THE RAMSEY PROPERTY FOR FAMILIES OF GRAPHS WHICH EXCLUDE A GIVEN GRAPH

V. RÖDL AND N. SAUER

Abstract

For graphs A, B and a positive integer r, the relation $A \rightarrow(B)_{r}^{1}$ means that whenever Δ is an r-colouring of the vertices of A, then there is an embedding ϕ of B into A such that $\Delta \circ \phi$ is constant. A class of graphs \mathcal{F} has the Ramsey property if, for every $B \in \mathcal{F}$, there is an $A \in \mathcal{F}$ such that $A \rightarrow(B)_{2}^{1}$. For a given finite graph G, let $\operatorname{Forb}(G)$ denote the class of all finite graphs which do not embed G. It is known that, if G is 2-connected, then $\operatorname{Forb}(G)$ has the Ramsey property, and $\operatorname{Forb}(G)$ has the Ramsey property if and only if $\operatorname{Forb}(\bar{G})$ also has the Ramsey property. In this paper we show that if neither G nor its complement \bar{G} is 2-connected, then either (i) G has a cut point adjacent to every other vertex, or (ii) G has a cut point adjacent to every other vertex except one. We show that $\operatorname{Forb}(G)$ has the Ramsey property if G is a path of length 2 or 3, but that $\operatorname{Forb}(G)$ does not have the Ramsey property if (i) holds and G is not the path of length 2 .

1. Introduction. We only consider finite, undirected, simple graphs, \mathbf{K}_{n} denotes the complete graph on n vertices. If A is a graph and X is a subset of the set of vertices $V(A)$, we denote by $A \mid X$ the induced subgraph on X, also we write $A-X$ instead of $A \mid(V(A)-X)$. For any vertex x of A we denote by $\Gamma_{A}(x)$ the subgraph $A \mid\{y:\{x, y\}$ an edge of $A\}$. As usual \bar{A} denotes the complement of the graph A. A graph is connected if any two vertices may be joined by a path. The graph A is k-connected if $A-X$ is connected for any set $X \subseteq V(A)$ with $|X|<k$. If A is not a complete graph, the connectivity of A is the largest integer k such that A is k-connected. If A is connected, a cutpoint of A is a vertex u such that $A-u$ is not connected. For graphs A, B, an embedding of A in B is a map $\phi: V(A) \rightarrow V(B)$ such that $\forall a, a^{\prime} \in V(A),\left\{a, a^{\prime}\right\}$ is an edge of A if and only if $\left\{\phi(a), \phi\left(a^{\prime}\right)\right\}$ is an edge of B; in other words if A is isomorphic to some induced subgraph of B.

For graphs A, B and a positive integer r, the relation $A \rightarrow(B)_{r}^{1}$ means that whenever Δ is an r-colouring of the vertices of A, then there is an embedding ϕ of B into A such that $\Delta \circ \phi$ is constant. A class of graphs \mathcal{F} has the Ramsey property if, for every $B \in \mathcal{F}$, there is an $A \in \mathcal{F}$ such that $A \rightarrow(B)_{2}^{1}$. It is easily seen that if \mathcal{F} is Ramsey, then it has the seemingly stronger property that, for any positive integer r, for every $B \in \mathcal{F}$, there is an $A \in \mathcal{F}$ such that $A \rightarrow(B)_{r}^{1}$. It also follows immediately from the definition that \mathcal{F} is Ramsey if and only if the class $\overline{\mathcal{F}}=\{\bar{A}: A \in \mathcal{F}\}$ of complementary graphs is also Ramsey. For a set of graphs \mathcal{L} we denote by $\operatorname{Forb}(\mathcal{L})$ the family of all graphs A which do not embed any member $L \in \mathcal{L}$. In particular, if $\mathcal{L}=\{G\}$ we write $\operatorname{Forb}(G)$ instead
of Forb (\mathcal{L}). It is known [2] (see Theorem 1.2 below) that, if G is a 2 -connected graph, then the class of graphs $\operatorname{Forb}(G)$ is Ramsey.

A hypergraph \mathcal{H} is a pair (V, E), where $V=V(\mathcal{H})$ is the set of vertices, and $E=$ $E(\mathcal{H}) \subseteq \wp(V)$ is the set of edges of $\mathcal{H} . \mathcal{H}$ is r-uniform if $|e|=r$ for every $e \in E$. A circuit of length n in \mathcal{H} is a finite sequence of distinct vertices x_{1}, \ldots, x_{n} such that there are distinct hyperedges e_{1}, \ldots, e_{n} such that $x_{i}, x_{i+1} \subseteq e_{i}$, where $x_{n+1}=x_{1}$. In particular, if two hyperedges intersect in two or more points, they form a circuit of length 2 . The girth of \mathcal{H} is the length of the smallest circuit in \mathcal{H}. A subset $X \subseteq V(\mathcal{H})$ is independent if it contains no hyperedge of \mathcal{H}. The chromatic number of \mathcal{H} is the least cardinal k such that $V(\mathcal{H})$ is a union of k independent subsets.

We shall make frequent use of the following theorem of Erdös \& Hajnal [1].
Theorem 1.1 ([1]). For any positive integers r, k, l there is an r-uniform hypergraph \mathcal{H} of girth l with no independent set of size $\frac{1}{k}|V(\mathcal{H})|$ (and so has chromatic number $>k$).

To illustrate how Theorem 1.1 is used in the present context, we begin by reproving the fact mentioned above.

Theorem 1.2 [2]. If \mathcal{L} is a finite set of 2-connected graphs, then $\operatorname{Forb}(L)$ is Ramsey.
Proof. Let $B \in \operatorname{Forb} \mathcal{L}$, and let \mathcal{H} be a $|B|$-uniform hypergraph of chromatic number 3 and girth g, where $g>3$ and g exceeds the number of vertices of every $L \in \mathcal{L}$. Consider the graph A on $V(\mathcal{H})$ in which an isomorphic copy of B is placed in each hyperedge of \mathcal{H}; note that two distinct hyperedges meet in only one point, so that A can be constructed in this way. Obviously $A \rightarrow(B)_{2}^{1}$ since \mathcal{H} is 3 -chromatic. We need only check that $A \in$ Forb \mathcal{L}. Suppose for a contradiction that A embeds some $L \in \mathcal{L}$. Since B does not embed L and L is 2-connected, A must contain vertices which form a circuit in \mathcal{H}. But this contradicts the fact that g exceeds the number of vertices of L.

