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NEAREST-NEIGHBOR GRAPHS
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Abstract

Let Xn be a collection of n uniform, independent, and identically distributed points on
the Cantor ternary set. We consider the asymptotics for the expected total edge length of
the directed and undirected nearest-neighbor graph on Xn. We prove convergence to a
constant of the rescaled expected total edge length of this random graph. The rescaling
factor is a function of the fractal dimension and has a log-periodic, nonconstant behavior.
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1. Introduction

1.1. Nearest-neighbor graphs on the Cantor set

The purpose of this paper is to consider the asymptotics of the expected total edge length
of the nearest-neighbor graph on vertices which are uniform, independent, and identically
distributed (i.i.d.) on the Cantor ternary set, here denoted by C. Recall that C is the set of
points in [0, 1] whose ternary expansion does not contain the digit 1.

There are two types of nearest-neighbor graph: the undirected nearest-neighbor graph and
the directed nearest-neighbor graph. To construct these graphs, let Vn := {v1, v2, . . . , vn} be
a set of n vertices in R

d . The nearest neighbor of vi is the vertex vj ∈ Vn − {vi} such that
|vi − vj | = min1≤k≤n, k �=i |vi − vk|. To ensure that the nearest neighbor of vi is unique, if there
are ties, choose the nearest neighbor of vi to be the vertex with the largest index. Let e(vi) be
the directed edge from vi to its nearest neighbor. The directed nearest-neighbor graph on V ,
denoted by ND(V ), is the graph <V,E> where E := {e(v) | v ∈ V }. Consideration of the
undirected graph ofND(V ) produces the undirected nearest-neighbor graph onV , here denoted
by N(V ). Throughout this paper, we will consider the undirected nearest-neighbor graph on
uniform i.i.d. points in C; however, all the results easily extend to the directed nearest-neighbor
graph on such point sets.

Much attention has been given to showing asymptotics for the total edge length of graphs
whose vertices are distributed on cubes or other well-behaved convex subsets of R

d (see, e.g. [2],
[10], [11], [12], [14, pp. 97–109], and [15, pp. 27–51]).

Penrose and Yukich [11], [12] introduced the idea of stabilization and used this concept
to prove convergence of expectations, laws of large numbers, and central limit theorems for
stabilizing functionals. A functional defined on a graph is stabilizing if the local behavior of
the graph at a vertex, v, is unaffected by changes to vertices outside a random, finite radius ball
centered at v.
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Using stabilization, Penrose and Yukich [11, Theorem 3.2] proved a general law of large
numbers for the total edge length of the k-nearest-neighbor graph for points which are uniformly
distributed on cubes and other well-behaved subsets of R

d . Let Po(n) be a Poisson random
variable with mean n. Let the total edge length of the nearest-neighbor graph on a collection of
Po(n) points which are uniformly distributed on [0, 1]d be denoted by T (Po(n)). A corollary
of Theorem 3.2 of [11] and Theorem 2.1 of [12] is

lim
n→∞ n

1/d−1 E[T (Po(n))] = E[d(0,P1)],

where d(x,P1) is the distance from the point x to its nearest neighbor in a Poisson point process
of intensity 1 on R

d . More generally, Theorem 2.1 of [12] proves a similar law of large numbers
for nonuniform points.

We cannot simply apply Theorem 3.2 of [11] because the theorem requires the points to
be uniformly distributed over a sequence of subsets of R

d with particular conditions on the
size, boundary, limit, and diameter. Fractal subsets of R

d do not satisfy these conditions. We
could consider the uniform distribution over a bounded fractal subset of R

d to be a special
nonuniform distribution over a bounded convex subset of R

d , and then apply Theorem 2.1
of [12]. However, Theorem 2.1 of [12] requires the points to be i.i.d. with common density
function f . The uniform distribution over a fractal, such as the Cantor set, does not have a
density function and, in fact, is a singular distribution (see Example 1.7 of [5]). Thus, [11]
and [12] do not directly apply to uniform points on fractals.

One still might expect the proofs to extend to the case where the vertices are distributed
uniformly on fractal subsets of R

d . A close examination of graphs distributed on cubes exposes
two difficulties that arise in generalizing the proofs of [11] and [12] to the fractal setting. One
of the key features is scaling from a graph whose vertices are distributed with intensity n per
unit square to a graph whose vertices are distributed with intensity n on a square of area n. The
scaling will not work the same way in C. In order to do so, the scaled Cantor set would have to
contain length 1 Cantor sets, just as a scaled cube contains unit cubes. This happens only when
C is scaled by a power of 3. Scaling by a power of 3 may not reflect a Poisson point process
of intensity 1 on a length 1 Cantor set. Another reason the same approach will not work in the
fractal setting pertains to finding a typical vertex in an infinite Cantor set. The origin is a typical
vertex in R

d , whereas it is unclear what constitutes a typical vertex in the infinite Cantor set.

1.2. Asymptotics involving log-periodic scaling

Asymptotics for functionals on i.i.d. point sets usually involves scaling by volume or surface
order terms. There have been a few results which seem to require scaling by log-periodic
functions, although rigorously showing that the log-periodic functions are not constant has
proved challenging. For example, Platzman and Bartholdi [13] considered a space-filling
curve heuristic for the traveling salesman problem for vertices which are uniformly distributed
in [0, 1]2. They designed a specific space-filling curve ψ : [0, 1] → [0, 1]2, then considered
n uniform i.i.d. vertices v1, v2, . . . , vn ∈ [0, 1]2. The space-filling curve heuristic involves
constructing a tour through n vertices, Vn := {v1, v2, . . . , vn}, which visits the vertices in the
order of their pre-image under ψ in [0, 1]. This is often called the space-filling curve tour. Let
LSFC
ψ (n) denote the total edge length of this tour on n vertices which are uniformly distributed

in [0, 1]2. In [13] the authors argued that

lim inf
n→∞ n−1/2 E[LSFC

ψ (n)] < lim sup
n→∞

n−1/2 E[LSFC
ψ (n)].
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Figure 1: An infinite Sierpinski triangle.

In 1994, Gao and Steele [6] generalized the result of Platzman and Bartholdi to a class of
space-filling curves with fractal-like properties. They showed that, under certain conditions on
the space-filling curve ψ , there exists a periodic function φψ : R

+ → R and a p := p(ψ) > 0
such that

lim
n→∞ n

−1/2φψ(logp(n))E[LSFC
ψ (n)] = 1.

Gao and Steele did not address the issue of nonconstantφ, i.e. their methods admit the possibility
that φ is identically constant.

In 1990, Lalley [9] considered (in much more generality) the total edge length of the traveling
salesman tour on n vertices (denoted by LTSP(n)) which are uniform i.i.d. on the Sierpinski
triangle. He showed that there exists a continuous log3-periodic, positive function φ such that

lim
n→∞ n

ln 2/ ln 3−1φ(n)LTSP(n) = 1 almost surely.

In this paper we consider the convergence of expectations, whereas Lalley’s result is actually
a law of large numbers. However, Lalley does not rule out the possibility of constant φ.

In 1997, Gabner and Woess [7] considered the n-step transition probabilities on an infinite
Sierpinski triangle; see Figure 1.

Let p(x, y) = 1
4 if |x − y| = 1. Let Xi be the location at time i. Define the transi-

tion probabilities by p(n)(a, b) = P(Xn = b | X0 = a). Gabner and Woess showed that
limn→∞ nln 3/ ln 5p(n)(0, 0) is periodic and nonconstant.

