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Abstract Let Mn and Tn denote the nth Motzkin number and the nth central trinomial coefficient
respectively. We prove that for any prime p ≥ 5,

p−1∑
k=0

M2
k ≡

(p

3

)
(2− 6p) (mod p2),

p−1∑
k=0

kM2
k ≡

(p

3

)
(9p− 1) (mod p2),

p−1∑
k=0

TkMk ≡
4

3

(p

3

)
+

p

6

(
1− 9

(p

3

))
(mod p2),

where (−) is the Legendre symbol. These results confirm three supercongruences conjectured by Z.-W.
Sun in 2010.
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1. Introduction

The Motzkin numbers {Mn}∞n=0 = 1, 1, 2, 4, 9, 21, 51, 127, . . . first appeared in [6] in a
circle chording setting, which count the number of ways of connecting a subset of n
points on a circle by nonintersecting chords. The Motzkin number Mn also counts the
number of lattice paths on the upper right quadrant of a grid from (0, 0) to (n, 0) if one is
allowed to move by using only steps (1, 1), (1, 0) and (1,−1) but forbidden from dipping
below the y =0 axis.
The Motzkin numbers are named after Theodore Motzkin and naturally appear in

various combinatorial objects. Fourteen different manifestations of Motzkin numbers in
different branches of mathematics were enumerated by Donaghey and Shapiro [2] in

© The Author(s), 2024. Published by Cambridge University Press on Behalf
of The Edinburgh Mathematical Society.

1

https://doi.org/10.1017/S0013091524000610 Published online by Cambridge University Press

mailto:jcliu2016@gmail.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0013091524000610&domain=pdf
https://doi.org/10.1017/S0013091524000610
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their survey of Motzkin numbers. The interested readers may refer to [11] for further
information on Motzkin numbers.
The famous Catalan numbers Cn =

(
2n
n

)
/(n+1) are closely related to Motzkin numbers.

The Motzkin numbers can be expressed in terms of Catalan numbers:

Mn =

bn/2c∑
k=0

(
n

2k

)
Ck,

and inversely,

Cn+1 =
n∑

k=0

(
n

k

)
Mk,

where bxc denotes the integral part of real x.
Another sequence closely related to Motzkin numbers are the central trinomial coeffi-

cients. For n ∈ N, the central trinomial coefficient Tn is given by the constant term in
the expansion of (1+x+x−1)n, which can be expressed in terms of binomial coefficients:

Tn =

bn/2c∑
k=0

(
n

2k

)(
2k

k

)
.

Note that {Tn}∞n=0 = 1, 1, 3, 7, 19, 51, 141, 393, . . .. We remark that the central trinomial
coefficient Tn counts the number of lattice paths from (0, 0) to (n, 0) if one is allowed to
move by using only steps (1, 1), (1, 0) and (1,−1).
Although Catalan numbers, Motzkin numbers and central trinomial coefficients

naturally arise in combinatorics, they also possess rich arithmetic properties.
Throughout the paper, let p ≥ 5 be a prime. Sun and Tauraso [16] showed that

p−1∑
k=0

Ck ≡ 3

2

(p
3

)
− 1

2
(mod p2),

where (−) denotes the Legendre symbol.
In 2014, Sun [12] proved that

p−1∑
k=0

T 2
k ≡

(
−1

p

)
(mod p),

p−1∑
k=0

TkMk ≡ 4

3

(p
3

)
(mod p).

By the telescoping method for double summations developed by Chen, Hou and Mu [1],
Sun [14] recently established the following interesting supercongruence:

p−1∑
k=0

(2k + 1)M2
k ≡ 12p

(p
3

)
(mod p2). (1.1)
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The motivation of the paper is the following three conjectural supercongruences of Sun
[12, Conjecture 1.1]:

p−1∑
k=0

M2
k ≡

(p
3

)
(2− 6p) (mod p2), (1.2)

p−1∑
k=0

kM2
k ≡

(p
3

)
(9p− 1) (mod p2), (1.3)

p−1∑
k=0

TkMk ≡ 4

3

(p
3

)
+

p

6

(
1− 9

(p
3

))
(mod p2). (1.4)

‘The three supercongruences look curious and challenging’, as described by Sun [14] in his
recent paper. Although the three supercongruence conjectures were officially announced
by Sun [12] in 2014, they first appeared in arXiv version of Sun’s paper in 2010 (see
https://arxiv.org/abs/1008.3887).
Note that (1.3) follows immediately from (1.1) and (1.2). In this paper, we aim to

prove (1.2) and (1.4).

Theorem 1.1. The supercongruences (1.2)–(1.4) are true.

We remark that both Motzkin numbers and central trinomial coefficients have many
different expressions (see A001006 and A002426 in [10]). The following two expressions
will be used in the proof of Theorem 1.1:

Mn =
n∑

k=0

(−1)n+k

(
n

k

)
Ck+1, (1.5)

Tn =
n∑

k=0

(−1)n+k

(
n

k

)(
2k

k

)
. (1.6)

The rest of the paper is organized as follows. Section 2 is devoted to proving some
preliminary results. In § 3, we establish three congruences for triple sums which play an
important role in the proof of Theorem 1.1. We show (1.2) in § 4, whereas (1.4) is proved
in § 5.

