THE NAKAYAMA MAP AND RAMIFICATION FOR MAXIMALLY COMPLETE FIELDS

MURRAY A. MARSHALL

Let *K* be a maximally complete valued field and let *L* be a totally ramified Galois extension of *K* with Galois group *G*. Assume (i) the value group quotient of *L*|*K* is cyclic and (ii) there exists an unramified cyclic extension of *K* of the same degree as *L*. Then there is an isomorphism of G^a onto a subgroup $A/N(L^{\times})$ of $K^{\times}/N(L^{\times})$ which maps the ramification group G^i onto $A^iN(L^{\times})/N(L^{\times})$ for all i > 0 where $A^i = \{x \in A | v(x - 1) \ge i\}$. This generalizes certain results of Local Class Field Theory.

1. The Nakayama map. Throughout, L|K denotes a totally ramified Galois extension of valued fields, K is maximally complete [4], and the value group quotient Γ_L/Γ_K is cyclic. Assume also that K has an unramified cyclic extension K'|K of the same degree as L|K. Let L' = LK' denote the composition of L and K'. Identify the Galois groups $G_{L|K} = G_{L'|K'} = G$, $G_{K'|K} = G_{L'|L} = G'$, and the norm mappings $N_{K'|K} = N_{L'|L} = N'$, $N_{L|K} = N_{L'|K'} = N$. P_K , P_K^i , i > 0 will denote respectively

 $\{x \in K | v(x) > 0\}, \{x \in K | v(x) \ge i\}$

where v is the valuation (written additively).

LEMMA 1. Let $i \in \Gamma_{\kappa}$, i > 0, and let ρ be a generator of G'. Then

(i) $N'(1 + P_{K'}{}^i) = 1 + P_{K}{}^i;$

(ii) if $x \in 1 + P_{K'}$, satisfies N'(x) = 1, then there exists $y \in 1 + P_{K'}$ such that $x = y^{p-1}$.

Proof. The lemma says, in effect, that the G'-module $1 + P_{K'}{}^i$ has trivial cohomology. It is well-known that the additive group of the residue field \bar{K}' has trivial cohomology as a G'-module. The result follows from this together with maximal completeness. (For a detailed proof of (i), see [1, Theorem 3].)

LEMMA 2. There is an element $z \in L'$ satisfying (i) v(z) generates $\Gamma_{L'} = \Gamma_L$ modulo Γ_K ; (ii) $N'(z) \in K$.

Proof. Let $y \in L$ be such that v(y) generates Γ_L modulo Γ_K . If we can find $z \in L'$ such that $\pm N(y) = N'(z)$, we are finished. To this end write $N(y) = y^n u$ where $u = \prod_{\sigma \in G} y^{\sigma-1}$. The map $G \to U_L/1 + P_L$ (where $U_L =$

Received February 14, 1973 and in revised form, February 6, 1974.

 $\{x \in L | v(x) = 0\}$ given by $\sigma \to y^{\sigma-1}$ is a group homomorphism. If $\sigma^2 \neq 1$, then the terms $y^{\sigma-1}$ and $y^{\sigma^{-1}-1}$ in u cancel modulo $1 + P_L$. Hence $u^2 \equiv 1 \mod (1 + P_L)$ so $u \equiv \pm 1 \mod (1 + P_L)$. Thus $\pm u \in 1 + P_L = N'(1 + P_{L'})$ by Lemma 1 applied to L'|L.

THEOREM 1. There is an injective homomorphism

 $\alpha: G^a \to K^{\times}/N(L^{\times}).$

(Here G^a denotes the maximal abelian factor group of G, and K^{\times} the multiplicative group of K.)

Proof. Fix a generator ρ of G' and an element $z \in L'$ as in Lemma 2. If $\sigma \in G$, $N'(z^{\sigma-1}) = (N'(z))^{\sigma-1} = 1$ by property (ii) of z. Hence by Hilbert's Satz 90, there exists $y \in L'$ such that $z^{\sigma-1} = y^{\rho-1}$. $N(y)^{\rho-1} = N(y^{\rho-1}) = N(z^{\sigma-1}) = 1$ so $N(y) \in K^{\times}$. Also if $y^{\rho-1} = y'^{\rho-1}$, $y' \in L'$, then y' = yc, $c \in L$ so $N(y') \equiv$ $N(y) \mod N(L^{\times})$, i.e. the class of N(y) modulo $N(L^{\times})$ depends only on σ . If $\sigma_1, \sigma_2 \in G$, and if $y_1, y_2 \in L'$ satisfy $y_i^{\rho-1} = z^{\sigma_i-1}$, i = 1, 2, then