In 1996, Knopfmacher and Prodinger [8] used Rice’s method to develop asymptotics for the
expected value of the minimum order statistic on C. They considered M(n) := minvi∈Vn |vi |,
where vi are uniform i.i.d. on C. Knopfmacher and Prodinger showed that there exists a
log2-periodic, nonconstant function φ such that

lim
n→∞ n

1/D E[M(Po(n))]φ(n) = 1,

where D := ln 2/ ln 3 is the fractal dimension of C.
Knopfmacher and Prodinger’s method involves rewriting a recurrence relation as a sum of

Bernoulli numbers. The summand is then expressed as a residue of a function which can be
extended to the entire complex plane. Using the residue theorem, they showed that the sum of
all the residues is 0. The part of the summand that is not part of the E[M(Po(n))] can easily be
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seen to be nonconstant. The argument is very creative and beautiful; however, it has not proved
fruitful in the current problem.

Using a Tauberian theorem, we can extend the result of Knopfmacher and Prodinger to an
infinite Sierpinski triangle. In every Sierpinski triangle of side length 1, uniformly distribute
an independent Poisson number of vertices with mean n. Denote the distance from the origin
to its nearest neighbor by M�(Po(n)). We can easily show that

lim
n→∞ n

ln 2/ ln 3 E[M�(Po(n))]

is periodic and nonconstant.
The last two results suggest that the scaled expected total edge length of the nearest-neighbor

graph on n uniform i.i.d. points in C may have a nonconstant limit. On a unit cube, scaling by a
factor of n1/d produces a graph which is closely approximated by the infinite nearest-neighbor
graph with intensity 1 per unit cube. In this setting, the average edge length of the scaled
nearest-neighbor graph has the same asymptotics as the distance from the origin to its nearest
neighbor in the infinite nearest-neighbor graph. If this intuition holds in the fractal setting then
the average edge length of a scaled nearest-neighbor graph on the Cantor set would have the
same asymptotics as the distance from the origin to its nearest neighbor in the graph defined on
an infinite-size Cantor set with intensity 1 per unit Cantor set. Despite the previous examples
which give intuition into the periodicity of the limit, the methods used to show a nonconstant
limit do not carry over into the current problem. A new method will be used to show nonconstant
periodicity of the limit.

2. Main results

2.1. Definitions and setup

Recall that x ∈ C if and only if x ∈ [0, 1] and x = ∑∞
i=1 ai/3

i , where ai ∈ {0, 2} for all i.
Let C1 := C∩[0, 1

3 ] and C2 := C ∩ [ 2
3 , 1]. For any bounded subset S ⊂ R admitting a uniform

measure and any k ∈ N, letG(k, S) := G(Xk, S) denote the undirected nearest-neighbor graph
on Xk := {X1, X2 . . . Xk}, where the Xi are uniform i.i.d. on S.

Let L(k, S) := L(G(k, S)) be the random variable representing the total edge length of the
graphG(k, S), and letM(k, S) be the random variable denoting the distance between the origin
and its nearest neighbor in Xk if one exists. Throughout this paper, we adopt the convention
that if S is not specified then the underlying subset is C. For example, M(k) := M(k,C) and
L(k) := L(k,C).

2.2. Main results

The following theorem shows the nonconstant periodicity of the scaled expected total edge
length of the nearest-neighbor graph on C with Poisson input.

Theorem 1. There is a log2-periodic, continuous, nonconstant function L : R
+ → R

+ such
that

lim
n→∞ n

1/D−1L(n)E[L(Po(n))] = 1,

where D = ln 2/ ln 3 is the fractal dimension of C.

This result shows that there is a log2-periodic oscillation in the limit which is not present if
the points are distributed on cubes or other well-behaved convex subsets of R

d . In both settings,
the average edge length scales like n1−1/d , where d denotes the dimension. However, in the

https://doi.org/10.1239/aap/1240319576 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1240319576


42 • SGSA N. SHANK

fractal setting, the average edge length behaves asymptotically like a log-periodic function
times the expected distance from the ‘origin’ to its nearest neighbor. Not much is known about
the function L.

This leads to the following binomial version of Theorem 1.

Theorem 2. We have
lim
n→∞ n

1/D−1L(n)E[L(n)] = 1.

The proof of Theorem 1 relies heavily upon the recursive nature of C. The self-similarity
of C quickly leads to the existence of a limit. The difficulty arises in showing the nonconstant
property of L. The method used in the proof of the nonconstant property involves a recursion
along with error terms. Note that E[L(n)] is approximately 2/3 E[L(n/2)] by scaling. To
make this an equality, we have to introduce an error term, denoted by f (n/2). So, we have
E[L(n)] = 2/3 E[L(n/2)] + f (n/2), where the error terms turn out to be computationally
easy to handle. Repeating the recursion and evaluating the sum of the error terms allows us to
analyze E[L(n)] and to establish the periodicity of L.

The proof for the Poisson case in Theorem 1 will be provided in Section 3. Section 4
will produce an add-one cost which will be used in Section 5 to prove the binomial result in
Theorem 2.

3. Proof of Theorem 1

3.1. Outline of the proof

The main idea of the proof is to develop a recursion for E[L(Po(n))] in terms of
E[L(Po(n/2))], and an error term. By repeating this recursion and collecting all the error
terms, we successfully find the asymptotics for E[L(Po(n))]. The proof is completed in the
following five steps. Steps 1 and 2 are used to prove the existence of the periodic function L.
Step 3 involves proving that the limit is nonconstant. In Step 4 we prove that L is a continuous
function. Step 5 completes the proof of Theorem 1.

Step 1. Find a recursive formula for E[L(Po(α))], where α ∈ R
+.

Step 2. Show that there exists a log2-periodic function L̃ : R
+ → R such that, for all α ∈ R

+,

lim
n→∞(α2n)1/D−1 E[L(Po(α2n))] = L̃(α).

Step 3. Show that L̃ is not constant.

Step 4. Show that L̃ is continuous on R
+ and strictly positive.

Step 5. Set L(α) := (L̃(α))−1, and show that

lim
n→∞ n

1/D−1L(n)E[L(Po(n))] = 1.

3.2. Proof of Step 1

The recursion consists of showing that

E[L(Po(α))] = 2

3
E

[
L

(
Po

(
α

2

))]
+ f

(
α

2

)
, (1)
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where, for x ≥ 0,

f (x) := 2
3xe−x E[M(Po(x))] + xe−x − xe−2x − 2

3x
2e−2x. (2)

The main tool used for showing (1) is the self-similarity and scaling of C with respect to
C1 and C2. If there is a Poisson number of points with mean α on C then, by self-similarity
of C, there will be a Poisson number of points with mean α/2 on C1, and similarly for C2.
Also, C1 = 1/3C, and similarly for C2 (modulo a translation). These observations allow us
to approximate E[L(Po(α))] by 2/3 E[L(Po(α/2))]. To make this exact, we include an error
term, f (α/2), shown in (1).