The question arises whether there is an graph G such that $\operatorname{Forb}(G)$ is not Ramsey?
2. Graphs such that G and \bar{G} are not $\mathbf{2}$-connected. To answer the question stated at the end of the last section, we need only consider those graphs G such that neither G nor its complement \bar{G} is 2-connected. In this section we give a description of such graphs.

Denote by \mathscr{M} the class of those graphs G with the property that there is a cut point $u \in V(G)$ which is joined by an edge to every other vertex. Also, denote by \mathcal{K} the class of graphs G such that there is a cut point $u \in V(G)$ which is joined by an edge to every other vertex except one. For example, $P_{2} \in M$ and $P_{3} \in K$, where P_{n} denotes the path of length of n.

We say that the graph G is n-partite if there is a partition of $V(G)$ into n disjoint nonempty sets $A_{i}(1 \leq i \leq n)$ such that $\{x, y\}$ is an edge of G whenever x, y belong to different A_{i} 's.

Lemma 2.1. If \bar{G} is disconnected, then either $G \in \mathcal{M}$ or G has connectivity $k>1$.
Proof. Since \bar{G} is disconnected, G is n-partite for some $n \geq 2$. Therefore G is connected and has connectivity $k \geq 1$. If $k=1$, then there is a cut point u. Therefore, $G-u$ is disconnected and its complement $\overline{G-u}=\bar{G}-u$ is connected. It follows that $\{u\}$ is a component of \bar{G}, and hence $G \in \mathcal{M}$.

THEOREM 2.2. If neither G nor \bar{G} is 2 -connected, then $G \in \mathcal{M} \cup \overline{\mathcal{M}} \cup \mathcal{K} \cup \overline{\mathcal{K}}$.
Proof. By Lemma 2.1 we can assume that G and \bar{G} are both connected and have connectivity 1 . Let u be a cutpoint of G and v a cutpoint of \bar{G}. Then $u \neq v$ since $G-v$ is connected and $G-u$ is not, and by Lemma 2.1 either $\bar{G}-u \in \mathcal{M}$ or $\bar{G}-u$ has connectivity $k \geq 2$.

Suppose that $\bar{G}-u \in \mathcal{M}$. Then there is a vertex w joined in \bar{G} to all other points of $\bar{G}-\{u, w\}$, and $\bar{G}-\{u, w\}$ is disconnected. Since G is connected, it follows that $\{u, w\}$ is an edge of G. If u is joined to every other vertex by an edge of G, then $G \in \mathscr{M}$. Suppose that u is not joined to all other points in G. If $w=v$, then $\bar{G} \in \mathcal{K}$, and so $G \in \overline{\mathcal{K}}$. On the other hand, if $w \neq v$, then $\bar{G}-v$ has the two components $\{u\}$ and $\bar{G}-\{u, v\}$. Therefore, u is joined to every vertex in $G-v$, and since $\{u, v\}$ is not an edge of G, it follows that $G \in \mathcal{K}$.

Suppose then that $\bar{G}-u$ is 2 -connected. Then $\bar{G}-\{u, v\}$ is connected, and so the components of $\bar{G}-v$ are $\{u\}$ and $\bar{G}-\{u, v\}$. Therefore, u is joined to all points of $G-\{u, v\}$ by edges of G. But $\{u, v\}$ is not an edge of G since \bar{G} is connected. Since u is a cut point of G it follows that $G \in \mathcal{K}$.
3. Amalgamation properties. The family of graphs \mathcal{F} has the join-embedding property if

$$
\begin{equation*}
\forall A, B \in \mathcal{F} \exists C \in \mathcal{F} \quad(\exists \text { embeddings } \phi: A \rightarrow C, \psi: B \rightarrow C) . \tag{1}
\end{equation*}
$$

\mathcal{F} has the amalgamation property if

$$
\begin{gather*}
\forall A, B \in \mathcal{F}, a \in V(A), b \in V(B) \exists C \in \mathcal{F}(\exists \text { embeddings } \tag{2}\\
\phi: A \rightarrow C, \psi: B \rightarrow C \text { such that } \phi(a)=\psi(b)) .
\end{gather*}
$$

If the condition in (2) holds, we say that C amalgamates A and B on $a \simeq b$. Finally, we say that \mathcal{F} has the disjoint amalgamation property if ϕ, ψ in (2) can be chosen so that, in addition,

$$
\phi(V(A-a)) \cap \psi(V(B-b))=\emptyset
$$

and, in this case we say that C disjointly amalgamates A and B on $a \simeq b$.
Lemma 3.1. For any graph $G, \operatorname{Forb}(G)$ has the join-embedding property.
Proof. Let $A, B \in \operatorname{Forb}(G)$. We can assume that $V(A)$ and $V(B)$ are disjoint. If G is connected, then the disjoint sum $A \oplus B \in \operatorname{Forb}(G)$. If G is disconnected $\bar{A} \oplus \bar{B} \in$ Forb (G).

For the next theorem we need the following known fact which follows easily by induction on k : If the outdegrees in a directed graph \mathcal{D} are at most k, then the chromatic number of \mathcal{D} is at most 3^{k}.

Theorem 3.2. If \mathcal{F} is Ramsey and has the join-embedding property, then \mathcal{F} has the disjoint amalgamation property.

Proof. We first show that \mathcal{F} has the ordinary amalgamation property. Suppose for a contradiction that this is false. Then there are $A, B \in \mathcal{F}, a \in V(A), b \in V(B)$ which witness this failure. Since \mathcal{F} has the join-embedding property and is Ramsey, there are $C, D \in \mathcal{F}$ such that $C \rightarrow(D)_{2}^{1}$ and D embeds both A and B. Colour a vertex x of C blue if there is an embedding $\phi: B \rightarrow C$ such that $\phi(b)=x$; otherwise, colour x red. Now consider any embedding $\psi: D \rightarrow C$. By our choice of D, there are embeddings $\alpha: A \rightarrow D$, $\beta: B \rightarrow D$. Clearly, $\psi(\beta(b))$ is blue. If $x=\psi(\alpha(a))$ is coloured blue, then there is some embedding $\phi: B \rightarrow C$ such that $x=\phi(b)$. Since $\psi \circ \alpha$ is also an embedding of A into C with $\psi(\alpha(a))=x$, this contradicts our assumption that A, B cannot be amalgamated on $a \simeq b$ in any graph $C \in \mathcal{F}$. It follows therefore, that $x=\psi(\alpha(a))$ is red. This shows that every copy of D in C contains both blue and red vertices, and this contradicts the fact that $C \rightarrow(D)_{2}^{1}$.

