(z,w) :=
∣∣∣ z − w

1− w̄z

∣∣∣, |z|, |w| < 1

denote the pseudohyperbolic metric on the unit ball, and ψ the conformal map of the
right-half plane onto the unit ball:

ψ(z) :=
z − 1

z + 1
.

Then it is easy to check that

d(x, t) = ρ
(
ψ(x), ψ(t)

)
, x, t ∈ X.

The fact that ρ is a metric [6, p. 4] then implies the same for d.

We now turn to a general Cartan type lemma.

Lemma 5 Let (X, d) be a metric space, let 0 < r1 < r2 < · · · < rn and let a1, a2, . . . , an ∈ X.
There exist positive integers p ≤ n, {λ j}

p
j=1 and closed balls {B j}

p
j=1 in X such that
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(i) λ1 + λ2 + · · ·λp = n.
(ii) B j has radius 2rλ j , 1 ≤ j ≤ p.
(iii)

n∏
j=1

d(z, a j) >
n∏

j=1

r j , z ∈ X
∖ p⋃

j=1

B j .(2.1)

Proof This is exactly the same as the usual form for monic polynomials ([11, p. 201] or
[3, p. 350]), one simply replaces (z − a j) by d(z, a j). Nevertheless, we provide the details
for the reader’s convenience. Let A denote the sequence a1, a2, . . . , an. The multiplicity of a
member of A is the number of times it is repeated in the sequence. We divide this into four
steps:

Step 1 We show that there exists λ1 ≤ n and a circle C1 of radius rλ1 containing exactly λ1

members of A, counting multiplicity.
For suppose such a circle does not exist. Then any circle C of radius r1 containing 1

member of A contains at least 2. The concentric circle of radius r2 contains 2, so must
contain 3 (otherwise we could choose λ1 = 2 and C1 to be this circle). Continuing in this
way, we eventually find that the circle concentric with C and radius rn must contain n + 1
members of A, which is impossible.

Step 2 We rank the members of A.
Choose the largest λ1 with the property in Step 1, and let C1 be the corresponding cir-

cle. Call the λ1 members of A inside C1 members of rank λ1. Next, applying the argu-
ment of Step 1 to the remaining n − λ2 members of A, we obtain a largest positive integer
λ2 ≤ λ1 and a circle C2 containing exactly λ2 of the members of A outside C1. Call those
members inside C2 members of rank λ2. Continuing in this way, we find p ≤ n largest
integers λ1 ≥ λ2 ≥ · · · ≥ λp and corresponding circles C j of radius rλ j containing exactly
λ j members of A outside C1 ∪ C2 ∪ · · · ∪ C j−1. Moreover, as we eventually exhaust the
members, λ1 + λ2 + · · · + λp = n.

Step 3 We prove that if S is a circle of radius rλ containing at least λ members of A, then
at least one of these members has rank at least λ.

First if S contains more than λ1 zeros, then at least one must lie in C1 and so have rank
λ1 ≥ λ. (If not, we would obtain a contradiction to the choice of λ1 being as large as
possible). Next suppose that λ j ≥ λ > λ j+1, some j. If any of the members inside S lies in
C1,C2, . . . ,C j then these have rank ≥ λ j ≥ λ, as required. If all the members lie outside
these former j circles, then the process of Step 1 yields a circle with ≥ λ > λ j+1 members
contradicting the choice of λ j+1 being as large as possible.

Step 4 Complete the proof.
Let B j be the (closed) ball concentric with C j but of twice the radius, so that B j has

radius 2rλ j , 1 ≤ j ≤ p. Fix z ∈ X \
⋃p

j=1 B j . We claim that a circle S, centre z, radius rλ,
can contain at most λ − 1 members of A. For if it contained at least λ, then by Step 3, at
least one, u say, would have, say, rank λ j ≥ λ, and so lie in C j and also in the concentric
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ball B j of twice the radius. Then the fact that z /∈ B j and u lies inside C j forces

d(z, u) > dist(X \ B j ,C j) ≥ rλ j ≥ rλ

contradicting our hypothesis that S contains u.
Finally rearrange the members of A in order of increasing distance from z as a1, a2, . . . ,

an. Now the circle centre z, radius r j can contain at most j − 1 members of A, and these
could only be a1, a2, . . . , a j−1 so

d(z, a j) > r j .