2. Preliminaries

Let p ≥ 5 be a prime. In the proof of Theorem 1.1, we will frequently use Wolstenholme’s
theorem [19]:

(
2p− 1

p− 1

)
≡ 1 (mod p3), (2.1)
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which is equivalent to (
2p

p

)
≡ 2 (mod p3), (2.2)

and Lehmer’s congruences [5]:

Hbp/6c ≡ Hb5p/6c ≡ −2qp(2)−
3

2
qp(3) (mod p), (2.3)

Hbp/3c ≡ Hb2p/3c ≡ −3

2
qp(3) (mod p), (2.4)

Hbp/2c ≡ −2qp(2) (mod p), (2.5)

where qp(a) denotes the Fermat quotient (ap−1 − 1)/p.
In addition, we require some congruences related to central binomial coefficients and

Catalan numbers.

Lemma 2.1. For any prime p ≥ 5, we have

p−1∑
k=0

(
2k

k

)
≡
(p
3

)
(mod p2), (2.6)

p−1∑
k=0

Ck ≡ 3

2

(p
3

)
− 1

2
(mod p2), (2.7)

p−1∑
k=1

(
2k
k

)
k

≡ 0 (mod p2), (2.8)

p−1∑
k=0

k

(
2k

k

)
≡ 2

3

(
p−

(p
3

))
(mod p2), (2.9)

p−2∑
k=0

(
2k
k

)
(k + 1)2

≡ 3
(p
3

)
+ 1 (mod p). (2.10)

Proof. Congruences (2.6)–(2.8) were proved by Sun and Tauraso (see [16, (1.7) and
(1.9)] and [15, Theorem 1.3]). It is easily proved by induction on n that

n−1∑
k=0

(3k + 2)

(
2k

k

)
= n

(
2n

n

)
. (2.11)

Letting n = p in (2.11) and using (2.2) gives

p−1∑
k=0

(3k + 2)

(
2k

k

)
≡ 2p (mod p4). (2.12)
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Then the proof of (2.9) follows from (2.6) and (2.12).
From the following identity:(

2k

k + 1

)
=

1

2

(
2k + 2

k + 1

)
−
(
2k

k

)
,

we deduce that
p−2∑
k=0

(
2k
k+1

)
k + 1

=
1

2

p−1∑
k=1

(
2k
k

)
k

−
p−2∑
k=0

Ck

≡ 1

2
− 3

2

(p
3

)
+ Cp−1

≡ −1

2
− 3

2

(p
3

)
(mod p), (2.13)

where we have used (2.7) and (2.8).
By (2.7), (2.13) and the identity Ck =

(
2k
k

)
−
(

2k
k+1

)
, we have

p−2∑
k=0

(
2k
k

)
(k + 1)2

=

p−2∑
k=0

Ck −
p−2∑
k=0

(
2k
k+1

)
k + 1

≡ 3
(p
3

)
+ 1 (mod p),

as desired. �

We also need some congruences involving harmonic numbers Hn =
∑n

k=1 1/k.

Lemma 2.2 For any prime p ≥ 5, we have

p−1∑
k=0

(
2k

k

)
Hk ≡ −

(p
3

)
qp(3) (mod p), (2.14)

p−1∑
k=0

k

(
2k

k

)
Hk ≡ 1

3

(p
3

)((p
3

)
+ 2qp(3)− 1

)
(mod p), (2.15)

p−1∑
k=0

CkHk ≡ −3

2

(p
3

)
qp(3) (mod p). (2.16)

Proof. Congruence (2.14) is a known result. We begin with the following congruence
due to Tauraso [17, (9)]:

p−1∑
k=0

(
2k

k

)
Hkx

k ≡ −(1− 4x)
p−1
2

p−1∑
j=1

(
2j

j

)
yj

j
(mod p), (2.17)

https://doi.org/10.1017/S0013091524000610 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000610


6 J. Liu

where y = −x/(1− 4x). Letting x =1 in (2.17) and using the congruence [15, (1.13)], we
arrive at

p−1∑
k=0

(
2k

k

)
Hk ≡ −(−3)

p−1
2

p−1∑
j=1

(
2j

j

)
1

j3j
≡ −

(p
3

)
qp(3) (mod p),

which is (2.14).
By using the software package Sigma developed by Schneider [9], we can automatically

discover and prove the following three combinatorial identities:

n∑
k=0

(−4)k
(
n

k

)
Hk = (−3)n

(
Hn −

n∑
k=1

1

k(−3)k

)
, (2.18)

n∑
k=0

(−4)kk

(
n

k

)
Hk =

1− (−3)n

3
+

4n(−3)n

3

(
Hn −

n∑
k=1

1

k(−3)k

)
, (2.19)

and

n∑
k=0

(−4)k

k + 1

(
n

k

)
Hk

=
1

4(n+ 1)

(
(−1 + 3(−3)n)Hn − 3(−3)n

n∑
k=1

1

k(−3)k
+

n∑
k=1

(−3)k

k

)
. (2.20)

By (2.18), we can rewrite (2.19) and (2.20) as

n∑
k=0

(−4)kk

(
n

k

)
Hk =

1− (−3)n

3
+

4n

3

n∑
k=0

(−4)k
(
n

k

)
Hk, (2.21)

and

n∑
k=0

(−4)k

k + 1

(
n

k

)
Hk

=
1

4(n+ 1)

(
3((−3)n + 1)

(−3)n

n∑
k=0

(−4)k
(
n

k

)
Hk

)

+
1

4(n+ 1)

(
3

n∑
k=1

1

k(−3)k
+

n∑
k=1

(−3)k

k
− 4Hn

)
. (2.22)

Using Fermat’s little theorem, we obtain

(p−1)/2∑
k=1

(−3)k

k
+ 3

(p−1)/2∑
k=1

1

k(−3)k
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≡
(p−1)/2∑

k=1

(−3)k

k
+

(p−1)/2∑
k=1

(−3)p−k

p− k

=

p−1∑
k=1

(−3)k

k
(mod p).