We now show that \mathcal{F} has the stronger disjoint amalgamation property. As above, we assume that this is false and that $A, B \in \mathcal{F}, a \in V(A), b \in V(B)$ witness this, so that no $C \in \mathcal{F}$ disjointly amalgamates A and B on $a \simeq b$. Since \mathcal{F} has the amalgamation property and is Ramsey, there are $C, D \in \mathcal{F}$ such that $C \rightarrow(D)_{r}^{1}$, where $r=3^{|B|-1}$, and D amalgamates A and B on $a \simeq b$. Let $\alpha: A \rightarrow D, \beta: B \rightarrow D$ be embeddings such that $\alpha(a)=\beta(b)$. For $x \in V(C)$, if there is an embedding $\psi: D \rightarrow C$ such that $\psi(\alpha(a))=\psi(\beta(b))=x$, then we choose one such embedding, say ψ_{x}, and define $T_{x}=$ $\psi_{x}(\beta(B-b))$; if there is no such ψ, we put $T_{x}=\emptyset$. Now consider the directed graph \mathcal{D} on $V(C)$ in which there is a directed edge from x to y if and only if $y \in T_{x}$. The outdegree of each vertex of \mathcal{D} is at most $|B|-1$, and so the chromatic number is at most $3^{|B|-1}$. Let $\Delta: V(C) \rightarrow 3^{|B|-1}$ be any vertex colouring of \mathcal{D} such that no two vertices having the same colour are joined in \mathcal{D}. Now let $\chi: D \rightarrow C$ be any embedding and let $\boldsymbol{x}=\chi(\beta(b))=\chi(\alpha(a))$. Since C does not disjointly amalgamate A and B on $a \simeq b$, it follows that there is some $y \in \chi(\alpha(A-a)) \cap \psi_{x}(\beta(B-b))$. Now $y \in T_{x}$ and so $\Delta(x) \neq \Delta(y)$. Thus $\chi(D)$ contains two vertices x, y with different colours for the colouring Δ. But this contradicts the fact that $C \rightarrow(D)_{r}^{1}$.
4. Forb $\left(P_{2}\right)$ and $\operatorname{Forb}\left(P_{3}\right)$ are both Ramsey. The fact that $\operatorname{Forb}\left(P_{2}\right)$ is Ramsey follows immediately from the fact that $G \in \operatorname{Forb}\left(P_{2}\right)$ if and only if G is a disjoint union of complete graphs. For, if $B \in \operatorname{Forb}\left(P_{2}\right)$ and B has k components each of size at most l, then $A \rightarrow(B)_{2}^{1}$, where A is the graph consisting of $2 k-1$ disjoint copies of the complete graph $\mathbf{K}_{2 l-1}$. The fact that $\operatorname{Forb}\left(P_{3}\right)$ is Ramsey is not quite so obvious.

For disjoint subsets U, V of $V(G)$ let $[U, V]=\{\{u, v\}: u \in U, v \in V\}$. A seriesparallel partition of G is a partition $V(G)=U \cup V$ into two disjoint, non-empty sets U, V such that either $[U, V] \subseteq E(G)$ or $[U, V] \subseteq E(\bar{G})$. The next theorem gives a useful characterization of P_{3}^{-}-free graphs.

Theorem 4.1. If $G \in \operatorname{Forb}\left(P_{3}\right)$ and $|V(G)|>1$, then there is a series-parallel partition of G.

PROOF. The proof is by induction on $|V(G)|$. Since $P_{3} \cong \overline{P_{3}}$, we may assume that G is connected and that $|V(G)|>2$. Let $a \in V(G)$. By the induction hypothesis, $V(G-a)=$ $U \cup V$, where U, V are non-empty disjoint sets and either $[U, V] \subseteq E(G)$ or $[U, V,] \subseteq$ $E(\bar{G})$. If a is joined to every other vertex of G, then $\{a\} \cup(V(G)-\{a\})$ is a seriesparallel partition of $V(G)$. Thus we may assume that there are are $u \in U, v \in V$ such that $\{a, u\} \notin E(G),\{a, v\} \in E(G)$. Suppose that $[U, V] \subseteq E(\bar{G})$. Then, since G is connected, there is a path $u=x_{0}, \ldots, x_{r}=a, v$ which is an induced subgraph of G, and so G embeds P_{3}. Therefore, $[U, V] \subseteq E(G)$. Let $W=\{z \in V:\{a, z\} \in E(G)\}$. If $W=V$ then $[U \cup\{a\}, V]$ is a series-parallel partition, so we can assume that $W, V-W$ are both non-empty. Suppose there are $x \in W$ and $y \in V-W$ such that $\{x, y\} \in E(\bar{G})$. Then a, x, u, y is an induced P_{3}. Therefore, $[W, V-W] \subseteq E(G)$, and so $[U \cup(V-W \cup\{a\}, W]$ is a series-parallel partition of G.

Theorem 4.2. $\operatorname{Forb}\left(P_{3}\right)$ is Ramsey.

Proof. As before we shall denote by $A \oplus B$ the disjoint sum of the graphs A, B. Also, we shall denote by $A \odot B$ the graph on $A \times B$ in which two vertices $(a, b),\left(a^{\prime}, b^{\prime}\right)$ are joined by an edge if and only if either $(i) b=b^{\prime}$ and $\left\{a, a^{\prime}\right\} \in E(A)$, or $(i i)\left\{b, b^{\prime}\right\} \in E(B)$.

We first show that $\operatorname{Forb}\left(P_{3}\right)$ is closed under the operation \odot. Suppose for a contradiction that A, B are P_{3}-free and that $\left(a_{0}, b_{0}\right),\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right)$ is an induced path in $A \odot B$. If the b_{i} are all equal, then a_{0}, \ldots, a_{3} is an induced P_{3} in A. Similarly, if all the b_{i} are distinct, then b_{0}, \ldots, b_{3} is an induced P_{3} in B. Hence there are $\{i, j, k\} \subseteq\{0,1,2,3\}$ such that $b_{i}=b_{j} \neq b_{k}$ and $|k-i|=1,|k-j|>1$. Therefore, $\left\{b_{i}, b_{k}\right\} \in E(B)$, and since $b_{j}=b_{i}$, it follows that $\left\{a_{j}, b_{j}\right\}$ is joined to $\left\{a_{k}, b_{k}\right\}$ in $A \odot B$; but this is a contradiction since $|k-j|>1$.