Thus

n∏
j=1

d(z, a j) >
n∏

j=1

r j .

We turn to

The Proof of (1.7) of Theorem 2

Step 1 We first show that it suffices to consider a1, a2, . . . , an ∈ [0,∞).
For if not, let

α j := |a j |, 1 ≤ j ≤ n.

Then for x ∈ [0,∞),

∣∣∣x − a j

x + a j

∣∣∣≥ ∣∣∣x − α j

x + α j

∣∣∣
so that

{
x ∈ [0,∞) :

n∏
j=1

∣∣∣x − a j

x + a j

∣∣∣ ≤ εn
}
⊂
{

x ∈ [0,∞) :
n∏

j=1

∣∣∣x − α j

x + α j

∣∣∣ ≤ εn
}
.

So, it follows that it suffices to prove (1.7) for the case of a j ∈ [0,∞).

Step 2 Prove (1.7) for a1, a2, . . . , an ∈ [0,∞).
Let 0 < ε ≤ 1

6 . We choose in the lemma above (X, d) to be the metric space of Proposi-
tion 4 and let

r j := ε j(n!)−1/n, 1 ≤ j ≤ n.

Then if B j is the ball of radius 2rλ j of Lemma 5, 1 ≤ j ≤ p, we have for x ∈ [0,∞) \⋃p
j=1 B j ,

n∏
j=1

∣∣∣x − a j

x + a j

∣∣∣ =
n∏

j=1

d(x, a j) >
n∏

j=1

r j = ε
n.
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Thus if E is the set of small values defined by (1.6), it is contained in
⋃p

j=1 B j , so

∫
E

dx

x
≤

p∑
j=1

∫
B j

dx

x
.

Next, a ball B centre a ∈ (0,∞), radius s < 1 in the metric of Proposition 4 is easily seen
to have the form

B =

(
a
(1− s

1 + s

)
, a
( 1 + s

1− s

))

so that ∫
B

dx

x
= 2 log

( 1 + s

1− s

)
.

Thus,

∫
E

dx

x
≤ 2

p∑
j=1

log
( 1 + 2rλ j

1− 2rλ j

)
.

Now the inequality n! ≥ (n/e)n implies that

2r j ≤ 2eε ≤ e/3, 1 ≤ j ≤ n.

Since

f (s) :=
1

s
log
( 1 + s

1− s

)
= 2

∞∑
j=0

s2 j

2 j + 1

is an increasing function of s ∈ (0, 1), we deduce that for each j,

log
( 1 + 2r j

1− 2r j

)
≤ 2r j f

( e

3

)

and hence

∫
E

dx

x
≤ 4 f

( e

3

) p∑
j=1

rλ j = 4 f
( e

3

)
ε
(nn

n!

)1/n
≤ 4e f

( e

3

)
ε ≤ 37ε.

We may improve the constant 37 a little: if instead of ε ≤ 1
6 , we assume that ε ≤ ρ

2e ,
some ρ ∈ (0, 1), then the above argument goes through with e/3 replaced by ρ. After
setting ρ = 2eε, we deduce that

∫
E

dx

x
≤ 4e f (2eε)ε provided ε <

1

2e
.(2.2)
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Here as ε→ 0+, f (2eε)→ 2, so we obtain a constant close to 8e = 21.74 · · · .
Before proving the sharpness part of Theorem 2, we present a generalisation of (1.7) of

Theorem 2:

Theorem 6 Let 0 < ε ≤ 1
6 , and let µ be a probability measure on C with compact support.