To prove (1), assume without loss of generality thatL(0) = L(1) = 0. That is to say that the
length of the nearest-neighbor graph is nonzero on two or more vertices. Assume thatM(0) = 0.
This is to say that if there are no vertices then the origin does not have a nearest neighbor. For any
setA, let |A| denote the cardinality ofA and let P (n) := XPo(n) = {X1, X2, . . . XPo(n)}, where
the vertices Xi are uniform i.i.d. on C. Let X(1)

k := {X1
1, X

1
2, . . . , X

1
k}, where the vertices X1

i

are uniform i.i.d. on C1, and let X(2)
k := {X2

1, X
2
2, . . . , X

2
k }, where the vertices X2

i are uniform

i.i.d. on C2. Let �(k, j) := L(X(1)
k ∪ X(2)

j ). Define the event

Aα(i, j) := [|P (α) ∩ C1| = i] ∩ [|P (α) ∩ C2| = j ].
The recursion relies upon the following basic identity:

E[L(Po(2α))] =
∞∑
i=0

∞∑
j=0

E[�(i, j)] P(A2α(i, j)). (3)

The minimum distance between the points in C1 and C2 is at least 1
3 , and the diameter of C1

and C2 is at most 1
3 . Thus, if |P (n)∩C1| �= 1 and |P (n)∩C2| �= 1 then, with probability 1, the

length of the nearest-neighbor graph on P (n)would be the length of the nearest-neighbor graph
on P (n)∩ C1 plus the length of the nearest-neighbor graph on P (n)∩ C2. If |P (n)∩ C1| = 1
then the nearest-neighbor graph consists of an edge from the isolated vertex P (n) ∩ C1 to the
minimum vertex in P (n) ∩ C2 (similarly for |P (n) ∩ C2| = 1). Thus,

�(i, j) = L(i,C1)+ L(j,C2)+ 1{i=1 or j=1}D2α(i, j), (4)

where D2α(i, j) = min{|y − x| : x ∈ P (2α) ∩ C1, y ∈ P (2α) ∩ C2}, if it exists, where
|P (2α) ∩ C1| = i and |P (2α) ∩ C2| = j . By self-similarity of C we have

E[L(i,C1)] = 1
3 E[L(i,C)] = 1

3 E[L(i)] and E[L(j,C2)] = 1
3 E[L(j,C)] = 1

3 E[L(j)].
(5)

Taking expectations of (4) and applying (5), we see that

E[�(i, j)] = 1
3 E[L(i)] + 1

3 E[L(j)] + E[1{i=1 or j=1}D2α(i, j)]. (6)

To determine the value of E[1{i=1 or j=1}D2α(i, j)], consider the following three cases.
Case (i): i = 0 and j = 1 or i = 1 and j = 0. In this case, E[D2α(0, 1)] = E[L(1)] = 0

by definition. Similarly, E[D2α(1, 0)] = 0.
Case (ii): i = 1 and j ≥ 2 or i ≥ 2 and j = 1. By symmetry, the same argument will work

for either i = 1 and j ≥ 2 or i ≥ 2 and j = 1; so, assume without loss of generality that i = 1
and j ≥ 2. Set x := C1 ∩ P (2α).
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To connect x to its nearest neighbor first add an edge between x and 1
3 . Then add an edge

between 1
3 and 2

3 , and then add an edge between 2
3 and the minimum point in C2 ∩ P (2α)

which contains exactly j points. Thus,

E[D2α(1, j)] := E
[

min
y∈P (2α)∩C2

|y − x|
∣∣∣ |C2 ∩ P (2α)| = j

]

= E
[ 1

3 − x
] + 1

3 + E
[
min{C2 ∩ P (2α)} − 2

3

∣∣∣ |C2 ∩ P (2α)| = j
]

= 1
3 (E[M(1)] + 1 + E[M(j)]),

where the last equality follows by the self-similarity of C and by the definition of E[M(n)].
Using the fact that E[M(1)] = 1

2 (by symmetry), we have

E[D2α(1, j)] = 1
2 + 1

3 E[M(j)].
Case (iii): i = 1 and j = 1. Set x := C1 ∩ P (2α) and y := C2 ∩ P (2α). The length of

the edge from x to y would equal the length of the edge from x to 1
3 plus the length of the edge

from 1
3 to 2

3 plus the length of the edge from 2
3 to y. Thus,

E[D2α(1, 1)] = E[|y − x|]
= E

[ 1
3 − x

] + 1
3 + E

[
y − 2

3

]
= 1

3 (E[M(1)] + 1 + E[M(1)]).
Since E[M(1)] = 1

2 , we have E[D2α(1, 1)] = 2
3 .

Applying (6) to identity (3) gives

E[L(Po(2α))] =
∞∑
i=0

∞∑
j=0

E[�(i, j)] P(A2α(i, j))

= 1

3

∞∑
i=0

∞∑
j=0

E[L(i)] P(A2α(i, j))+ 1

3

∞∑
i=0

∞∑
j=0

E[L(j)] P(A2α(i, j))

+
∞∑
i=0

∞∑
j=0

E[1{i=1 or j=1}D2α(i, j)] P(A2α(i, j)). (7)

The two events |C1 ∩ P (2α)| = i and |C2 ∩ P (2α)| = j are independent since C1 and C2 are
disjoint. Thus, if there is a mean of 2α vertices on C then there will be a mean of α vertices on
C1 and C2. Hence,

P[A2α(i, j)] = αie−α

i!
αj e−α

j ! = αi+j e−2α

i! j ! . (8)

Applying (8) to (7) shows that

E[L(Po(2α))] = 1

3

∞∑
i=0

∞∑
j=0

E[L(i)]α
ie−α

i!
αj e−α

j ! + 1

3

∞∑
i=0

∞∑
j=0

E[L(j)]α
ie−α

i!
αj e−α

j !

+
∞∑
i=0

∞∑
j=0

E[1{i=1 or j=1}D2α(i, j)]α
ie−α

i!
αj e−α

j ! .
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By a change of variable, the first two double summations are equal. Also, by construction and by
case (i) above, the nonzero terms of the last double summation occur only when min{i, j} = 1.
Thus,

E[L(Po(2α))] = 2

3

∞∑
i=0

∞∑
j=0

E[L(j)]α
ie−α

i!
αj e−α

j ! +
∞∑
j=2

E[D2α(1, j)]αe−α αj e−α

j !

+
∞∑
i=2

E[D2α(i, 1)]αe−α αie−α

i! + E[D2α(1, 1)]αe−ααe−α.

By symmetry of C, the last two summations are equal. Thus,

E[L(Po(2α))] = 2

3

∞∑
i=0

∞∑
j=0

E[L(j)]α
ie−α

i!
αj e−α

j ! + 2
∞∑
j=2

E[D2α(1, j)]αe−α αj e−α

j !
+ E[D2α(1, 1)]α2e−2α.

Applying case (ii) and case (iii) shows that

E[L(Po(2α))] = 2

3

∞∑
j=0

E[L(j)]α
j e−α

j ! + 2
∞∑
j=2

(
1

2
+ 1

3
E[M(j)]

)
αe−α αj e−α

j !
+ 2

3α
2e−2α.

By extending the second summation to start at 0 and since

∞∑
j=0

αj e−α

j ! E[L(j)] = E[L(Po(α))],

and similarly for E[M(j)], we see that

E[L(Po(2α))] = 2

3
E[L(Po(α))] + 2

3
αe−α E[M(Po(α))] + 2αe−α

∞∑
j=2

1

2

αj e−α

j !
− 2

3αe−2α E[M(1)] + 2
3α

2e−2α. (9)

Expanding, combining, canceling, and using the fact that E[M(1)] = 1
2 , we see that (9)

simplifies to

E[L(Po(2α))] = 2
3 E[L(Po(α))] + 2

3αe−α E[M(Po(α))] + αe−α − αe−2α − 2
3α

2e−2α.

Replacing 2α by α yields

E[L(Po(α))] = 2

3
E

[
L

(
Po

(
α

2

))]
+ α

3
e−α/2 E

[
M

(
Po

(
α

2

))]
+ α

2
e−α/2 − α

2
e−α

− 2

3

(
α

2

)2

e−α

= 2

3
E

[
L

(
Po

(
α

2

))]
+ f

(
α

2

)
,

by the definition of f (see (2)).
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This shows the desired recursion for Step 1. Before continuing to Step 2, we note the
following properties about the error function f . First note that, since M[Po(x)] ≤ 1 and all
the terms exponentially decay in x, there exists a β < ∞ such that, for all x ≥ 0, |f (x)| ≤ β.