Let $B \in \operatorname{Forb}\left(P_{3}\right)$. We want to show that there is some $A \in \operatorname{Forb}\left(P_{3}\right)$ such that $A \rightarrow$ $(B){ }_{2}^{1}$. If there is such an A we denote one such graph by $R(B)$. Note that if $B_{1}, B_{2} \in$ Forb $\left(P_{3}\right)$ and if $R\left(B_{1}\right), R\left(B_{2}\right)$ both exist, then $R\left(B_{1}\right) \odot R\left(B_{2}\right) \rightarrow\left(B_{1} \odot B_{2}\right)_{2}^{1}$. For consider any two-colouring $\Delta: V\left(R\left(B_{1}\right)\right) \times V\left(R\left(B_{2}\right)\right) \rightarrow 2$. For each vertex y of $R\left(B_{2}\right)$ let $V(y)=$ $\left\{(x, y): x \in V\left(R\left(B_{1}\right)\right)\right\}$. Then $R\left(B_{1}\right) \odot R\left(B_{2}\right) \mid V(y)$ is isomorphic to $R\left(B_{1}\right)$ and so there are $\epsilon_{y} \in\{0,1\}$ and an embedding ϕ_{y} of B_{1} into $R\left(B_{1}\right)$ such that $\Delta\left(\phi_{y}(x), y\right)=\epsilon_{y}(\forall x \in$ $\left.V\left(B_{1}\right)\right)$. Also, there are $\epsilon \in\{0,1\}$ and an embedding ψ of B_{2} into $R\left(B_{2}\right)$ such that $\epsilon_{\psi(y)}=$ $\epsilon\left(\forall y \in V\left(B_{2}\right)\right)$. Now consider the embedding χ of $B_{1} \odot B_{2}$ into $R\left(B_{1}\right) \odot R\left(B_{2}\right)$ given by $\chi(x, y)=\left(\phi_{\psi(y)}(x), \psi(y)\right)$. Clearly, $\Delta(\chi(x, y))=\epsilon_{\psi(y)}=\epsilon$.

We now show that $R(B)$ exists for all $B \in \operatorname{Forb}\left(P_{3}\right)$ by induction on $|B|=|V(B)|$. By Theorem 4.1, since $\bar{P}_{3} \cong P_{3}$, we can assume that $B=C \oplus D$ is the disjoint union of two non-empty sugraphs. By the induction hypothesis $R(C)$ and $R(D)$ both exist. Clearly, $F \rightarrow(D \oplus D)_{2}^{1}$, where $F=R(D) \oplus R(D) \oplus R(D)$, and by the above, $A=R(C) \odot F \rightarrow$ $(C \odot(D \oplus D))_{2}^{1}$. But $C \odot(D \oplus D) \cong(C \odot D) \oplus(C \odot D)$, and since $C \odot D$ embeds both C and D, it follows that $A \rightarrow(C \oplus D)_{2}^{1}$, i.e. $A \rightarrow(B)_{2}^{1}$.
5. Graphs G such that $\operatorname{Forb}(G)$ is not Ramsey. In the last section we proved that $\operatorname{Forb}(G)$ is Ramsey for $G=P_{2}$ or $G=P_{3}$. The main result, which will be proved in this and the next section, is that $\operatorname{Forb}(G)$ is not Ramsey if $G \in \mathscr{M}-\left\{P_{2}\right\}$. It is not known if the same is true for $G \in \mathcal{K}-\left\{P_{3}\right\}$, although Zhu and Sauer [4] have proved this for a certain subset of these G 's.

Theorem 5.1. Forb (G) is not Ramsey if $G \in \mathcal{M}-\left\{P_{2}\right\}$.
Proof. Let $G \in \mathcal{M}-\left\{P_{2}\right\},|V(G)|=n$. By Lemma 3.1 and Theorem 3.2, in order to show that $\operatorname{Forb}(G)$ is not Ramsey, it will be enough to construct two graphs $A(G)$, $B(G) \in \operatorname{Forb}(G)$ and two vertices a, b in these graphs such that $A(G)$ and $B(G)$ cannot be disjointly amalgamated on $a \simeq b$.

Since $G \in \mathscr{M}$, there is a cutpoint u of G which is adjacent to every other vertex of G. Let K be a component of $G-u$ of minimum cardinality and let $C=V(G)-(K \cup\{u\})$. For an integer $r \geq 2$, let \mathcal{H}_{r} be a $|C|$-uniform hypergraph having chromatic number $r+1$ and girth ≥ 4, and let $W=V\left(\mathcal{H}_{r}\right)$. For each hyperedge E of \mathcal{H}_{r}, let ψ_{E} be a fixed 1-1 map from E onto C. We now define a graph $A_{r}(G) \in \operatorname{Forb}(G)$ as follows. The vertex set of $A_{r}(G)$ is $W \cup\{x\}$, where $x \notin W$. Two distinct vertices y, y^{\prime} of $A_{r}(G)$ are joined by an edge if and only if either (i) $x \in\left\{y, y^{\prime}\right\}$, or (ii) $\left\{y, y^{\prime}\right\} \nsubseteq E$ for any $E \in E\left(\mathcal{H}_{r}\right)$, or (iii) $y, y^{\prime} \in E \in \mathcal{H}_{r}$ and $\left\{\psi_{E}(y), \psi_{E}\left(y^{\prime}\right)\right\} \in E(G)$. Thus $A_{r}(G)|E \cong G| C$ for any hyperedge E.