Let

R(x) :=

∫
C

log
∣∣∣x − t

x + t

∣∣∣ dµ(t)

and let

E := {x ∈ [0,∞) : R(x) ≤ log ε}.(2.3)

Then ∫
E

dx

x
≤ 37ε.(2.4)

Proof For the special case where µ is a unit measure with point masses of size 1
n at a1,

a2, . . . , an, this is a reformulation of Theorem 2. For the given µ, with compact support,
we can find a sequence {µn}∞n=1 of such pure jump measures converging weakly to µ: for
every continuous g : C→ R with compact support,

lim
n→∞

∫
g dµn =

∫
g dµ.

This follows from the standard fact that pure jump measures are dense in the weak-* topol-
ogy. Next, for a given fixed x ∈ (0,∞), the function

t → log
∣∣∣x − t

x + t

∣∣∣, t ∈ C

is upper semi-continuous, being the limit of a decreasing sequence of continuous functions.
Then (see e.g. [14, p. 5, equation (1.2)]),

∫
log
∣∣∣x − t

x + t

∣∣∣ dµ(t) ≥ lim sup
n→∞

∫
log
∣∣∣x − t

x + t

∣∣∣ dµn(t).

Now let η > 1 and

E :=
{

x ∈ [0,∞) :

∫
log
∣∣∣x − t

x + t

∣∣∣ dµ(t) ≤ log ε
}

;

En :=
{

x ∈ [0,∞) :

∫
log
∣∣∣x − t

x + t

∣∣∣ dµn(t) ≤ log(ηε)
}
.

Next given x ∈ E, we have x ∈ En for n large enough. It follows that

E ⊂
∞⋃

k=1

∞⋂
n=k

En.
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Then if χk is the characteristic function of
⋂∞

n=k En, so that χk increases with k, and χ is the
characteristic function of E, we see that for all t ,

χ(t) ≤ lim
k→∞

χk(t)

and hence by the monotone convergence theorem, and by what we proved for jump mea-
sures,

∫
E

dt

t
=

∫ ∞
0

χ(t)

t
dt ≤ lim

k→∞

∫ ∞
0

χk(t)

t
dt ≤ lim inf

k→∞

∫
Ek

dt

t
≤ 37(ηε).

Now let η → 1+.

The function t → log | x+t
x−t | is the Green’s function for the right-half plane, with pole at

x ∈ R (see, for example, [8], [14]). Thus Theorem 6 may be viewed as an estimate involving
Green potentials. We also note that Theorem 6 admits an improvement as in (2.2): if E is
the set defined in (2.3), then as at (2.2),

∫
E

dx

x
≤ 4e f (2eε)ε provided ε <

1

2e
.(2.5)

The sharpness part of Theorem 2 will follow from:

Theorem 7 Let 0 < a ≤ b <∞, 0 < ε < 1, and

α := α(ε) =
(1− ε2

1 + ε2

)4
.(2.6)

Let

E :=

{
x ∈ [0,∞) :

∣∣∣∣ (x − a)(x − b)

(x + a)(x + b)

∣∣∣∣ ≤ ε2

}
.(2.7)

Then
∫

E

dx

x
≤ log

(
1 +
√

1− α(ε)

1−
√

1− α(ε)

)
,(2.8)

with equality iff

4ab

(a + b)2
=
(1− ε2

1 + ε2

)2
.(2.9)

Remark The interesting feature is that if equality occurs in (2.8), then necessarily a < b.

Proof Let us assume a < b. The case a = b may be deduced by letting b→ a+. Let

P(x) := (x − a)(x − b); R(x) :=
P(x)

P(−x)
.
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We recommend that the reader draws a graph of R. It is easily seen that R has a local
minimum at some point in (a, b), a local maximum in (−b,−a), and no other critical
points. Moreover, R(x) decreases from∞ at x = −a to 1 at x = 0, and then to its local
minimum, after which it increases to 1 as x→∞. Then it follows that E consists of at most
2 intervals, and each such interval contains one of a, b.