From Granville’s congruence [4]:

p−1∑
j=1

xj

j
≡ 1− xp + (x− 1)p

p
(mod p),

we deduce that

p−1∑
k=1

(−3)k

k
≡ 3qp(3)− 8qp(2) (mod p),

which was also mentioned in the proof of [13, Lemma 3.3]. Thus,

(p−1)/2∑
k=1

(−3)k

k
+ 3

(p−1)/2∑
k=1

1

k(−3)k
≡ 3qp(3)− 8qp(2) (mod p). (2.23)

Finally, letting n = (p−1)/2 in (2.21)–(2.22) and using (2.5), (2.14), (2.23) and the facts
that Hp−1 ≡ 0 (mod p2) and

(−3)(p−1)/2 ≡
(p
3

)
(mod p),

(
(p− 1)/2

k

)
≡
(
2k
k

)
(−4)k

(mod p),

(
2k

k

)
≡ 0 (mod p) for (p+ 1)/2 ≤ k ≤ p− 1,

we arrive at the desired congruences (2.15) and (2.16). �

For an assertion A, we set

[A] =

1 if A holds,

0 otherwise.

The following two known congruences play important roles in the proof of Theorem 1.1
(see [7, Theorem 1.2]).
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Lemma 2.3. Let p ≥ 5 be a prime. For 1 ≤ k ≤ p, we have

p−1∑
i=0

(
2i

i+ k

)
≡
(
p− k

3

)
(mod p), (2.24)

p−1∑
i=1

(
2i
i+k

)
i

≡ α(k)− 1

k
(mod p), (2.25)

where α(k) = 2(−1)k + 3[3 | p− k]).

Based on Lemma 2.3, we establish the following result which seems to be crude but
useful in the proof of Theorem 1.1.

Lemma 2.4. Let p ≥ 5 be a prime. For 1 ≤ k ≤ p, we have

(−1)k
p−2∑
i=1

(
2i
i+k

)
i+ 1

≡ 2k +
3

2

(p
3

)
− 3

2
+

k−1∑
i=1

β(i)− k
k−1∑
i=1

β(i) + 2

i
(mod p), (2.26)

where β(i) = (−1)i(3[3 | p− i]− 1).

Proof. By Pascal’s formula
(
n
m

)
=
(
n−1
m

)
+
(
n−1
m−1

)
, we have(

2i+ 2

i+ 1 + k

)
=

(
2i+ 1

i+ 1 + k

)
+

(
2i+ 1

i+ k

)

=

(
2i

i+ 1 + k

)
+ 2

(
2i

i+ k

)
+

(
2i

i+ k − 1

)
.

It follows that

p−2∑
i=0

(
2i

i+1+k

)
i+ 1

+ 2

p−2∑
i=0

(
2i
i+k

)
i+ 1

+

p−2∑
i=0

(
2i

i+k−1

)
i+ 1

=

p−1∑
i=1

(
2i
i+k

)
i

. (2.27)

Let

f(k) = (−1)k
p−2∑
i=0

(
2i
i+k

)
i+ 1

,

g(k) = (−1)k+1

p−1∑
i=1

(
2i
i+k

)
i

,

F (k) = f(k + 1)− f(k).

We rewrite (2.27) as

F (k)− F (k − 1) = g(k). (2.28)
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From (2.28), we deduce that

F (k) = f(k + 1)− f(k) =
k∑

j=1

g(j) + F (0),

and so

f(k) =
k−1∑
l=1

l∑
j=1

g(j) + kF (0) + f(0)

=
k−1∑
j=1

(k − j)g(j) + kf(1) + (1− k)f(0). (2.29)

By
(

2i
i+1

)
=
(
2i
i

)
−
(
2i
i

)
/(i+ 1), we have

kf(1) + (1− k)f(0)

= −k

p−2∑
i=0

(
2i
i+1

)
i+ 1

+ (1− k)

p−2∑
i=0

(
2i
i

)
i+ 1

= (1− 2k)

p−2∑
i=0

Ci + k

p−2∑
i=0

(
2i
i

)
(i+ 1)2

≡ 3

2

(p
3

)
+

1

2
(mod p), (2.30)

where we have used (2.7) and (2.10) in the last step.
Combining (2.25), (2.29) and (2.30) gives

(−1)k
p−2∑
i=1

(
2i
i+k

)
i+ 1

≡ −k
k−1∑
i=1

(−1)i(3[3 | p− i]− 1) + 2

i
+

k−1∑
i=1

(−1)i(3[3 | p− i]− 1) + 2k +
3

2

(p
3

)
− 3

2

= 2k +
3

2

(p
3

)
− 3

2
+

k−1∑
i=1

β(i)− k
k−1∑
i=1

β(i) + 2

i
(mod p),

as desired. �
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3. Three key triple sums

The main idea in the proof of Theorem 1.1 is to translate the left-hand sides of (1.2) and
(1.4) into three triple sums, which can be determined modulo p by using Lemmas 2.3
and 2.4. The three congruences for triple sums are stated as follows.