Simple calculus shows that g(x) = ex − 1 − 2x/3 > 0 for x > 0. Since f (x) =
2
3xe−x E[M(Po(x))] + xe−2xg(x), we see that

f (x) > 0 for all x > 0. (10)

3.3. Proof of Step 2

Fix α ∈ R
+ and iterate (1) n times to obtain

E[L(Po(α2n))] = 2
3 E[L(Po(α2n−1))] + f (α2n−1)

= ( 2
3

)2 E[L(Po(α2n−2))] + 2
3f (α2n−2)+ f (α2n−1)

= · · ·

=
(

2

3

)n
E[L(Po(α))] +

n−1∑
k=0

(
2

3

)n−k−1

f (α2k).

Note that 21/D = 2ln 3/ ln 2 = 3. Multiplying both sides of the above by (α2n)1/D−1 gives

(α2n)1/D−1 E[L(Po(α2n))] = α1/D−1 E[L(Po(α))] + α1/D−1
n−1∑
k=0

(
3

2

)k+1

f (α2k). (11)

By (2), f decays exponentially fast and, thus, as n → ∞, the sum in (11) converges. Setting

L̃(α) := α1/D−1 E[L(Po(α))] + α1/D−1
∞∑
k=0

(
3

2

)k+1

f (α2k) (12)

and taking limits as n → ∞ on both sides of (11) gives, for all α ∈ R
+,

L̃(α) = lim
n→∞(α2n)1/D−1 E[L(Po(α2n))]. (13)

Note that L̃(2α) = L̃(α), i.e. L̃ is log2 periodic, completing Step 2.

3.4. Proof of Step 3

Since L̃ is log2 periodic (13), it is clear that, for all m ∈ N and α ∈ R
+,

L̃(α) = L̃(α2−1) = L̃(α2−2) = · · · = L̃(α2−m).

Thus,
L̃(α) = lim

m→∞ L̃(α2−m), (14)

showing that L̃ ≡ c if and only if L̃ is right continuous at the origin. To prove that L̃ is not
identically constant, it is enough to show that limm→∞ L̃(2−m) �= limm→∞ L̃(3(2−m)). We
first find a general expression for L̃(α(2−m)) as follows. By (12) and (14),

L̃(α) = lim
m→∞ L̃(α2−m)

= lim
m→∞

[
(α2−m)1/D−1 E[L(Po(α2−m))] + (α2−m)1/D−1

∞∑
k=0

(
3

2

)k+1

f (α2−m2k)

]
.

https://doi.org/10.1239/aap/1240319576 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1240319576


Nearest-neighbor graphs on the Cantor set SGSA • 47

Applying the identity 21/D = 3 shows that

L̃(α) = lim
m→∞

[
(α2−m)1/D−1 E[L(Po(α2−m))] + α1/D−1

(
3

2

) ∞∑
k=0

(
3

2

)k−m
f (α2k−m)

]
.

Re-indexing the summation shows that

L̃(α) = lim
m→∞

[
(α2−m)1/D−1 E[L(Po(α2−m))] + α1/D−1

(
3

2

) ∞∑
k=−m

(
3

2

)k
f (α2k)

]
.

The limit of the first term vanishes since L is bounded. Note that the infinite series

∞∑
k=−∞

(
3

2

)k
f (α2k)

converges because (12) exists and because of the inequality

−1∑
k=−∞

(
3

2

)k
f (α2k) =

∞∑
k=1

(
2

3

)k
f (α2−k) ≤ β

∞∑
k=1

(
2

3

)k
< ∞,

where β is defined before (10). Thus, distributing the limit gives

L̃(α) = lim
m→∞ L̃(α2−m) = 3

2
α1/D−1

∞∑
k=−∞

(
3

2

)k
f (α2k). (15)

By the definition of f (see (2)),

L̃(α) = 3

2
α1/D−1

∞∑
k=−∞

(
3

2

)k[2

3
α2ke−α2k E[M(Po(α2k))] + α2ke−α2k

− α2ke−2α2k − 2

3
α222ke−2α2k

]
.

Distributing the sum and simplifying gives

L̃(α) = α1/D
∞∑

k=−∞
3ke−α2k E[M(Po(α2k))] + 3

2
α1/D

∞∑
k=−∞

3ke−α2k

− 3

2
α1/D

∞∑
k=−∞

3ke−α2k+1 − α1/D+1
∞∑

k=−∞
6ke−α2k+1

.

Re-indexing the third and fourth summations gives

L̃(α) = α1/D
∞∑

k=−∞
3ke−α2k E[M(Po(α2k))] + 3

2
α1/D

∞∑
k=−∞

3ke−α2k

− 1

2
α1/D

∞∑
k=−∞

3ke−α2k − 1

6
α1/D+1

∞∑
k=−∞

6ke−α2k .
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Combining the second and third summations produces

L̃(α) = α1/D
∞∑

k=−∞
3ke−α2k E[M(Po(α2k))] + α1/D

∞∑
k=−∞

3ke−α2k

− 1

6
α1/D+1

∞∑
k=−∞

6ke−α2k

:= A(α)+ B(α)− C(α). (16)

To show that L̃(1) �= L̃(3), employ (16) with α = 1 and α = 3, and show that

L̃(1) = A(1)+ B(1)− C(1) < A(3)+ B(3)− C(3) = L̃(3).

3.4.1. Analysis of L̃(1). The idea is to obtain an upper bound, L̃u(1), for L̃(1). This will
be accomplished by setting α = 1 in (16) and finding upper bounds for A(1) and B(1), and
combining these with a lower bound for C(1).

An upper bound for A(1). To bound A(1), we will split it into three parts and bound each
part. Two parts will be bound using the exponential decay while the other part will be bound
by using a finite number of terms. Conditioning on the value of the random number Po(2k)
shows that

A(1) :=
∞∑

k=−∞
3ke−2k E[M(Po(2k))] =

∞∑
k=−∞

∞∑
j=0

3ke−2k e−2k2kj

j ! E[M(j)].

Splitting the infinite sum into a finite sum and two infinite sums shows that

A(1) =
∑

|k|≤20

20∑
j=0

3ke−2k+1
2kj

1

j ! E[M(j)] +
∑

|k|≥21

∞∑
j=0

3ke−2k+1
2kj

1

j ! E[M(j)]

+
∑

|k|≤20

∞∑
j=21

3ke−2k+1
2kj

1

j ! E[M(j)]

:= Aa(1)+ Ab(1)+ Ac(1). (17)

We first find upper bounds for Ab(1) and Ac(1). Since E[M(j)] ≤ 1 for all j > 0,

Ab(1) ≤
∑

|k|≥21

∞∑
j=0

3ke−2k+1
2kj

1

j ! =
∑

|k|≥21

3ke−2k+1
e2k =

∑
|k|≥21

3ke−2k .

Splitting the sum over the parts where k is positive and negative gives

Ab(1) ≤
∞∑
k=21

3ke−2k +
∞∑
k=21

(
1

3

)k
e−2−k

.

Note that if k ≥ 21 then 2k > 2k, which implies that e−2k ≤ e−2k . Thus,

Ab(1) ≤
∞∑
k=21

(
3

e2

)k
+

∞∑
k=21

(
1

3

)k
≤ 2

(
3

e2

)21

+ 1

2 · 320 . (18)
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Bounding Ac(1) requires a little more work. By definition (17) and E[M(j)] ≤ 1 for all
j > 0,

Ac(1) :=
∑

|k|≤20

∞∑
j=21

3ke−2k+1
2kj

1

j ! E[M(j)] ≤
∑

|k|≤20

∞∑
j=21

3ke−2k+1
2kj

1

j ! .

Splitting the sum over the parts where k is positive and negative gives

Ac(1) ≤
20∑
k=0

∞∑
j=21

3ke−2k+1
2kj

1

j ! +
20∑
k=1

∞∑
j=21

(
1

3

)k
e−2−k+1

2−kj 1

j !