Case I: E is a single interval Then E = [ξ1, ξ2], where 0 < ξ1 < a < b < ξ2 and
R(ξ1) = R(ξ2) = ε2. Then the ξ j are roots of the quadratic equation P(x)− ε2P(−x) = 0,
and solving for the roots gives

ξ j =
1

2

( 1 + ε2

1− ε2

)
(a + b)[1 + (−1) j

√
1− β],(2.10)

where

β :=
4ab

(a + b)2

(1− ε2

1 + ε2

)2
∈ (0, 1).

Then
∫

E

dx

x
= log

ξ2

ξ1
= log

[
1 +
√

1− β

1−
√

1− β

]
.(2.11)

The right-hand side is a decreasing function of β ∈ (0, 1), so it suffices to find a lower
bound for β. To do this we use the fact that E is a single interval. Then R(x) ≥ −ε2,
x ∈ [0,∞) and hence P(x) + ε2P(−x) ≥ 0, x ∈ [0,∞). This is equivalent to

x2 − (a + b)
1− ε2

1 + ε2
x + ab ≥ 0, x ∈ [0,∞).

This quadratic has a minimum in [0,∞) of

ab−
1

4
(a + b)2

(1− ε2

1 + ε2

)2
.

This minimum is non-negative iff

4ab

(a + b)2
≥
(1− ε2

1 + ε2

)2
.

Then we deduce that β ≥ α = α(ε), so (2.11) yields (2.8). For equality in (2.8), we must
have β = α, that is (2.9) holds.

Case II: E consists of two intervals Then E = [ξ1, η1] ∪ [η2, ξ2], where 0 < ξ1 < a <
η1 < η2 < b < ξ2, and the ξ j are as above, while R(η1) = R(η2) = −ε2. Then η j are roots
of the quadratic equation P(x) + ε2P(−x) = 0, and solving gives

η j =
1

2

(1− ε2

1 + ε2

)
(a + b)[1 + (−1) j

√
1− γ],
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where

γ :=
4ab

(a + b)2

( 1 + ε2

1− ε2

)2
= β/α.

Then
∫

E

dx

x
= log

η1

ξ1
+ log

ξ2

η2
= H(β)−H

(β
α

)
,(2.12)

where

H(t) := log

(
1 +
√

1− t

1−
√

1− t

)
.

Since the roots η j are distinct, γ < 1⇒ β < α. Now

d

dt

[
H(t)−H

( t

α

)]
=

1

t

(
−

1
√

1− t
+

1√
1− t/α

)
> 0, t ∈ (0, α),

so the right-hand side of (2.12) is an increasing function of β. Substituting the strict upper
bound β = α gives (2.8) with strict inequality.

We turn to

The Sharpness Part of Theorem 2 A simple calculation shows that as ε → 0+, the right-
hand side of (2.8) behaves like 4

√
2ε
(
1+o(1)

)
, so we may not replace 37 in (1.7) by anything

smaller than 4
√

2.

3 Proof of Theorem 1

We shall prove what is, essentially, a generalisation of Theorem 1:

Theorem 8 Let µ be a probability measure on C with compact support. Let λ > 1. Then

meas
{

x ∈ [0, 1] :

∫
C

log
∣∣∣ x + t

x − t

∣∣∣ dµ(t) ≤ logλ
}
≥

1

4
exp
(
−

12.338

logλ

)
.(3.1)

We preface the proof of this result with:

Lemma 9 Let µ be a probability measure on [0, 1]. Let I0 := φ and for k ≥ 1, let

Ik := (2−k, 21−k],

and

σk := (log 81)
∑

j≥1:| j−k|≥2

µ(I j)2−|k− j| + 4.468
k+1∑

j=k−1

µ(I j).(3.2)
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Then for k ≥ 1, there exists a subset Tk of Ik with

meas(Tk) ≥
1

2
meas(Ik)(3.3)

and
∫ 1

0
log
∣∣∣ x + t

x − t

∣∣∣ dµ(t) ≤ σk.(3.4)

Proof We use the fact that

f (s) :=
1

s
log
( 1 + s

1− s

)
, s ∈ (0, 1),(3.5)

is increasing in s, so that

log
( 1 + t

1− t

)
≤ (log 9)t, t ∈

[
0,

1

2

]
.