Lemma 3.1. For any prime p ≥ 5, we have

p−2∑
k=1

p−2∑
j=1

p−1∑
i=1

(−1)k

i(j + 1)

(
2j

j + k

)(
2i

i+ k

)
≡
(p
3

)
(1− qp(3))− 1 (mod p). (3.1)

Proof. Substituting (2.25) and (2.26) into the left-hand side of (3.1) gives

p−2∑
k=1

(−1)k
p−2∑
j=1

1

j + 1

(
2j

j + k

) p−1∑
i=1

1

i

(
2i

i+ k

)

≡
p−2∑
k=1

(1− α(k))
k−1∑
i=1

β(i) + 2

i
+

p−2∑
k=1

α(k)− 1

k

k−1∑
i=1

β(i)

+ 2

p−2∑
k=1

(α(k)− 1) +

(
3

2

(p
3

)
− 3

2

) p−2∑
k=1

α(k)− 1

k
(mod p). (3.2)

We shall only prove the case p ≡ 1 (mod 3) of (3.1). The proof of the case p ≡ 2
(mod 3) runs analogously, and we omit the details.
Suppose that p ≡ 1 (mod 3). Let n = bp/6c. Then n ≡ −1/6 (mod p). Since the

sequences {α(k)}k∈N and {β(k)}k∈N both have a period of 6, it is easy to check that

Ω(k) =
k∑

i=1

(α(i)− 1) =



0 for k ≡ 0, 1 (mod 6),

1 for k ≡ 2 (mod 6),

−2 for k ≡ 3 (mod 6),

2 for k ≡ 4 (mod 6),

−1 for k ≡ 5 (mod 6),

and

(α(k)− 1)
k−1∑
i=1

β(i) =



1 for k ≡ 0 (mod 6),

0 for k ≡ 1, 5 (mod 6),

−2 for k ≡ 2 (mod 6),

9 for k ≡ 3 (mod 6),

−8 for k ≡ 4 (mod 6).
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It follows that

Ω(p− 2) = −1, (3.3)

and

p−2∑
k=1

α(k)− 1

k

k−1∑
i=1

β(i) =
n−1∑
k=1

1

6k
− 2

n∑
k=1

1

6k − 4
+ 9

n∑
k=1

1

6k − 3
− 8

n∑
k=1

1

6k − 2
. (3.4)

Furthermore, we have

p−2∑
k=1

(1− α(k))
k−1∑
i=1

β(i) + 2

i

= −
p−3∑
i=1

β(i) + 2

i

p−2∑
k=i+1

(α(k)− 1)

= −
p−3∑
i=1

(β(i) + 2) (Ω(p− 2)− Ω(i))

i

=

p−3∑
i=1

(β(i) + 2) (1 + Ω(i))

i
,

where we have used (3.3) in the last step. It is also easy to check that

(β(i) + 2) (1 + Ω(i)) =



1 for i ≡ 0 (mod 6),

0 for i ≡ 1, 5 (mod 6),

2 for i ≡ 2 (mod 6),

−3 for i ≡ 3 (mod 6),

12 for i ≡ 4 (mod 6),

and so

p−2∑
k=1

(1− α(k))
k−1∑
i=1

β(i) + 2

i

=
n−1∑
k=1

1

6k
+ 12

n∑
k=1

1

6k − 2
− 3

n∑
k=1

1

6k − 3
+ 2

n∑
k=1

1

6k − 4
. (3.5)
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Substituting (3.3)–(3.5) into the right-hand side of (3.2) gives

p−2∑
k=1

p−2∑
j=1

p−1∑
i=1

(−1)k

i(j + 1)

(
2j

j + k

)(
2i

i+ k

)

≡ 2
n−1∑
k=1

1

6k
+ 4

n∑
k=1

1

6k − 2
+ 6

n∑
k=1

1

6k − 3
− 2

≡ 1

3

n∑
k=1

1

k
+

2

3

n∑
k=1

1

k + 2n
+

n∑
k=1

1

k + 3n

=
1

3
Hn − 2

3
H2n − 1

3
H3n +H4n (mod p). (3.6)

Finally, noting that for p ≡ 1 (mod 3), 2n = bp/3c, 3n = bp/2c, 4n = b2p/3c and
applying (2.3)–(2.5) to the right-hand side of (3.6), we arrive at the desired result:

p−2∑
k=1

p−2∑
j=1

p−1∑
i=1

(−1)k

i(j + 1)

(
2j

j + k

)(
2i

i+ k

)
≡ −qp(3) (mod p),

which is the case p ≡ 1 (mod 3) of (3.1). �

Lemma 3.2. For any prime p ≥ 5, we have

p−1∑
k=1

p−1∑
i=1

p−1∑
j=0

(−1)k

i

(
2i

i+ k

)(
2j

j + k

)
≡ −

(p
3

)
qp(3) (mod p). (3.7)

Proof. By (2.24) and (2.25), we have

p−1∑
k=1

(−1)k
p−1∑
i=1

1

i

(
2i

i+ k

) p−1∑
j=0

(
2j

j + k

)
≡

p−1∑
k=1

(−1)k(α(k)− 1)

k

(
p− k

3

)
(mod p). (3.8)

We shall only prove the case p ≡ 1 (mod 3), and the proof of the case p ≡ 2 (mod 3)
runs similarly and the details are omitted.
Suppose that p ≡ 1 (mod 3). Let n = bp/6c. Then n ≡ −1/6 (mod p). It is easy to

check that

(−1)k(α(k)− 1)

(
p− k

3

)
=



1 for k ≡ 0 (mod 6),

0 for k ≡ 1, 4 (mod 6),

−1 for k ≡ 2 (mod 6),

3 for k ≡ 3 (mod 6),

−3 for k ≡ 5 (mod 6).
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It follows that

p−1∑
k=1

p−1∑
i=1

p−1∑
j=0

(−1)k

i

(
2i

i+ k

)(
2j

j + k

)

≡
n∑

k=1

1

6k
−

n∑
k=1

1

6k − 4
+ 3

n∑
k=1

1

6k − 3
− 3

n∑
k=1

1

6k − 1

≡ 1

6

(
n∑

k=1

1

k
−

n∑
k=1

1

k + 4n
+ 3

n∑
k=1

1

k + 3n
− 3

n∑
k=1

1

k + n

)