≤
20∑
k=0

∞∑
j=21

3ke−2k+1
2kj

1

j ! +
20∑
k=1

∞∑
j=21

(
1

3

)k
2−kj 1

j !

=
20∑
k=0

3ke−2k+1
∞∑
j=21

2kj

j ! +
20∑
k=1

(
1

3

)k ∞∑
j=21

(
1

2

)kj 1

j ! .

If j ≥ 21 then (
1

2

)kj 1

j ! ≤ 1

21!
(

1

2

)21k(1

2

)k(j−21)

.

Thus,

Ac(1) ≤
20∑
k=0

3ke−2k+1
(

e2k −
20∑
j=0

2kj

j !
)

+
20∑
k=1

(
1

3

)k(1

2

)21k 1

21!
∞∑
j=21

(
1

2

)k(j−21)

=
20∑
k=0

3ke−2k+1
e2k −

20∑
k=0

3ke−2k+1
20∑
j=0

2kj

j ! +
20∑
k=1

(
1

3

)k(1

2

)21k 1

21!
∞∑
j=21

(
1

2

)k(j−21)

.

Simplifying and extending the third summation from k = 1, . . . , 20 to k = 1, . . . ,∞ and
re-indexing the last summation gives

Ac(1) ≤
20∑
k=0

3ke−2k −
20∑
k=0

3ke−2k+1
20∑
j=0

2kj

j ! + 1

21!
∞∑
k=1

(
1

2

)21k(1

3

)k ∞∑
j=0

(
1

2

)kj
.

It is easily seen that the double sum is bounded by (1/21!)( 1
2 )

21; thus,

Ac(1) ≤
20∑
k=0

3ke−2k −
20∑
k=0

3ke−2k+1
20∑
j=0

2kj

j ! + 1

21!
(

1

2

)21

.

Consider h(x) = 3xe−2x . Clearly, h(x) is decreasing when x ≥ 1; thus, h(k) = 3ke−2k ≤
35e−25

for k = 5, . . . , 20. Applying the inequality above gives

Ac(1) ≤
4∑
k=0

3ke−2k + 16 · 35e−25 −
4∑
k=0

20∑
j=0

3ke−2k+1 2kj

j ! + 1

21!
(

1

2

)21

. (19)
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Putting Aa(1), Ab(1), and Ac(1) together from (17), (18), and (19) shows that

A(1) ≤
∑

|k|≤20

20∑
j=0

3ke−2k+1
2kj

1

j ! E[M(j)] +
4∑
k=0

3ke−2k −
4∑
k=0

20∑
j=0

3ke−2k+1 2kj

j !

+ 1

21!
(

1

2

)21

+ 2

(
3

e2

)21

+ 1

2 · 320 + 16 · 35e−25
.

(20)

An upper bound for B(1). To bound B(1), split it into two sums, then remove a small finite
number of terms from each, and bound the tails. From (16),

B(1) :=
∞∑

k=−∞
3ke−2k =

4∑
k=0

3ke−2k +
12∑
k=1

(
1

3

)k
e−2−k +

∞∑
k=5

3ke−2k +
∞∑
k=13

(
1

3

)k
e−2−k

.

Bounding e−2−k
above by 1 in the last summation produces an upper bound of

B(1) ≤
4∑
k=0

3ke−2k +
12∑
k=1

(
1

3

)k
e−2−k + 35

∞∑
k=5

3k−5e−2k + 1

2 · 312 .

Simple calculus shows that 2x ≥ 25 − 2(x − 5) for x ≥ 5. Thus,

e−2k ≤ e−25
e−2(k−5) for all k ≥ 5. (21)

Using (21), we obtain

B(1) ≤
4∑
k=0

3ke−2k +
12∑
k=1

(
1

3

)k
e−2−k + 35e−25

∞∑
k=5

3k−5e−2(k−5) + 1

2 · 312 .

Re-indexing the third sum to start at k = 0 produces

B(1) ≤
4∑
k=0

3ke−2k +
12∑
k=1

(
1

3

)k
e−2−k + 35e−25

∞∑
k=0

(
3

e2

)k
+ 1

2 · 312 ,

which is bounded above by

B(1) ≤
4∑
k=0

3ke−2k +
12∑
k=1

(
1

3

)k
e−2−k + 2 · 35e−25 + 1

2 · 312 , (22)

which is the upper bound for B(1).
A lower bound for C(1) and an upper bound for L̃(1). To obtain a lower bound for C(1),

note that all the terms are positive, so dropping all the terms except where −6 ≤ k ≤ 4 gives a
lower bound. From (16),

C(1) := 1

6

∞∑
k=−∞

6ke−2k >
1

6

4∑
k=0

6ke−2k + 1

6

6∑
k=1

(
1

6

)k
e−2−k

. (23)
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Using definition (16) and the bounds (20), (22), and (23), gives

L̃(1) := A(1)+ B(1)− C(1)

<
∑

|k|≤20

20∑
j=0

3ke−2k+1
2kj

1

j ! E[M(j)] + 2
4∑
k=0

3ke−2k +
12∑
k=1

(
1

3

)k
e−2−k

−
4∑
k=0

20∑
j=0

3ke−2k+1 2kj

j ! − 1

6

4∑
k=0

6ke−2k − 1

6

6∑
k=1

(
1

6

)k
e−2−k

+ 1

21!
(

1

2

)21

+ 2

(
3

e2

)21

+ 1

2 · 320 + 16 · 35e−25 + 2 · 35e−25 + 1

2 · 312

:= L̃u(1). (24)

3.4.2. Analysis of L̃(3). Recall from (16) that L̃(3) := A(3) + B(3) − C(3). The idea is to
obtain a lower bound, L̃l(3), for L̃(3). This will be accomplished by finding lower bounds for
A(3) and B(3), and combining these with an upper bound for C(3).

A lower bound for A(3). Using definition (16) and conditioning on the value of the random
number Po(2k),

A(3) := 31/D
∞∑

k=−∞
3ke−3·2k E[M(Po(3 · 2k))]

= 31/D
∞∑

k=−∞
3ke−3·2k

∞∑
j=0

e−3·2k (3 · 2k)j

j ! E[M(j)].

Summing over only |k| ≤ 20 and 0 ≤ j ≤ 20 gives a lower bound of

A(3) > 31/D
∑

|k|≤20

20∑
j=0

3ke−6·2k (3 · 2k)j

j ! E[M(j)]. (25)

A lower bound for B(3). Summing over only −14 ≤ k ≤ 3 in the definition of B(3) given
in (16) gives a lower bound of

B(3) > 31/D
3∑
k=0

3ke−3·2k + 31/D
14∑
k=1

(
1

3

)k
e−3·2−k

. (26)

An upper bound for C(3) and a lower bound for L̃(3). By the definition of C(3) given in
(16), splitting the sum into three parts produces

C(3) = 1

6
31/D+1

1∑
k=−10

6ke−3·2k + 1

6
31/D+1

∞∑
k=2

6ke−3·2k + 1

6
31/D+1

∞∑
k=11

(
1

6

)k
e−3·2−k

.

Note that 2k ≥ 2k when k ≥ 2; thus,

C(3) ≤ 31/D+1
1∑

k=−10

6k−1e−3·2k + 31/D+1
∞∑
k=2

6k−1e−6k + 31/D+1
∞∑
k=11

(
1

6

)k+1

.
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Re-indexing the second and third summations gives

C(3) ≤ 31/D+1
1∑

k=−10

6k−1e−3·2k

+ 31/D+1
(

6

e12 + 36

e24 + 63

e48

∞∑
k=0

(
6

e12

)k)
+ 31/D+1

(
1

6

)12 ∞∑
k=0

(
1

6

)k
.