Then for x ∈ Ik and j > k + 1, we have t/x < 1/2, t ∈ I j , so

∫
I j

log
∣∣∣ x + t

x − t

∣∣∣ dµ(t) =

∫
I j

log
∣∣∣ 1 + t/x

1− t/x

∣∣∣ dµ(t)

≤ µ(I j) log 9 · (21− j/2−k) = (log 81)µ(I j)2−|k− j|.

The case j < k− 1 is similar, since there x/t < 1/2. Thus, for x ∈ Ik,

∫
[0,1]\(Ik−1∪Ik∪Ik+1)

log
∣∣∣ x + t

x − t

∣∣∣ dµ(t)
/ ∑

j≥1:| j−k|≥2

µ(I j)2−|k− j| ≤ log 81.(3.6)

Next, let

ρ := µ(Ik−1 ∪ Ik ∪ Ik+1) and µ∗ :=
1

ρ
µ|Ik−1∪Ik∪Ik+1

,

so that µ∗ is a unit measure. Let us use our Cartan Lemma (Theorem 6) in the sharper
form (2.5), with

ε =
1

2e

( e1/8 − 1

e1/8 + 1

)
,

which ensures that

8eε f (2eε) =
1

2
.

Here f is as in (3.5). Then (2.5) shows that there is a set E ⊂ Ik such that
∫

log
∣∣∣x − t

x + t

∣∣∣ dµ∗(t) > log ε, x ∈ Ik \ E,
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where

meas(E)

21−k
≤

∫
E

dx

x
≤ 4eε f (2eε) =

1

4
⇒ meas(E) ≤

1

4
· 21−k =

1

2
meas(Ik).

Letting

Tk := Ik \ E,

we see that it fulfills (3.3) and in this set,

∫
Ik−1∪Ik∪Ik+1

log
∣∣∣ x + t

x − t

∣∣∣ dµ(t) ≤ (log ε−1)µ(Ik−1 ∪ Ik ∪ Ik+1).

Since

log ε−1 = 4.46703 · · · < 4.468,

this last estimate together with (3.6) gives the result.

We turn to

The Proof of Theorem 8 We note first that it suffices to consider measures with support
on [0, 1]. For if this is not the case, the measure µ# defined for measurable S ⊂ [0, 1] by

µ#(S) := µ({z : |z| ∈ S}) + µ({z : |z| > 1})

∫
S

dδ1,

where δ1 is a unit mass at 1, has support in [0, 1], and for x ∈ [0, 1],

∫
log
∣∣∣ x + t

x − t

∣∣∣ dµ#(t) ≥

∫
log
∣∣∣ x + t

x − t

∣∣∣ dµ(t).

Then the measure of the set in (3.1) is no larger for µ# than for µ. So it suffices to prove
(3.1) for measures µ with support in [0, 1], and we assume this in the sequel. With the
notation of Lemma 9, we see that

∞∑
k=1

σk ≤ (log 81)
∞∑
j=1

µ(I j)
∑

k≥1:| j−k|≥2

2−|k− j| + 4.468
∞∑

k=1

k+1∑
j=k−1

µ(I j)

≤ log 81 + 4.468 · 3 < 17.799.

It follows that given λ > 1, there exists 1 ≤ k ≤ 17.799/ logλ + 1 with

σk < logλ.
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By Lemma 9, we have

∫ 1

0
log
∣∣∣ x + t

x − t

∣∣∣ dµ(t) ≤ σk < logλ, x ∈ Tk ⊂ Ik,

where

meas(Tk) ≥
1

2
meas(Ik) = 2−1−k

≥ 2−2−17.799/ log λ ≥
1

4
exp
(
−

12.338

logλ

)
.