=
1

6
(4Hn − 3H2n − 3H3n + 4H4n −H5n) (mod p). (3.9)

Finally, noting that for p ≡ 1 (mod 3), 2n = bp/3c, 3n = bp/2c, 4n = b2p/3c, 5n =
b5p/6c and applying (2.3)–(2.5) to the right-hand side of (3.9), we obtain

p−1∑
k=1

p−1∑
i=1

p−1∑
j=0

(−1)k

i

(
2i

i+ k

)(
2j

j + k

)
≡ −qp(3) (mod p),

which is the case p ≡ 1 (mod 3) of (3.7). �

Lemma 3.3. For any prime p ≥ 5, we have

p−1∑
k=1

p−2∑
i=1

p−1∑
j=0

(−1)k

i+ 1

(
2i

i+ k

)(
2j

j + k

)
≡ −1

3

(
2 +

(p
3

)
qp(3)

)
(mod p). (3.10)

Proof. By (2.24) and (2.26), we have

p−1∑
k=1

(−1)k
p−2∑
i=1

1

i+ 1

(
2i

i+ k

) p−1∑
j=0

(
2j

j + k

)

≡
p−1∑
k=1

(
−k

k−1∑
i=1

β(i) + 2

i
+

k−1∑
i=1

β(i) + 2k +
3

2

(p
3

)
− 3

2

)(
p− k

3

)

= −
p−1∑
k=1

k

(
p− k

3

) k−1∑
i=1

β(i) + 2

i
+

p−1∑
k=1

(
p− k

3

) k−1∑
i=1

β(i)

+ 2

p−1∑
k=1

k

(
p− k

3

)
+

(
3

2

(p
3

)
− 3

2

) p−1∑
k=1

(
p− k

3

)
(mod p). (3.11)
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Similarly, we only prove the case p ≡ 1 (mod 3). Suppose that p ≡ 1 (mod 3). It is
easy to check that

k

(
p− k

3

)
=


k for k ≡ 0 (mod 3),

0 for k ≡ 1 (mod 3),

−k for k ≡ 2 (mod 3),

and

(
p− k

3

) k−1∑
i=1

β(i) =


1 for k ≡ 0 (mod 6),

0 for k ≡ 1, 4, 5 (mod 6),

2 for k ≡ 2 (mod 6),

−3 for k ≡ 3 (mod 6).

It follows that

Ψ(m) =
m∑

k=1

k

(
p− k

3

)

=

bm/3c∑
k=1

3k −
b(m+1)/3c∑

k=1

(3k − 1)

=

⌊
m+ 1

3

⌋
− (m+ 1)[3 | m− 2],

(3.12)

and

p−1∑
k=1

(
p− k

3

) k−1∑
i=1

β(i) = 0. (3.13)

From (3.12), we deduce that

Ψ(p− 1) ≡ −1

3
(mod p). (3.14)

Furthermore, we have

p−1∑
k=1

k

(
p− k

3

) k−1∑
i=1

β(i) + 2

i

=

p−2∑
i=1

β(i) + 2

i

p−1∑
k=i+1

k

(
p− k

3

)
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=

p−2∑
i=1

β(i) + 2

i
(Ψ(p− 1)−Ψ(i))

≡ −
p−2∑
i=1

β(i) + 2

i

(
1

3
+ Ψ(i)

)
(mod p), (3.15)

where we have used (3.14) in the last step. It is easy to check that

(β(i) + 2)

(
1

3
+ Ψ(i)

)
=



i+1
3 for i ≡ 0 (mod 6),

0 for i ≡ 1 (mod 6),

− 2i+1
3 for i ≡ 2 (mod 6),

i+ 1 for i ≡ 3 (mod 6),

4i
3 for i ≡ 4 (mod 6),

−(2i+ 1) for i ≡ 5 (mod 6).

(3.16)

Combining (3.15) and (3.16) yields

p−1∑
k=1

k

(
p− k

3

) k−1∑
i=1

β(i) + 2

i

≡ −1

3

n−1∑
i=1

6i+ 1

6i
+

1

3

n∑
i=1

12i− 7

6i− 4
−

n∑
i=1

6i− 2

6i− 3
− 1

3

n∑
i=1

4 +
n∑

i=1

12i− 1

6i− 1

= −1

3

n∑
i=1

1

6i
+

1

3

n∑
i=1

1

6i− 4
−

n∑
i=1

1

6i− 3
+

n∑
i=1

1

6i− 1
+

1

3
+

1

18n

≡ − 1

18

n∑
i=1

1

i
+

1

18

n∑
i=1

1

i+ 4n
− 1

6

n∑
i=1

1

i+ 3n
+

1

6

n∑
i=1

1

i+ n

=
1

6

(
−4

3
Hn +H2n +H3n − 4

3
H4n +

1

3
H5n

)

≡ 1

3
qp(3) (mod p), (3.17)

where we have used the fact that 2n = bp/3c, 3n = bp/2c, 4n = b2p/3c, 5n = b5p/6c for
p ≡ 1 (mod 3) and (2.3)–(2.5) in the last step.
Finally, substituting (3.13), (3.14) and (3.17) into the right-hand side of (3.11) gives

p−1∑
k=1

p−2∑
i=1

p−1∑
j=0

(−1)k

i+ 1

(
2i

i+ k

)(
2j

j + k

)
≡ −1

3
(qp(3) + 2) (mod p),

which is the case p ≡ 1 (mod 3) of (3.10). �
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4. Proof of (1.2)

By (1.5), we have

p−1∑
k=0

M2
k =

p−1∑
k=0

k∑
i=0

k∑
j=0

(−1)i+j

(
k

i

)(
k

j

)
Ci+1Cj+1

=

p−1∑
i=0

p−1∑
j=0

(−1)i+jCi+1Cj+1

p−1∑
k=0

(
k

i

)(
k

j

)
. (4.1)