We need to show that $A_{r}(G)$ does not embed G. Suppose for a contradiction that α is an embedding of G into $A_{r}(G)$. Assume first that K contains at least two different vertices. If a, b belong to different components of $G-u$, then $\alpha(a)$ and $\alpha(b)$ must belong to the same hyperedge E of \mathcal{H}_{r}. It follows that $\alpha(V(G-u)) \subseteq E$. But this is impossible since $|E|=|C|<|V(G-u)|$. Let us now assume that $V(K)=\{v\}$. Let T be a largest induced subgraph of C such that \bar{T} is a connected component of \bar{C}. Observe that to every vertex $a \in V(T)$ there is an edge E_{a} of H which contains both vertices $\alpha(v)$ and $\alpha(a)$. Because the girth of H is at least four there is only one such edge E_{a} for every vertex $a \in V(T)$. If $a, b \in V(T)$ are two vertices for which $E_{a} \neq E_{b}$, then $\alpha(a)$ and $\alpha(b)$ are adjacent in $A_{r}(G)$ because H does not contain a circle of length three. Then a and b are adjacent vertices of T. But this means that $V\left(T \mid \alpha\left(E_{a}\right)\right)$ is disconnected from $V\left(T \mid \alpha\left(E_{B}\right)\right)$ in \bar{T} in contradiction to \bar{T} being connected. Hence there is some edge E of H such that $V(\alpha(T)) \cup\{\alpha(v)\} \subseteq$ E. There is an embedding ϕ_{E} from $A_{r}(G) \mid E$ to C. Observe that the complement of the graph $A_{r}(G) \mid(V(\alpha(T)) \cup\{\alpha(v)\})$ is connected. Hence the complement of the graph $\phi_{E}\left(A_{r}(G) \mid(V(\alpha(T)) \cup\{\alpha(v)\})\right)$ is connected. This is in contradiction to the choice of T as a largest connected component of \bar{C}.

The remainder of the proof splits into several different cases.
CASE $1:|K|=1$. In this case we put $A(G)=A_{m}(G)$, where $m=3(n-1)$. Also, we let $B(G)$ be the graph on $m+1$ points $\left\{x_{0}, \ldots, x_{m}\right\}$ in which $\left\{x_{i}, x_{j}\right\}$ is an edge if and only if either $|i-j|=1$ or $i=3 r, j=3 s$ and $\{f(r), f(s)\} \in E(G)$, where $f: n-1 \rightarrow V(G-u)$ is a fixed surjection.

We have already shown that $A(G) \in \operatorname{Forb}(G)$. We now verify that $B(G) \in \operatorname{Forb}(G)$ also. Suppose β is an embedding of G in $B(G)$. Then $\beta(u)=x_{3 p}$ for some p since u has degree greater than two. But the size of the largest component of $B(G) \mid\left\{y:\left\{x_{3 p}, y\right\} \in\right.$ $E(B(G))\}$ is $\max \{1, t-1\}$, where t is the size of the largest component in $G-u$. Thus there cannot be an embedding unless $t=1$. But in this case $G-u$ has no edges, $B(G)$ is a path and $x_{3 p}$ has degree at most two.

We now show that if D is any graph in which $A(G)$ and $B(G)$ can be disjointly amalgamated on $x \simeq x_{0}$, where x is the special vertex of $A(G)$ joined to every other vertex, then $D \notin \operatorname{Forb}(G)$. Without loss of generality we may assume that $V(A(G)), V(B(G)) \subseteq$ $V(D), x=x_{0}$ and $V(A(G)) \cap V(B(G))=\{x\}$ and that the identity maps on $A(G)$ and $B(G)$ are embeddings in D. If $v \in V(D)-V(B(G))$ is such that $\left\{v, x_{i}\right\} \in E(D)$ for all $i \leq m$, then $D \mid\{v\} \cup\left\{x_{3 i}: i<n\right\}$ is an isomorphic copy of G. Therefore, for each $v \in V(D)-V(B(G))$, there is a least index $i(v) \leq m$ such that $\left\{v, x_{i(v)}\right\} \notin E(D)$. Note that $i(a) \neq 0$ if $a \in V(A(G)-x)$ since $x=x_{0}$ is joined to every other vertex of $A(G)$. Consider the vertex colouring of $A(G)-x$ in which a is coloured $i(a)$. Since $V(A(G)-x)=W=V\left(\mathcal{H}_{m}\right)$ and \mathcal{H}_{m} has chromatic number $m+1$, there are $1 \leq i \leq m$ and some hyperedge E of \mathcal{H}_{m} such that $\left\{a, x_{i}\right\} \notin E(D)$ and $\left\{a, x_{i-1}\right\} \in E(D)$ for all $a \in E$. But $D \mid E$ is isomorphic to $G \mid C$. Therefore, $D \mid E \cup\left\{x_{i-1}, x_{i}\right\}$ is isomorphic to G. -

Before considering the other cases in detail we give a construction which will be useful for these cases.

For graphs D, Z we say that Z is t-dense in D if, for any subset $Y \subseteq V(D)$ of cardinality $|Y| \geq \frac{1}{t}|V(D)|$, there is an embedding of Z into $D \mid Y$; this is stronger than the assertion that $D \rightarrow(Z)_{t}^{1}$.

For an integer $t \geq 1$ let \mathcal{M}_{t} be an ($n-1$)-uniform hypergraph with girth ≥ 4 and having no independent set of size $\frac{1}{t}|V(\mathcal{M})|$. For each hyperedge E of \mathcal{M}, let ϕ_{E} be a surjective map from E onto $V(G-u)$. Let D_{t} be a graph such that $V\left(D_{t}\right)=V\left(\mathcal{M}_{t}\right)$ and $\{a, b\}$ is an edge if and only if $\{a, b\} \subseteq E$ for some hyperedge E and $\left\{\phi_{E}(a), \phi_{E}(b)\right\} \in E(G)$. Since \mathcal{M}_{t} contains no 'large' independent set, it follows that $G-u$ is t-dense in D_{t}. We also have the following fact.

Lemma 5.2. $\quad D=D_{t}$ does not embed $G-K$.
Proof. Suppose α is an embedding of $G-K$ in D. Let $\mathcal{E}=\{E: \alpha(u) \in E \in$ $E(\mathcal{M})\}$. Since \mathscr{M} has girth ≥ 4, it follows that $E \cap E^{\prime}=\{\alpha(u)\}$ for $E \neq E^{\prime}$ in \mathcal{E}, and whenever $\{a, b\} \in E(G-K)$ there is some $E \in \mathcal{E}$ such that $\{\alpha(a), \alpha(b)\} \subseteq E$. Thus α maps each connected component of $G-K$ into a unique $E \in \mathcal{E}$. If $B \neq K$ is a component of $G-u$ of largest size, then there is some $E \in \mathcal{E}$ such that $\alpha(B) \subseteq E$. Thus $\alpha(B) \cup\{\alpha(u)\}$ is a subset of some connected component, say A, in $D \mid E$. But this is impossible since $|A|>|B|$ and there is an embedding ϕ_{E} of $D \mid E$ into $G-u$.