Thus,

C(3) < 31/D+1
1∑

k=−10

6k−1e−3·2k + 31/D+1
(

6

e12 + 36

e24 + 217

e48

)
+ 31/D+1 1

5 · 611 , (27)

since

63
∞∑
k=0

(
6

e6

)k
< 217 and

∞∑
k=0

(
1

6

)k
= 6

5
.

Putting the bounds together for A(3), B(3), and C(3) from (25), (26), and (27) gives the
desired lower bound:

L̃(3) > 31/D
∑

|k|≤20

20∑
j=0

3ke−6·2k (3 · 2k)j

j ! E[M(j)] + 31/D
3∑
k=0

3ke−3·2k

+ 31/D
14∑
k=1

(
1

3

)k
e−3·2−k − 31/D+1

1∑
k=−10

6k−1e−3·2k

− 31/D+1
(

6

e12 + 36

e24 + 217

e48

)
− 31/D+1 1

5 · 611

:= L̃l(3). (28)

3.4.3. Evaluation of E[M(n)]. In order to evaluate L̃u(1) and L̃l(3), the values of E[M(n)]
for 0 ≤ n ≤ 20 must be computed. Recall that M(n) is the random variable representing
the distance from the origin to it nearest neighbor if there are exactly n points uniformly
distributed on C. If C1 contains at least one point then the value of M(n) is completely
determined by the points in C1, and it is not affected by the points in C2. The only way that
M(n) will depend on the points in C2 is if there are no points in C1. We condition on the
number of points which are located in C1. Since the probability of k points in C1 is

(
n
k

)
/2n and

E[M(k | |C1| = k)] = E[M(k)]/3, we see that

E[M(n)] = 1

2n

n∑
k=1

(
n

k

)
1

3
E[M(k)] + 1

2n

(
n

0

)(
1

3
E[M(n)] + 2

3

)
,

where the last term is obtained by conditioning on zero points in C1. Writing

E[M(n)] = 1

2n

n−1∑
=1

(
n

k

)
1

3
E[M(k)] + 1

3 · 2n−1 + 2

3 · 2n
E[M(n)],
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and solving for E[M(n)] yields

E[M(n)] = 3 · 2n−1

3 · 2n−1 − 1

1

3 · 2n

n−1∑
k=1

(
n

k

)
E[M(k)] + 3 · 2n−1

3 · 2n−1 − 1

1

3 · 2n−1 .

Thus, a recursive formula for E[M(n)] for n ≥ 2 is given by

E[M(n)] = 1

3 · 2n − 2

n−1∑
k=1

(
n

k

)
E[M(k)] + 2

3 · 2n − 2
. (29)

By symmetry, it is easily seen that E[M(1)] = 1
2 . Note that E[M(n)] is only needed for

1 ≤ n ≤ 20 (see (24) and (28)). To compute E[M(n)] for such values, use E[M(0)] = 0 and
E[M(1)] = 1

2 along with recursion (29). These values are explicitly determined in Appendix A.
By (24) and (28), together with the computed values for E[M(n)], we bound L̃u(1) and

L̃l(3):
L̃u(1) ≤ 1.227 891 67 and L̃l(3) ≥ 1.227 905 24.

Thus, putting everything together gives

L̃(1) < L̃u(1) ≤ 1.227 891 67 < 1.227 905 24 ≤ L̃l(3) < L̃(3),

which shows that L̃ is not constant, completing Step 3.

3.5. Proof of Step 4

It is enough to show that L̃ is continuous and strictly positive. Recall that L̃ is log2 periodic
by Step 2. To show that L̃ is continuous for all α > 0, it is enough to show, by periodicity, that
L̃ is continuous on [1, 2].

Since
∑∞
k=−∞ 3ke−α2k and

∑∞
k=−∞ 6ke−α2k are uniformly convergent for α ∈ (1−ε, 2+ε)

with 0 < ε < 1, it follows, by standard arguments (see, e.g. [3, p. 129]), that B and C are
continuous functions on R

+. To show that A is a continuous function, again by standard
arguments, it is enough to show that, for all k ∈ Z, E[M(Po(α2k))] is continuous for α ∈
(1 − ε, 2 + ε).

Lemma 1. E[M(Po(α2k))] is continuous for α ∈ (1 − ε, 2 + ε) with 0 < ε < 1.

Fix k ∈ Z. Since 0 ≤ E[M(j)] ≤ 1, it follows, for all α ∈ (1 − ε, 2 + ε) and all k ∈ Z, that
∞∑
j=0

∣∣∣∣ (α2k)j

j ! E[M(j)]
∣∣∣∣ ≤

∞∑
j=0

(3 · 2k)j

j ! = e3·2k < ∞.

For fixed integers j and k and fixed ε > 0, the mapping α → (α2k)j E[M(j)]/j ! is
continuous on (1 − ε, 2 + ε). So Weierstrass’s M-test for uniform convergence proves that

E[M(Po(α2k))] =
∞∑
j=0

(α2k)j

j ! E[M(j)]

is continuous for α ∈ (1 − ε, 2 + ε).
So L̃ is continuous on [1, 2]. Recall from (10) that f (x) > 0 for all x > 0 and from (15)

that

L̃(α) = (α)1/D−1
(

3

2

) ∞∑
k=−∞

(
3

2

)k
f (α2k).

Thus, L̃ is strictly positive and continuous for all α > 0, completing Step 4.

https://doi.org/10.1239/aap/1240319576 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1240319576


54 • SGSA N. SHANK

3.6. Proof of Step 5

To show Step 5, it suffices to show that, for all ε > 0, there exists an N(ε) such that, for all
n ≥ N(ε), ∣∣∣∣E[L(Po(n))]

n1/DL̃(n)
− 1

∣∣∣∣ < ε.

This is equivalent to showing that

pn(t) := E[L(Po(t2n))]
(t2n)1/DL̃(t2n)

→ 1 as n → ∞,

uniformly for t ∈ [1, 2].
Step 2 shows that pn(t) converges to 1 pointwise. By a similar argument to that in Step 4,

it can be shown that E[L(Po(t2n))] is continuous for all t ∈ [1, 2]. For each n, the mapping
t → (t2n)1−1/DL̃(t2n) is a continuous function and bounded away from 0 for t ∈ [1, 2]. Thus,
pn(t) is continuous on [1, 2].

By (1) we have

E[L(Po(t2n+1))] = 2
3 E[L(Po(t2n))] + f (t2n).

Since f > 0 and 2
3 = 21−1/D ,

E[L(Po(t2n+1))] > 21−1/D E[L(Po(t2n))].
Dividing both sides by (t2n+1)1−1/dL̃(t2n+1) and simplifying the right-hand side leads to

pn+1(t) = E[L(Po(t2n+1))]
(t2n+1)1−1/dL̃(t2n+1)

>
E[L(Po(t2n))]
(t2n)1−1/dL̃(t2n)

= pn(t).

We have a sequence of continuous functions on a compact set X = [1, 2], which is monotone
increasing in n, that converges pointwise to 1. So, by Dini’s theorem we know that pn(t)
converges uniformly, completing the proof of Step 5.

4. Add-one cost

In order to prove Theorem 2, an add-one bound is needed. The add-one result will show that
there is a constant c > 0 such that, for all n ∈ N,

| E[L(n)] − E[L(n+ 1)]| ≤ cn−1/D. (30)

Similar add-one bounds exist in the context of n uniform i.i.d. points on [0, 1] (see [15,
Statement 5.6]).

For every y ∈ R and t ∈ R
+, let B(y, t) := {x ∈ R : |x − y| < t}, i.e. the ball of radius t

centered at y. Let µC(A) denote the Cantor measure of A with respect to C; see [5, p. 8] for
more information. For example, µC([0, 1

3 ]) = 1
2 . To prove (30), it suffices to establish the

following two inequalities:

E[L(n)] ≤ E[L(n+ 1)] + cn−1/D and E[L(n+ 1)] ≤ E[L(n)] + cn−1/D.