From the identity [8, (9), page 15]:

(
k

i

)(
k

j

)
=

j∑
l=0

(
l + i

j

)(
j

l

)(
k

l + i

)
,

we deduce that

p−1∑
k=0

(
k

i

)(
k

j

)
=

j∑
l=0

(
l + i

j

)(
j

l

) p−1∑
k=0

(
k

l + i

)

=

j∑
l=0

(
i+ l

j

)(
j

l

)(
p

i+ l + 1

)
, (4.2)

where we have utilized the hockey-stick identity in the last step. Letting l → k− i on the
right-hand side of (4.2), we rewrite (4.2) as

p−1∑
k=0

(
k

i

)(
k

j

)
= p

i+j∑
k=0

1

k + 1

(
k

j

)(
j

k − i

)(
p− 1

k

)
.

Note that
(
k
j

)(
j

k−i

)
≡ 0 (mod p) for 0 ≤ i ≤ p− 1, 0 ≤ j ≤ p− 1 and p ≤ k ≤ 2p− 2,

and

p

k + 1

(
p− 1

k

)
≡ p(−1)k

k + 1
(mod p2)

for 0 ≤ k ≤ p− 1. It follows that

p−1∑
k=0

(
k

i

)(
k

j

)
≡ p

i+j∑
k=0

(−1)k

k + 1

(
k

j

)(
j

k − i

)
(mod p2). (4.3)

Recall the following partial fraction decomposition:

i+j∑
k=0

(−1)i+j+k

x+ k

(
k

j

)(
j

k − i

)
=

(x)i(x)j
(x)i+j+1

, (4.4)
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where (x)0 = 1 and (x)k = x(x+1) · · · (x+ k− 1) for k ≥ 1. Letting x =1 in (4.4) gives

i+j∑
k=0

(−1)k

k + 1

(
k

j

)(
j

k − i

)
=

(−1)i+j

(i+ j + 1)
(
i+j
j

) . (4.5)

It follows from (4.3) and (4.5) that

p−1∑
k=0

(
k

i

)(
k

j

)
≡ p(−1)i+j

(i+ j + 1)
(
i+j
j

) (mod p2). (4.6)

Combining (4.1) and (4.6) gives

p−1∑
k=0

M2
k ≡ p

p−1∑
i=0

p−1∑
j=0

Ci+1Cj+1

(i+ j + 1)
(
i+j
j

) (mod p2). (4.7)

Let

S(i, j) =

(
2i
i

)(
2j
j

)(
i+j
i

) .

From the identity due to Von Szily [18] (see also [3, (3.38)]):

S(i, j) =
∑
k

(−1)k
(

2i

i+ k

)(
2j

j + k

)
, (4.8)

we deduce that S(i, j) is an integer. It is easy to verify that the numbers S(i, j) satisfy
the recurrence:

4S(i, j) = S(i+ 1, j) + S(i, j + 1). (4.9)

Note that

Ci+1Cj+1

(i+ j + 1)
(
i+j
j

) =
(i+ j + 2)S(i+ 1, j + 1)

(i+ 1)(j + 1)(i+ 2)(j + 2)
. (4.10)

It follows from (4.7) and (4.10) that

p−1∑
k=0

M2
k ≡ p

p−1∑
i=0

p−1∑
j=0

(i+ j + 2)S(i+ 1, j + 1)

(i+ 1)(j + 1)(i+ 2)(j + 2)

= p

p∑
i=1

p∑
j=1

(i+ j)S(i, j)

ij(i+ 1)(j + 1)
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= 2p

p∑
i=1

p∑
j=1

S(i, j)

i(i+ 1)(j + 1)

= 2p

p∑
i=1

p∑
j=1

S(i, j)

i(j + 1)
− 2p

p∑
i=1

p∑
j=1

S(i, j)

(i+ 1)(j + 1)
(mod p2), (4.11)

where we have used the symmetry with respect to i and j in the third step.
By (4.9), we have

2p

p∑
i=1

p∑
j=1

S(i, j)

(i+ 1)(j + 1)

=
p

2

p∑
i=1

p∑
j=1

S(i+ 1, j) + S(i, j + 1)

(i+ 1)(j + 1)

= p

p∑
i=1

p∑
j=1

S(i+ 1, j)

(i+ 1)(j + 1)

= p

p+1∑
i=2

p∑
j=1

S(i, j)

i(j + 1)

= p

p∑
i=1

p∑
j=1

S(i, j)

i(j + 1)
+ p

p∑
j=1

S(p+ 1, j)

(p+ 1)(j + 1)
− p

p∑
j=1

S(1, j)

j + 1
. (4.12)

Furthermore, by (2.2), we have

p

p∑
j=1

S(p+ 1, j)

(p+ 1)(j + 1)

=
2p(2p+ 1)

(p+ 1)2

(
2p

p

) p∑
j=1

(
2j
j

)
(j + 1)

(
p+1+j

j

)
≡ 4p(2p+ 1)

(p+ 1)2

p∑
j=1

(
2j
j

)
(j + 1)

(
p+1+j

j

) (mod p2).