CASE 2: $G-u$ HAS JUST TWO COMPONENTS EACH ISOMORPHIC TO \mathbf{K}_{k}. Let $t=k+1$, $D=D_{t}, d=|D|, m=d(k+1)$, and let $V(D)=\left\{a_{i}: i \in d\right\}$. In this case we define the graph $B(G)$ on the set $\left\{x_{i}: i \in m\right\}$ in which $\left\{x_{i}, x_{j}\right\}$ is an edge if and only if either
$1 \leq|i-j| \leq k$ or if $i \equiv j \bmod k+1$ and $\left\{a_{p}, a_{q}\right\} \in E\left(D_{t}\right)$, where $p=[i / k+1]$ and $q=[j / k+1]$ (and $[x]$ is the integer part of x). Thus, $B(G)$ embeds $k+1$ disjoint copies of D_{t}.

Note that, since the hyperedges of M_{t} interesect in at most one point, for any vertex a of D_{t}, the graph $\Gamma_{D_{t}}(a)$ consists of a number of disjoint copies of \mathbf{K}_{k-1}. Therefore, for any vertex x_{i} of $B(G)$, the graph $\Gamma_{B(G)}\left(x_{i}\right)$ does not contain two vertex-disjoint \mathbf{K}_{k} 's, and so $B(G)$ does not embed G.

For this case we let $A=A(G)$ be the complete graph $\mathbf{K}_{2^{m} . k}$, and x any vertex of $A(G)$. We claim that A and $B=B(G)$ cannot be disjointly amalgamated at $x \simeq x_{0}$ in any graph $J \in \operatorname{Forb}(G)$. Assume to the contrary that there is such a graph J. We may assume that A, B are induced subgraphs of J with the single common vertex $x=x_{0}$. Consider the colouring Δ of $A-x$ which associates to ever vertex a of $A-x$ the set of all $x_{i} \in V(B)$ adjacent to a in J. Let $S \subseteq V(B)$ be any subset with the property that there is some $x_{i} \in S$ such that $i+k<m$ and $S \cap\left\{x_{j}: i<j \leq i+k\right\}=\emptyset$. Then $\left|\Delta^{-1}(S)\right|<k$. For, if $T \subseteq \Delta^{-1}(S)$ and $|T|=k$, then $J \mid\left(T \cup\left\{x_{j}: i \leq j \leq i+k\right\}\right)$ is isomorphic to G. It follows that there is some vertex $y \in V(A)$ such that $\Delta(y)$ is not such a set S. Since $x_{0} \in \Delta(y)$, it follows that, for every set of indices $I \subseteq m$ consisting of k consecutive integers, there is some $i \in I$ such that x_{i} is joined to y in J. Thus $|\Delta(y)| \geq \frac{m}{k}$ and so $\Delta(y)$ contains at least $\frac{m}{k(k+1)}=\frac{d}{k}>\frac{d}{k+1}$ vertices from one of the $k+1$ disjoint copies of D_{t} in B. Since $G-u$ is t-dense in D_{t}, it follows that $\Delta(y)$ embeds $G-u$. This contradicts our assumption that $J \in \operatorname{Forb}(G)$.
6. The remaining cases. In order to complete the proof in the remaining cases we will define three graphs B_{0}, B_{1}, B_{2} (which depend upon G). These three graphs will have a common vertex set V and a special vertex $x_{0} \in V$, and will be increasing in the sense that $E\left(G_{0}\right) \subseteq E\left(G_{1}\right) \subseteq E\left(G_{2}\right)$. We do not claim that these three graphs all belong to $\operatorname{Forb}(G)$, but, in each case, at least one of them is a member of $\operatorname{Forb}(G)$. We will also define a graph $A=A(G) \in \operatorname{Forb}(G)$ and $x \in V(A)$, and show that, for each $i \in 3, A$ and B_{i} cannot be disjointly amalgamated on $x \simeq x_{0}$ in any graph $J \in \operatorname{Forb}(G)$. The theorem, of course, follows from this.

For the remainder of the proof we let $t=k^{2}, D=D_{t}, d=|V(D)|$, where D_{t} is the graph defined in the preceding section after Lemma 5.2. We put $A=A_{r}(G)$, where $r=(k+2)^{d}$, and, as before, \mathbf{x} is the special vertex of A joined to every other vertex.

We now proceed to describe the three graphs B_{0}, B_{1}, B_{2}. The common vertex set is $V=\left\{x_{0}\right\} \cup Y \cup Z$, where $Y=\left\{y_{i j}: i \in d, j \in k\right\}$ and $Z=\left\{z_{i j l}: i \in d, j \in k, l \in k\right\}$. Let $Y_{i}=\left\{y_{i j}: j \in k\right\}, Z_{i j}=\left\{z_{i j l}: l \in k\right\}$ and $P_{j l}=\left\{z_{i j l}: i \in d\right\}$. For each $i \in d, j \in k$, $l \in k$ let $\phi_{i}: Y_{i} \rightarrow K, \sigma_{i j}: Z_{i j} \rightarrow K, \psi_{j l}: P_{j l} \rightarrow V(D)$ be surjective maps; assume also that $\phi_{i}\left(y_{i 0}\right)$ and $\sigma_{i j}\left(z_{i j 0}\right)$ are vertices of K having minimal degree, and that $\phi_{i}\left(y_{i 1}\right)$ is a vertex of K having maximal degree.

The edges of B_{0} are as follows. Two distinct vertices $a, b \in V$ are joined by an edge of B_{0} if and only if one of the following conditions is satisfied:

- $\{a, b\} \subseteq Y_{i}$ for some $i \in d$ and $\left\{\phi_{i}(a), \phi_{i}(b)\right\} \in E(G)$.
- $\{a, b\} \subseteq Z_{i j}$ for some $i \in d, j \in k$ and $\left\{\sigma_{i j}(a), \sigma_{i j}(b)\right\} \in E(G)$.
- $\{a, b\} \subseteq P_{j l}$ for some $j, l \in k$ and $\left\{\psi_{j l}(a), \psi_{j l}(b)\right\} \in E(D)$.
- $\{a, b\}=\left\{x_{0}, y\right\}$ for some $y \in Y$.
- $\{a, b\}=\left\{y_{i j}, z_{i j l}\right\}$ for some $i \in d, j \in k, l \in k$.
$\{a, b\}$ is an edge of B_{1} if and only if it is an edge of B_{0}, or
- $\{a, b\}=\left\{y_{e 0}, y_{f 0}\right\}$ for some $e, f \in d(e \neq f)$.