The add-one bound will rely on the following properties of the Cantor measure. Lemma 2
shows that the Cantor measure of any ball of radius t is minimized if the ball is centered at the
origin. This is what we would expect since the ball at the origin will only intersect the Cantor

https://doi.org/10.1239/aap/1240319576 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1240319576


Nearest-neighbor graphs on the Cantor set SGSA • 55

set to the right of the center. Lemma 2 also shows that the Cantor measure of any ball of radius t
is at most twice the Cantor measure of the ball of radius t centered at the origin. The reasoning
is that the most dense part of C occurs to the right of the origin, but twice the Cantor measure
is needed since the left part of B(0, t) has no Cantor measure.

Lemma 2. For all y ∈ C and t ∈ [0, 1],
µC(B(0, t)) ≤ µC(B(y, t)) ≤ 2µC(B(0, t)).

Proof. If t = 1, the inequality holds trivially. Thus, we can assume that t �= 1. We begin
by proving the first inequality. Assume, by way of contradiction, that there exist a y and t such
that

µC(B(0, t)) > µC(B(y, t)). (31)

Choose n ∈ N such that 3−(n+1) ≤ t < 3−n. By the symmetry of the Cantor set, there exists
a ỹ ∈ C such that 0 ≤ ỹ ≤ 3−n and µC(B(y, t)) = µC(B(ỹ, t)). If 0 ≤ ỹ ≤ 3−(n+1) then
B(0, t) ⊆ B(ỹ, t), which implies thatµC(B(0, t)) ≤ µC(B(ỹ, t)). This contradicts (31). Note
that ỹ /∈ (3−(n+1), 2 · 3−(n+1)) since ỹ ∈ C. Lastly, assume that 2 · 3−(n+1) ≤ ỹ ≤ 3−n. By
symmetry,

µC(B(ỹ, t)) = µC(B(3
−n − ỹ, t)),

but B(0, t) ⊆ B(3−n − ỹ, t). Thus,

µC(B(0, t)) ≤ µC(B(3
−n − ỹ, t)) = µC(B(ỹ, t)) = µC(B(y, t)),

which contradicts (31).
The second inequality is proved using Dobos’s result [4] that the Cantor measure is subad-

ditive at the origin, i.e. for all a, b ∈ R
+,

µC(B(0, a + b)) ≤ µC(B(0, a))+ µC(B(0, b)).

If y > t , applying subadditivity twice produces

µC(B(y, t)) = µC(B(0, y + t))− µC(B(0, y − t))

≤ µC(B(0, y))+ µC(B(0, t))− µC(B(0, y − t))

≤ µC(B(0, y − t))+ µC(B(0, t))+ µC(B(0, t))− µC(B(0, y − t))

= 2µC(B(0, t)).

If y ≤ t then B(y, t) ⊆ B(0, y + t) ⊆ B(0, 2t). Thus, by subadditivity,

µC(B(y, t)) ≤ µC(B(0, 2t)) ≤ 2µC(B(0, t)),

which completes the proof.

Finally, we require bounds for the expected distance between a point y and its first and
second nearest neighbors. Those bounds are needed because adding a point and going from a
graph on n points to a graph on n+ 1 points does not always imply an increase in the total edge
length. The total edge length could decrease by the distance from y to its nearest neighbor or
second nearest neighbor. The appropriate bounds are found in the following lemma.

Let F := {y1, y2, . . . , ym} be a finite collection of points in C. For any y ∈ C and
k ∈ {1, 2, . . . , m}, let d(k)(y, F ) be the distance from y to its kth nearest neighbor in the point
set F . Adopt the notation that d(y, F ) := d(1)(y, F ). Now consider Xn := {X1, X2, . . . Xn}
to be a random collection of n vertices which are uniform i.i.d. on C.
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Lemma 3. For all y ∈ C,

(i) E[d(y,Xn)] ≤ cn−1/D , and

(ii) E[d(2)(y,Xn)] ≤ cn−1/D .

Proof. Fix y ∈ C. To prove part (i), consider

E[d(y,Xn)] =
∫ 1

0
P(d(y,Xn) > t) dt. (32)

If d(y,Xn) > t then Xn ∩ B(y, t) = ∅. By independence of the points in Xn,

P(d(y,Xn) > t) = P(Xn ∩ B(y, t) = ∅) = (1 − µC(B(y, t)))
n.

However, by Lemma 2,

(1 − µC(B(y, t)))
n ≤ (1 − µC(B(0, t)))

n.

Once again by independence of the points in Xn,

(1 − µC(B(0, t)))
n = P(B(0, t) ∩ Xn = ∅) = P(d(0,Xn) > t).

So,
P(d(y,Xn) > t) ≤ P(d(0,Xn) > t).

Applying this to (32) gives

E[d(y,Xn)] ≤
∫ 1

0
P(d(0,Xn) > t) dt = E[d(0,Xn)] ≤ cn−1/D, (33)

where the last inequality follows from Statement (2.2) of Knopfmaker and Prodinger [8].
For the second nearest neighbor bound, part (ii), consider

E[d(2)(y,Xn)] =
∫ 1

0
P(d(2)(y,Xn) > t) dt.

If d(2)(y,Xn) > t then Xn ∩B(y, t) contains at most one point. Thus, by independence of the
points in Xn,

P(d(2)(y,Xn) > t) = P(Xn ∩ B(y, t) = ∅)+ P(|Xn ∩ B(y, t)| = 1)

= (1 − µC(B(y, t)))
n + n(1 − µC(B(y, t)))

n−1µC(B(y, t)).

However, by Lemma 2,

n(1 − µC(B(y, t)))
n−1µC(B(y, t)) ≤ n(1 − µC(B(0, t)))

n−12µC(B(0, t)),

and once again by independence of the points in Xn,

n(1 − µC(B(0, t)))
n−1µC(B(0, t)) = P(|B(0, t) ∩ Xn| = 1) = P(d(2)(0,Xn) > t).

Thus,

E[d(2)(y,Xn)] ≤
∫ 1

0
(1 − µC(B(y, t)))

n dt + 2
∫ 1

0
P(d(2)(0,Xn) > t) dt

= E[d(y,Xn)] + 2 E[d(2)(0,Xn)]. (34)

Knopfmaker and Prodinger [8] showed that E[d(2)(0,Xn)] ≤ cn−1/D followed easily from
[8, Statement (2.4)]. Combining this with (33), proves that (34) is bounded by cn−1/D .
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Now we prove the add-one bound.

Lemma 4. We have
| E[L(n)] − E[L(n+ k)]| ≤ ckn−1/D.

Proof. Let deg(v) denote the degree of the vertex v. Let y ∈ C, and let Xn+1 := Xn ∪ {y}.
We first show that the inequality

E[L(n)] ≤ E[L(n+ 1)] + cn−1/D (35)

holds. The proof of (35) will consist of two cases depending on the relative location of Xn

and y.
Case 1. Let �1 be the event deg(y) = 2 in the nearest-neighbor graph on Xn+1:

vjvi y

The nearest-neighbor graph on Xn+1 is actually a graph for Xn where each vertex vi ∈ Xn

has a path to another vertex vk ∈ Xn. Thus, on �1, the length of the nearest-neighbor graph
on Xn is at most the length of the nearest-neighbor graph on Xn+1.

Case 2. Let �2 be the event deg(y) = 1 in the nearest-neighbor graph on Xn+1:

vi vjvky

or

vivk y

Adding the edge that connects y to its second nearest neighbor, denoted by vk , in Xn will
produce a neighbors graph on Xn:

y vjvkvi

or

yvivk

Thus, on�2, the length of the nearest-neighbor graph on Xn+1 plus d(2)(y,Xn) is greater than
or equal to the length of the nearest-neighbor graph on Xn.