For the sharpness of Theorem 1 (and hence of Theorem 8), we need a product that is
often used in rational approximation to |x|:

Lemma 10 Let 0 < β < 2 and

q := exp
(
−

β

n logλ

)

and

Rn(x) :=
n∏

j=1

( x + q j

x − q j

)
.

(a) Then there exists λ0(β) > 1 such that for 1 < λ ≤ λ0(β), there exists n0(λ, β) such that
for n ≥ n0(λ, β),

|Rn(x)| > λn, x ∈ [qn, 1]

and hence

meas{x ∈ [0, 1] : |Rn(x)| ≤ λn} ≤ meas[0, qn] = exp
(
−

β

logλ

)
.(3.7)

(b) Moreover, if

P(z) :=
n∏

j=1

(z + q j),

then

meas

{
r ∈ [0, 1] :

max|z|=r |P(z)|

min|z|=r |P(z)|
≤ λn

}
≤ exp

(
−

β

logλ

)
.

https://doi.org/10.4153/CJM-2000-035-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-035-3


Maximum and Minimum Modulus 829

Proof (a) Let 1 ≤ k ≤ n, and

qk ≤ x < qk−1.

Then for j ≤ k− 2,

∣∣∣ x + q j

x − q j

∣∣∣ > q j + qk−1

q j − qk−1
=

1 + qk−1− j

1− qk−1− j
.

Similarly, for j ≥ k + 1,

∣∣∣ x + q j

x − q j

∣∣∣ ≥ qk + q j

qk − q j
=

1 + q j−k

1− q j−k
.

Also, for j = k− 1, k,

∣∣∣ x + q j

x − q j

∣∣∣ ≥ qk + qk−1

qk − qk−1
=

1 + q

1− q
,

with strict inequality for at least one j. Then

|Rn(x)| >

(k−2∏
j=1

( 1 + qk−1− j

1− qk−1− j

))( 1 + q

1− q

)2
( n∏

j=k+1

( 1 + q j−k

1− q j−k

))

≥
n∏

j=1

( 1 + q j

1− q j

)
.

Here we used the fact that 1+q j

1−q j decreases as j increases. Next, using the inequality

log
( 1 + t

1− t

)
> 2t, t ∈ (0, 1),

we see that we can continue this as

|Rn(x)| > exp
(

2
n∑

j=1

q j
)
= exp

(
2q

1− qn

1− q

)
, x ∈ [qn, 1].

(Strictly speaking, we omitted x = 1, but we may use continuity.) Now as n logλ → ∞,
q = q(n, λ)→ 1, so

2q
1− qn

1− q
/(n logλ) =

2
(
1 + o(1)

)
| log q|n logλ

(
1− exp

(
−

β

logλ

))

=
(

1 + o(1)
) 2

β

(
1− exp

(
−

β

logλ

))
.
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Since 2/β > 1, it follows that there exists λ0(β) such that for 1 < λ ≤ λ0(β), there exists
n0(λ, β) such that for n ≥ n0(λ, β),

2q
1− qn

1− q
> n logλ⇒ |Rn(x)| > λn, x ∈ [qn, 1].

Then (3.7) follows.
(b) This follows as

max|z|=r |P(z)|

min|z|=r |P(z)|
= |Rn(r)|.

We turn to the

Proof of Theorem 1 We begin with the simple observation that it suffices to consider
rational functions with real poles and zeros: let R be a rational function of type (m, n) with
zeros z1, z2, . . . , zm and poles w1,w2, . . . ,wn and let

a j := |z j |, 1 ≤ j ≤ m; b j := |w j |, 1 ≤ j ≤ n

and

S(x) :=
m∏

j=1

( x + a j

x − a j

)
·

n∏
j=1

( x + b j

x − b j

)
.