Finally, $\{a, b\}$ is an edge of B_{2} if and only if it is an edge of B_{1}, or

- $\{a, b\}=\left\{y_{i, j+1}, z_{i j 0}\right\}$ for some $i \in d, j \in k$ (and $j+1$ is taken modulo k).

We now show that, if A is as described at the beginning of this section, and if $B=B_{i}$ for some $i \in 3$, then A and B cannot be disjointly amalgamated on $a \simeq b$ in any graph $J \in \operatorname{Forb}(G)$.

Assume for a contradiction that A, B are induced subgraphs of $J \in \operatorname{Forb}(G)$ and that $x=x_{0}$. For each vertex $a \in W=V\left(\mathcal{H}_{r}\right)$, we shall define a function $f_{a}: d \rightarrow\{x\} \cup Y \cup\{q\}$, where $q \notin V=V(J)$, as follows. Let $i \in d$. If a is not joined to any vertex of Y_{i} in J, put $f_{a}(i)=x$. Suppose now that a is joined to some vertex $y \in Y_{i}$. If there is some $j \in k$ such that $\left\{a, y_{i j}\right\} \in E(J)$ and a is not joined (in J) to some $z \in Z_{i j}$, then put $f_{a}(i)=y_{i j}$, where j is the least index with this property. If, on the other hand, a is joined to some $z \in Z_{i j}$ whenever a is joined to $y_{i j}$, then put $f_{a}(i)=q$. This defines the function f_{a} for each $a \in W$. Suppose for some hyperedge $E \in E\left(\mathcal{H}_{r}\right)$, we have $f_{a}(i)=x$ for some $i \in d$ and all $a \in E$. Then $J \mid E \cup\{x\} \cup Y_{i}$ is isomorphic to G, a contradiction. Similarly, if there are a hyperedge $E \in E\left(\mathcal{H}_{r}\right)$ and $i \in d, j \in k$ such that $f_{a}(i)=y_{i j}$, then $J \mid E \cup\left\{y_{i j}\right\} \cup Z_{i j}$ is an isomorphic copy of G, again a contradiction. Because of this, and because \mathcal{H}_{r} has chromatic number greater than $r=(k+2)^{d}$, it follows that, for some $a \in W, f_{a}$ is the function which assumes the constant value q. Therefore, for some $j \in k$ and $l \in k, a$ is adjacent to at least $\frac{1}{k^{2}}$ of the vertices in $P_{j l}$. Since $J \mid P_{j l} \cong D$ and $G-u$ is k^{2}-dense in D, it follows that J contains an isomorphic copy of G.

All that remains is to prove our earlier claim that, if G is not one of the graphs covered in Cases $1 \& 2$, then one of the graphs $B_{i}(i \in 3)$ belongs to $\operatorname{Forb}(G)$.

CASE 3: The CONNECTED COMPONENTS OF $G-u$ ARE NOT ALL ISOMORPHIC. In this case we show $B=B_{0} \in \operatorname{Forb}(G)$. Suppose not and that α defines an embedding of G into B. Let J be a connected component of C which is not isomorphic to K. Since the connected components of $\Gamma_{B}\left(x_{0}\right)$ are all isomorphic to K, it follows that $\alpha(u) \neq x_{0}$. The connected components of $\Gamma_{B}\left(y_{i j}\right)$ are $Q=\left\{x_{0}\right\} \cup\left(Y_{i} \cap \Gamma_{B}\left(y_{i j}\right)\right)$, and $Z_{i j}$. Thus, if $\alpha(u)=y_{i j}$, then $G-u$ has just the two connected components J and K. Moreover, K is isomorphic to $B \mid Z_{i j}$, and so J is isomorphic to $B \mid Q$. It follows that Q has exactly k elements, so that $y_{i j}$ must be adjacent to every other vertex of Y_{i} in B. Therefore, since x_{0} is also adjacent to every other vertex in Q, it follows that $J \cong B|Q \cong B| Y_{i} \cong K$, and this is a contradiction. The only remaining possibility is that $\alpha(u)=z_{i j l}$ for some $i \in d$, $j \in k, l \in k$. However, $\Gamma_{B}\left(z_{i j l}\right) \subseteq P_{j l} \cup Z_{i j} \cup\left\{y_{i j}\right\}$. Since $P_{j l} \cong D$ it does not embed $G-K$ by Lemma 5.2, and it follows that there is some component $L \neq K$ of G such that $\alpha(L) \nsubseteq P_{j l}$. Consequently, $\alpha(L) \subseteq Z_{i j} \cup\left\{y_{i j}\right\}$. But, since $|L| \geq|K|=k$ this implies that
$z_{i j l}$ is joined to every other vertex of $Z_{i j}$ so that $L \cong J\left|\left(Z_{i j}-\left\{z_{i j k}\right\}\right) \cup\left\{y_{i j}\right\} \cong J\right| Z_{i j} \cong K$, and this is a contradiction.

CASE 4: THE CONNECTED COMPONENTS OF $G-u$ ARE PAIRWISE ISOMORPHIC TO K, $K>1$, AND EITHER $G-u$ HAS AT LEAST THREE COMPONENTS OR K HAS NO VERTEX OF DEGREE $k-1$. We will prove in this case that $B=B_{1} \in \operatorname{Forb}(G)$. Suppose for a contradiction that α is an embedding of G into B. Suppose $\alpha(u)=x_{0}$. Since $\Gamma_{B}\left(x_{0}\right)=Y$, it follows that $\alpha(K) \cap S \neq \emptyset$, where $S=\left\{y_{i 0}: i \in d\right\}$. Since $B \mid S$ is a complete graph, it follows that $\alpha(L) \cap S=\emptyset$ for every other component L of $G-u$. But this is a contradiction since the connected components of $B \mid Y-S$ have cardinality at most $k-1$.