Conditioning on these two cases produces

E[L(n)] = E[L(n)1�1 ] + E[L(n)1�2 ]
≤ E[L(n+ 1)1�1 ] + E[(L(n+ 1)+ d(2)(y,Xn))1�2 ]
≤ E[(L(n+ 1)+ d(2)(y,Xn))1�1 ] + E[(L(n+ 1)+ d(2)(y,Xn))1�2 ].

The desired inequality (35) follows by Lemma 3. Now we prove the reverse inequality

E[L(n+ 1)] ≤ E[L(n)] + cn−1/D. (36)
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The nearest-neighbor graph on Xn along with the edge connecting y to its nearest neighbor
in Xn produces a neighbors graph for Xn+1; however, it may not be the nearest-neighbor graph.
Thus,

E[L(n+ 1)] ≤ E[L(n)] + E[d(y,Xn)].
Applying Lemma 3 completes the proof of (36) and Lemma 4.

5. Proof of Theorem 2

Theorem 2 is proved by showing that the difference between the total edge length of the
binomial and the Poisson nearest-neighbor graphs go to 0 as n tends to ∞. The decay of a
Poisson random variable will be enough to show that they have the same asymptotics.

Recall that

n1/D−1L(n)E[L(Po(n))] → 1 as n → ∞.

In order to prove Theorem 2, it suffices to show the following proposition.

Proposition 1. We have

n1/D−1[E[L(n)] − E[L(Po(n))]] → 0 as n → ∞.

Proof. By conditioning on Po(n) we can decompose | E[L(n)] − E[L(Po(n))]| as follows:

| E[L(n)] − E[L(Po(n))]| =
∣∣∣∣

∞∑
k=0

(E[L(n)] − E[L(k)])P(Po(n) = k)

∣∣∣∣

≤
∞∑
k=0

| E[L(n)] − E[L(k)]|e−nnk

k!

=
�n−6

√
n log n�∑

k=0

| E[L(n)] − E[L(k)]|e−nnk

k!

+
�n+6

√
n log n�∑

k=�n−6
√
n log n�

| E[L(n)] − E[L(k)]|e−nnk

k!

+
∞∑

k=�n+6
√
n log n�

| E[L(n)] − E[L(k)]|e−nnk

k!
:= I + II + III.

Showing that

n1/D−1I → 0, n1/D−1II→0, and n1/D−1III→0, as n → ∞

will complete the proof of Proposition 1. This is done in Sections 5.1, 5.2, and 5.3, respectively,
with the help of the following Poisson probability bounds [1, p. 259].
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Lemma 5. For all m ∈ N,

(i)

P(Po(n) = m) ≤ 1√
2πm

exp

(−(m− n)2

2(m+ n)

)
,

(ii)

P(Po(n) ≥ m) ≤ m+ 1

m+ 1 − n
P(Po(n) = m) for m+ 1 > n,

(iii)

P(Po(n) ≤ m− 1) ≤ n

n+ 1 −m
P(Po(n) = m− 1) for m− 1 < n.

5.1. n1/D−1I → 0 as n → ∞
Note that L(k) ≤ 1 for all k and, thus,

n1/D−1I = 2n1/D−1 P(Po(n) ≤ �n− 6
√
n log n�).

Letting m := �n− 6
√
n log n� + 1 and applying Lemma 5(iii) gives

n1/D−1I ≤ 2n1/D−1 n

n+ 1 − (�n− 6
√
n log n� + 1)

P(Po(n) = �n− 6
√
n log n�).

Applying Lemma 5(i) gives

n1/D−1I ≤ 2n1/D−1 n

n− (�n− 6
√
n log n�)

1√
2π

× 1√�n− 6
√
n log n� + 1

exp

(−(�n− 6
√
n log n� + 1 − n)2

2(�n− 6
√
n log n� + 1 + n)

)
.

Using the definition of the floor function produces

n1/D−1I ≤ cn1/D−1 n

n− (n− 6
√
n log n)

1√
n− 6

√
n log n

exp

(
− (−6

√
n log n)2

2(2n+ 1 − 6
√
n log n)

)
.

Simplifying and using crude bounds gives

n1/D−1I ≤ cn1/D−1n1/2(1) exp(−9 log n) = cn1/D−1/2n−9 = cn1/D−17/2,

which will go to 0 as n goes to ∞ since 1/D < 17
2 .

5.2. n1/D−1II → 0 as n → ∞
Splitting the sum gives

n1/D−1II = n1/D−1
n∑

k=�n−6
√
n log n�

| E[L(k + (n− k))] − E[L(k)]|e−nnk

k!

+ n1/D−1
�n+6

√
n log n�∑

k=n+1

| E[L(n)] − E[L(n+ (k − n))]|e−nnk

k! .
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Applying Lemma 4 to both sums gives

n1/D−1II ≤ cn1/D−1
n∑

k=�n−6
√
n log n�

(n− k)k−1/D e−nnk

k!

+ cn1/D−1
�n+6

√
n log n�∑

k=n+1

(k − n)n−1/D e−nnk

k! .

Using the upper and lower bounds for k yields

n1/D−1II ≤ cn1/D−1(
√
n log n)(n− 6

√
n log n)−1/D + cn1/D−1(

√
n log n)n−1/D,

where c is a constant that changes from line to line. Simplifying shows that

n1/D−1II ≤ c
√

log n√
n

(
1 − 6

√
log n√
n

)−1/D

+ c
√

log n√
n

,

which goes to 0 as n approaches ∞.

5.3. n1/D−1III → 0 as n → ∞
This term is handled similarly to term I . For all k, L(k) ≤ 1; thus,

n1/D−1III ≤ 2n1/D−1 P(Po(n) ≥ n+ 6
√
n log n).

Letting m := �n+ 6
√
n log n� and applying Lemma 5(i) and (ii) gives

n1/D−1III ≤ 2n1/D−1 �n+ 6
√
n log n� + 1

�n+ 6
√
n log n� + 1 − n

1√
2π

1√�n+ 6
√
n log n�

× exp

(
− (�n+ 6

√
n log n� − n)2

2(�n+ 6
√
n log n� + n)

)
.

Using bounds for the floor function yields

n1/D−1III ≤ cn1/D−1 n+ 6
√
n log n+ 1

6
√
n log n

1√
n+ 6

√
n log n− 1

exp

(
− (6

√
n log n− 1)2

2(2n+ 6
√
n log n)

)
.

Simplifying and using crude bounds gives

n1/D−1III ≤ cn1/D−1 n√
n

exp

(
− (5

√
n log n)2

4n

)
= cn1/D−27/4,

which will go to 0 as n goes to ∞ since 1/D < 27
4 .
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Table 1.

n E[M(n)]
0 0

1 1
2

2 3
10

3 1
5

4 33
230

5 5
46

6 75
874

7 611
8740

8 97 653
1 673 710

9 83 057
1 673 710

10 22 018 179
513 828 970

11 9 625 216
256 914 485

12 20 894 487 717
631 290 272 542

13 93 120 706 729
3 156 451 362 710

14 411 117 020 063 871
15 513 958 447 719 650

15 297 434 062 421 057
12 411 166 758 175 720

16 6 650 181 371 241 300 777
305 013 731 457 236 950 790

17 6 082 551 300 359 191 981
305 013 731 457 236 950 790

18 2 198 073 713 661 546 055 399 083
119 935 974 414 957 427 604 889 850

19 53 388 901 948 383 223 161 199
3 156 209 853 025 195 463 286 575

20 31 122 898 898 234 908 646 386 438 959
1 985 714 279 223 507 204 788 524 885 690

Appendix A. Evaluation of E[M(n)]

Table 1 displays E[M(n)] for different values of n.
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