For 1 ≤ j ≤ p− 2, we have
(
p+1+j

j

)
≡ j + 1 (mod p). It follows that

p

p∑
j=1

S(p+ 1, j)

(p+ 1)(j + 1)

≡ 4p

p−2∑
j=1

(
2j
j

)
(j + 1)2

+
2(2p+ 1)

(p+ 1)(2p− 1)
+

4p

(p+ 1)2
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≡ 12p
(p
3

)
− 2− 2p (mod p2), (4.13)

where we have used (2.10) in the last step.
On the other hand, we have

p

p∑
j=1

S(1, j)

j + 1
= 2p

p∑
j=1

(
2j
j

)
(j + 1)2

= 2p

p−2∑
j=1

(
2j
j

)
(j + 1)2

+
2

2p− 1

(
2p− 1

p− 1

)
+

2p

(p+ 1)2

(
2p

p

)

≡ 6p
(p
3

)
− 2 (mod p2), (4.14)

where we have used (2.1), (2.2) and (2.10) in the last step.
It follows from (4.12), (4.13) and (4.14) that

2p

p∑
i=1

p∑
j=1

S(i, j)

(i+ 1)(j + 1)
− p

p∑
i=1

p∑
j=1

S(i, j)

i(j + 1)
≡ 2p

(
3
(p
3

)
− 1
)

(mod p2). (4.15)

Combining (4.11) and (4.15) gives

p−1∑
k=0

M2
k ≡ p

p∑
i=1

p∑
j=1

S(i, j)

i(j + 1)
− 2p

(
3
(p
3

)
− 1
)

(mod p2). (4.16)

Note that

p

p∑
i=1

p∑
j=1

S(i, j)

i(j + 1)

= p

p−1∑
i=1

p∑
j=1

S(i, j)

i(j + 1)
+

p∑
j=1

S(p, j)

j + 1

= p

p−1∑
i=1

p−2∑
j=1

S(i, j)

i(j + 1)
+

p∑
j=1

S(p, j)

j + 1
+

p−1∑
i=1

S(i, p− 1)

i
+ p

p−1∑
i=1

S(i, p)

i(p+ 1)
. (4.17)

Furthermore, we have

p

p−1∑
i=1

S(i, p)

i(p+ 1)
≡ 2p

p−1∑
i=1

(
2i
i

)
i

≡ 0 (mod p2), (4.18)

where we have used (2.2), (2.8) and the fact that
(
p+i
i

)
≡ 1 (mod p) for 1 ≤ i ≤ p− 1.
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For 1 ≤ i ≤ p− 1, we have p/
(
i
(
i+p−1

i

))
≡ 1− pHi−1 (mod p2), and so

p−1∑
i=1

S(i, p− 1)

i
=

p

2p− 1

(
2p− 1

p− 1

) p−1∑
i=1

(
2i
i

)
i
(
i+p−1

i

)
≡ −(2p+ 1)

p−1∑
i=1

(
2i

i

)
+ p

p−1∑
i=1

(
2i

i

)
Hi−1

= −(2p+ 1)

p−1∑
i=1

(
2i

i

)
+ p

p−1∑
i=1

(
2i

i

)
Hi − p

p−1∑
i=1

(
2i
i

)
i

≡ 2p+ 1−
(p
3

) (
2p+ 3p−1

)
(mod p2), (4.19)

where we have used (2.1), (2.6), (2.8) and (2.14).
For 1 ≤ j ≤ p− 1, we have

(
p+j
j

)
≡ 1 + pHj (mod p2), and so

p∑
j=1

S(p, j)

j + 1
=

(
2p
p

)
p+ 1

+

(
2p

p

) p−1∑
j=1

(
2j
j

)
(j + 1)

(
p+j
j

)
≡ 2− 2p+ 2

p−1∑
j=1

Cj(1− pHj)

≡ 3p
(p
3

)
− 2p− 1 (mod p2), (4.20)

where we have used (2.2), (2.7) and (2.16).
It follows from (4.17)–(4.20) that

p

p∑
i=1

p∑
j=1

S(i, j)

i(j + 1)
≡ p

p−1∑
i=1

p−2∑
j=1

S(i, j)

i(j + 1)
+ 2

(p
3

) (
3p−1 − p

)
(mod p2). (4.21)

Combining (4.16) and (4.21) gives

p−1∑
k=0

M2
k ≡ p

p−1∑
i=1

p−2∑
j=1

S(i, j)

i(j + 1)
+ 2

(p
3

) (
3p−1 − 4p

)
+ 2p (mod p2). (4.22)

By (4.8), we have

S(i, j) = 2

j∑
k=1

(−1)k
(

2i

i+ k

)(
2j

j + k

)
+

(
2i

i

)(
2j

j

)
. (4.23)
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It follows that

p

p−1∑
i=1

p−2∑
j=1

S(i, j)

i(j + 1)

= 2p

p−1∑
i=1

p−2∑
j=1

j∑
k=1

(−1)k

i(j + 1)

(
2i

i+ k

)(
2j

j + k

)
+ p

p−1∑
i=1

p−2∑
j=1

(
2i
i

)(
2j
j

)
i(j + 1)

≡ 2p

p−2∑
k=1

p−1∑
i=1

p−2∑
j=1

(−1)k

i(j + 1)

(
2i

i+ k

)(
2j

j + k

)
(mod p2), (4.24)

where we have used (2.8) in the last step.
Finally, combining (4.22) and (4.24) yields

p−1∑
k=0

M2
k ≡ 2p

p−2∑
k=1

p−1∑
i=1

p−2∑
j=1

(−1)k

i(j + 1)

(
2i

i+ k

)(
2j

j + k

)

+ 2
(p
3

) (
3p−1 − 4p

)
+ 2p (mod p2). (4.25)

Then the proof of (1.2) follows from (3.1) and (4.25).