Then it is easily seen that

max|z|=r |R(z)|

min|z|=r |R(z)|
≤ |S(r)|.

Then

{
r ∈ [0, 1] :

max|z|=r |R(z)|

min|z|=r |R(z)|
≤ λm+n

}
⊇ {r ∈ [0, 1] : |S(r)| ≤ λm+n}

⇒ meas

({
r ∈ [0, 1] :

max|z|=r |R(z)|

min|z|=r |R(z)|
≤ λm+n

})
≥ meas({r ∈ [0, 1] : |S(r)| ≤ λm+n}).

If we let µ be the unit measure with mass 1
m+n at a1, a2, . . . , am, b1, b2, . . . , bn, then we see

that

{r ∈ [0, 1] : |S(r)| ≤ λm+n} =
{

x ∈ [0, 1] :

∫ ∞
0

log
∣∣∣ x + t

x − t

∣∣∣ dµ(t) ≤ logλ
}

and now Theorem 8 gives the estimate (1.3). For the sharpness of the estimate in Theo-
rem 1, we simply apply Lemma 10(b) with β = 2− ε.
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4 Proof of Theorem 3

We turn directly to:

The Proof of Theorem 3 Let 0 < δ < 1 and τ := (1+δ)−1/4. Let S be a monic polynomial,
of degree � say, such that f S is analytic in |z| ≤ τ . We assume that f itself is analytic on |z| =
τ . (If not, alter δ a little). We use the well known error formula for Padé approximation,

( f − [n/n])(z) =
1

2πi

∫
|t|=τ

( f Sqn)(t)

(Sqn)(z)

( z

t

)2n+1 dt

t − z
, |z| < τ.

This is a simple consequence of Cauchy’ integral formula, see e.g. [1, 10]. We deduce that
for r ≤ 1

2 ,

max
|z|=r
| f − [n/n]|(z) ≤ C

( r

τ

)2n+1 max|t|=τ |Sqn|(t)

min|z|=r |Sqn|(z)
,

where

C :=
τ

τ − 1
2

max
|t|=τ
| f (t)|

depends only on f , δ. Using first Bernstein’s inequality to bound Sqn on the circle |t| = τ
in terms of its maximum on |t| = r, and then the remark (1.5) after Theorem 1, we obtain

max|t|=τ |Sqn|(t)

min|z|=r |Sqn|(z)
≤
(τ

r

)n+� max|t|=r |Sqn|(t)

min|z|=r |Sqn|(z)
≤
(τ

r

)n+�
(1 + δ)

n+�
2 ,

for r ∈ Sn, where Sn ⊂ [0, 1
2 ] and

meas(Sn) ≥
1

8
exp

(
−

13

log(1 + δ)1/2

)
≥

1

8
exp

(
−

26

(log 2)δ

)
.(4.1)

We have used here the inequality log(1 + x) ≥ (log 2)x, x ∈ [0, 1]. Then for r ∈ Sn, we
deduce that

max
|z|=r
| f − [n/n]|(z) ≤ C1

(
r(1 + δ)3/4

)n−�
,

where

C1 := C(1 + δ)�+1/4

depends only on f and δ, recall that τ = (1 + δ)−1/4. Then

max
|z|=r
| f − [n/n]|(z) ≤

(
r(1 + δ)

)n
,
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for

r ∈ [C1/�
1 (1 + δ)−

3
4−

n
4� ,∞) ∩ Sn.

For n ≥ n0(δ), this has by (4.1), measure at least

1

8
exp
(
−

37.52

δ

)
≥ exp

(
−

40

δ

)
.

(Recall that δ < 1). So we have (1.9). Finally, if

An := {z : |z| ∈ Sn},

then An has planar measure

≥ 2π

∫
Sn

r dr ≥ π exp
(
−

80

δ

)

and (1.10) follows.

Note added in proof The sharp form of Theorem 1, for each λ, involves condenser capac-
ity.
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