Suppose that $\alpha(u)=y_{i 0}$ for some $i \in d$. The connected components of $\Gamma_{B}\left(y_{i 0}\right)$ are $Z_{i 0}$ and $T=\left(S-\left\{y_{i 0}\right\}\right) \cup\left\{x_{0}\right\} \cup U$, where U is the set of vertices in Y_{i} adjacent to $y_{i 0}$. If $x_{0} \notin \alpha(G)$, then the only possible connected components of $\alpha(G-u)$ are P, Q, R, where $P \subseteq S-\left\{y_{i 0}\right\}, Q \subseteq U$ and $R \subseteq Z_{i 0}$. We must have $Q=\emptyset$ since $|U|<k$, and so $G-u$ has two components each isomorphic to \mathbf{K}_{k}, and this was dealt with in Case 2. Similarly, if $x_{0} \in \alpha(G)$, then $G-u$ must have two connected components each isomorphic to K and, moreover, K must contain a vertex joined to every other vertex.

Suppose that $\alpha(u)=y_{i j}$ for some $i \in d$ and $j \in k-\{0\}$. The connected components of $\left.\Gamma_{B}\left(y_{i j}\right\}\right)$ are $\left(Y_{i}-\left\{y_{i j}\right) \cup\left\{x_{0}\right\}\right.$ and $Z_{i j}$. Again we see that x_{0} is in the image of G and so K contains a vertex adjacent to every other vertex.

Finally, if $\alpha(u)=z_{i j l}$ for some $i \in d, j \in k, l \in l$, we use exactly the same argument as for the preceding case.

CASE 5: $G-u$ has two CONNECTED COMPONENTS EACH ISOMORPHIC TO K, K IS NOT A COMPLETE GRAPH AND has a VERTEX of degree $k-1$. In this case we show that $B=B_{2} \in \operatorname{Forb}(G)$. Assume that the two components of $G-u$ are K and K^{\prime}, and that $\alpha: G \rightarrow B$ is an embedding. The same argument used in Case 4 shows that $\alpha(u) \neq x_{0}$. Suppose $\alpha(u)=y_{i 0}$. Since $y_{i 0}$ has degree $<k-1$ in $B \mid Y_{i}$, we can assume it is not adjacent to $y_{i, k-1}$ and so $\alpha(K)$ and $\alpha\left(K^{\prime}\right)$ are subsets either of $Z_{i 0} \cup\left\{z_{i, k-1,0}\right\}$ or of $\left(\left\{x_{0}\right\} \cup Y_{i} \cup S\right)-\left\{y_{i 0}\right\}$ where, as before, $S=\left\{y_{r 0}: r \in d\right\}$. If $x_{0} \notin \alpha(G-u)$, then $\alpha(G-u)$ fails to have two components of size k. So we can assume that $x_{0} \in \alpha(K)$ and $\alpha(K) \cap S \neq \emptyset$, and also that $z_{i 00} \in \alpha\left(K^{\prime}\right)$. Therefore, $y_{i l} \notin \alpha(G)$ since it is adjacent ot $z_{i 00}$. Since $y_{i l}$ is adjacent to $y_{i 0}$, it follows that $\left|\alpha(K) \cap Y_{i}\right|<p$, where $p<k-1$ is the minimum degree of a vertex in the graph K. Since K is not a complete graph, $\alpha(K) \cap Y_{i} \neq \emptyset$ and so $B \mid \alpha(K)$ contains a vertex of degree $<p$, and therefore is not isomorphic to K.

Suppose $\alpha(u)=y_{i j}$ for some $i \in d, j \in k-\{0\}$. In this case $\alpha\left(K \cup K^{\prime}\right) \subseteq\left\{x_{0}\right\} \cup$ $\left(Y_{i}-\left\{y_{i j}\right\}\right) \cup Z_{i j} \cup\left\{z_{i j-1,0}\right\}$. Suppose $Z_{i j}=\alpha\left(K^{\prime}\right)$. Then $y_{i, j+1} \notin \alpha\left(K \cup K^{\prime}\right)$ since $y_{i, j+1}$ is adjacent to $z_{i j 0}$. Therefore, we must have $\alpha(K)=\left\{x_{0}\right\} \cup\left(Y_{i j}-\left\{y_{i j}, y_{i j+1}\right\}\right) \cup\left\{z_{i j-1,0}\right\}$. It follows that K has a vertex of degree one, and hence exactly one vertex of degree $k-1$. Therefore, we must have $j=1$. But then $B \mid\left\{x_{0}\right\} \cup\left(Y_{i}-\left\{y_{i j}, y_{i, j+1}\right\}\right) \cup\left\{z_{i,-1,0}\right\}$ contains no vertex of degree $k-1$, and this is a contradiction. Similarly, if $Z_{i j} \nsubseteq \alpha\left(K \cup K^{\prime}\right)$, then $y_{i j+1}$ together with points of $Z_{i j}$ must form one component of $\alpha(G-u)$, say $\alpha\left(K^{\prime}\right)$. But then we are led to conclude, just as before, that $\alpha(K)$ contains a vertex of degree one and so K has just one vertex of degree $k-1$, whereas $\alpha(K)$ contains no vertex of degree $k-1$.

The only remaining possibility is that $\alpha(u)=z_{i j l}$ for some $i \in d, j \in k, l \in k$. In this case, since $\Gamma_{B}\left(z_{i j l}\right) \subseteq\left\{y_{i j}, y_{i j+1}\right\} \cup Z_{i j} \cup P_{j l}$, for some connected component of $G-u$, say K^{\prime}, it must be the case that $\alpha\left(K^{\prime}\right) \subseteq P_{j l}$. But this is impossible since $P_{i j l} \cong D$ and, by Lemma 5.2, D does not embed $G-K$.

References

1. P. Erdôs and A. Hajnal, On chromatic number of graphs and set systems, Acta. Math. Acad. Sci. Hung. 17(1966), 61-99.
2. J. Nešeť̌il and V. Rödl, Partitions of vertices, Comment. Math. Univ. Carolina 17(1976), 85-95.
3. \qquad Partitions of finite relational and set systems, J. Combin. Theory (A) 22, 289-312.
4. N. Sauer and X. Zhu, Graphs which do not embed a given graph and the Ramsey property, manuscript.

Emory University
Atlanta, Georgia
U.S.A.
University of Calgary
Calgary, Alberta