5. Proof of (1.4)

By (1.5) and (1.6), we have

p−1∑
k=0

TkMk =

p−1∑
k=0

k∑
i=0

k∑
j=0

(−1)i+j

(
k

i

)(
k

j

)(
2j

j

)
Ci+1

=

p−1∑
i=0

p−1∑
j=0

(−1)i+j

(
2j

j

)
Ci+1

p−1∑
k=0

(
k

i

)(
k

j

)
. (5.1)

Applying (4.6) to the right-hand side of (5.1), we obtain

p−1∑
k=0

TkMk ≡ p

p−1∑
i=0

p−1∑
j=0

(
2j
j

)
Ci+1

(i+ j + 1)
(
i+j
j

) (mod p2).

Noting that (
2j
j

)
Ci+1

(i+ j + 1)
(
i+j
j

) =
S(i+ 1, j)

(i+ 1)(i+ 2)
,

https://doi.org/10.1017/S0013091524000610 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000610


22 J. Liu

we have

p−1∑
k=0

TkMk ≡ p

p−1∑
i=0

p−1∑
j=0

S(i+ 1, j)

(i+ 1)(i+ 2)

= p

p∑
i=1

p−1∑
j=0

S(i, j)

i(i+ 1)

= p

p∑
i=1

p−1∑
j=0

S(i, j)

i
− p

p∑
i=1

p−1∑
j=0

S(i, j)

i+ 1
(mod p2). (5.2)

Note that

p

p∑
i=1

p−1∑
j=0

S(i, j)

i
= p

p−1∑
i=1

p−1∑
j=0

S(i, j)

i
+

p−1∑
j=0

S(p, j), (5.3)

and

p

p∑
i=1

p−1∑
j=0

S(i, j)

i+ 1
= p

p−2∑
i=1

p−1∑
j=0

S(i, j)

i+ 1
+

p−1∑
j=0

S(p− 1, j) + p

p−1∑
j=0

S(p, j)

p+ 1
. (5.4)

For 0 ≤ j ≤ p− 1, we have
(
p+j
j

)
≡ 1 + pHj (mod p2), and so

p−1∑
j=0

S(p, j) =

(
2p

p

) p−1∑
j=0

(
2j
j

)(
p+j
j

)
≡ 2

p−1∑
j=0

(
2j

j

)
(1− pHj)

≡ 2
(p
3

)
3p−1 (mod p2), (5.5)

where we have used (2.2), (2.6) and (2.14).
By (5.5), we have

p

p−1∑
j=0

S(p, j)

p+ 1
≡ p

p−1∑
j=0

S(p, j) ≡ 2p
(p
3

)
(mod p2). (5.6)

By (2.1) and p/
(
p+j−1

j

)
≡ j(1− pHj−1) (mod p2) for 1 ≤ j ≤ p− 1, we have

p−1∑
j=0

S(p− 1, j) =
p

2p− 1

(
2p− 1

p− 1

) p−1∑
j=0

(
2j
j

)(
j+p−1

j

)
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≡ −(2p+ 1)

p−1∑
j=0

j

(
2j

j

)
+ p

p−1∑
j=0

j

(
2j

j

)
Hj−1

= −(2p+ 1)

p−1∑
j=0

j

(
2j

j

)
+ p

p−1∑
j=0

j

(
2j

j

)
Hj − p

p−1∑
j=0

(
2j

j

)

≡ −p

3
+

2

3

(p
3

)
3p−1 (mod p2), (5.7)

where we have used (2.6), (2.9) and (2.15) in the last step.
It follows from (5.2)–(5.7) that

p−1∑
k=0

TkMk ≡ p

p−1∑
i=1

p−1∑
j=0

S(i, j)

i
− p

p−2∑
i=1

p−1∑
j=0

S(i, j)

i+ 1

+
p

3
− 2p

(p
3

)
+

4

3

(p
3

)
3p−1 (mod p2). (5.8)

By (4.23), we have

p

p−1∑
i=1

p−1∑
j=0

S(i, j)

i

= 2p

p−1∑
i=1

p−1∑
j=0

j∑
k=1

(−1)k

i

(
2i

i+ k

)(
2j

j + k

)
+ p

p−1∑
i=1

p−1∑
j=0

(
2i
i

)(
2j
j

)
i

≡ 2p

p−1∑
k=1

p−1∑
i=1

p−1∑
j=0

(−1)k

i

(
2i

i+ k

)(
2j

j + k

)
(mod p2), (5.9)

where we have used (2.8) in the last step.
On the other hand, we have

p

p−2∑
i=1

p−1∑
j=0

S(i, j)

i+ 1

= 2p

p−2∑
i=1

p−1∑
j=0

j∑
k=1

(−1)k

i+ 1

(
2i

i+ k

)(
2j

j + k

)
+ p

p−2∑
i=1

p−1∑
j=0

(
2i
i

)(
2j
j

)
i+ 1

≡ 2p

p−1∑
k=1

p−2∑
i=1

p−1∑
j=0

(−1)k

i+ 1

(
2i

i+ k

)(
2j

j + k

)
+

p

2

(
3−

(p
3

))
(mod p2), (5.10)

where we have used (2.6), (2.7) and Cp−1 ≡ −1 (mod p) in the last step.
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It follows from (5.8)–(5.10) that

p−1∑
k=0

TkMk

≡ 2p

p−1∑
k=1

p−1∑
i=1

p−1∑
j=0

(−1)k

i

(
2i

i+ k

)(
2j

j + k

)

− 2p

p−1∑
k=1

p−2∑
i=1

p−1∑
j=0

(−1)k

i+ 1

(
2i

i+ k

)(
2j

j + k

)

− 7p

6
− 3p

2

(p
3

)
+

4

3

(p
3

)
3p−1 (mod p2). (5.11)

Then the proof of (1.4) follows from (3.7), (3.10) and (5.11).
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