$$z^{\sigma_1\sigma_2-1} = z^{(\sigma_2-1)\sigma_1} z^{\sigma_1-1} = (y_2^{\rho-1})^{\sigma_1} y_1^{\rho-1} = (y_2^{\sigma_1} y_1)^{\rho-1},$$

and $N(y_2^{\sigma_1}y_1) = N(y_1)N(y_2)$. Thus $\sigma \to N(y)$ where $y \in L'$ satisfies $y^{\rho-1} = z^{\sigma-1}$ defines a homomorphism from G^a into $K^{\times}/N(L^{\times})$. To show this is injective assume N(y) = N(y') for some $y' \in L$. It is enough to show that the restriction $\sigma|_M$ of σ to M is the identity for all cyclic extensions M of K in L. If M is any such extension, let $\sigma|_M = \tau^s$ where τ is a generator of $G_{M|K} = G_{M'|K'}$ (M' = MK'). By assumption $N_{L'|M'}(y)$ and $N_{L'|M'}(y')$ have the same norm relative to M'|K'. Thus by Hilbert's Satz 90, $N_{L'|M'}(y) = N_{L'|M'}(y')w^{\tau-1}$ for some $w \in M'$. Applying $\rho - 1$ to this and referring to the definition of y we have

$$N_{L'|M'}(z)^{\tau^{s}-1} = N_{L'|M'}(z)^{\sigma-1} = N_{L'|M'}(z^{\sigma-1})$$

= $N_{L'|M'}(y^{\rho-1}) = (N_{L'|M'}(y))^{\rho-1} = N_{L'|M'}(y')^{\rho-1} \cdot w^{(\tau-1)(\rho-1)}$
= $w^{(\rho-1)(\tau-1)}$.

since $y' \in L$. Factoring $\tau^s - 1$ we obtain

 $N_{L'|M'}(z)^{1+\tau+\cdots+\tau^{s-1}} = w^{\rho-1}. c, c \in K'.$

Comparing values in this last equation we get $s[L:M] \cdot v(z) \equiv 0 \mod \Gamma_K$. But by property (i) of z, v(z) has order [L:K] modulo Γ_K . Thus [M:K] divides s, so $\sigma|_M = \tau^s = 1$.

Remark. For each $\sigma \in G$ fix an element $y_{\sigma} \in L'^{\times}$ such that $y_{\sigma}^{\rho-1} = z^{\sigma-1}$; then $f: G \times G \to L^{\times}$ defined by $f(\tau, \sigma) = y_{\sigma}^{\tau} \cdot y_{\tau\sigma}^{-1}$. y_{τ} is a 2-cocycle and

$$N(y_{\sigma}) = \prod_{\tau \in G} f(\tau, \sigma).$$

Thus α as defined in Theorem 1 is the Nakayama Map determined by f [3].

Remark. As defined, α depends on the choice of an unramified extension K', a generator ρ of G', and the class of v(z) in Γ_L/Γ_K . The image $A/N(L^{\times})$ of α in $K^{\times}/N(L^{\times})$ depends only on the choice of K' (and on L). In the classical case where K is discrete and \vec{K} is finite, there is a unique choice for K' and G'and Γ_L/Γ_K have canonical generators so there is a canonical choice for α . The statement $A = K^{\times}$ is the "second fundamental inequality". This holds in the classical case and more generally in the case discussed in [1].

2. Ramification. Define the Herbrand function ϕ and the ramification groups $G_j = G^{\phi(j)}, j \ge 0$ of the extension L|K as in [2]. As Γ_L/Γ_K is cyclic, Theorem 2 of [2] holds.

LEMMA 3. For all j > 0, $N(1 + P_L^j) \subseteq 1 + P_K^{\phi(j)}$ with equality if $G_j = 1$.

Proof. By solvability of G together with transitivity of N, ϕ we can assume [L:K] is a prime. The case is dealt with in [1, pp. 422, 426].

Defining A as in the remark, section 1, let

 $A^{i} = A \cap (1 + P_{\kappa}^{i}) \quad i > 0.$

THEOREM 2. The Nakayama map α carries G^i onto $A^iN(L^{\times})/N(L^{\times})$ for all $i \in \Gamma_L, i > 0$.

Proof. Suppose $\sigma \in G_j$. Thus $z^{\sigma-1} \in 1 + P_{L'}^{j}$. By Lemma 1 applied to L'|L, we can choose $y \in 1 + P_{L'}^{j}$ so that $y^{\rho-1} = z^{\sigma-1}$. Thus $N(y) \in N(1 + P_{L'}^{j}) \subseteq 1 + P_{K'}^{\phi(j)}$ by Lemma 3 applied to L'|K'. Conversely suppose $\sigma \in G$, $y^{\rho-1} = z^{\sigma-1}$, $N(y) \in 1 + P_{K'}^{i}$. Let M be any cyclic extension of K in L fixed by G^i . If we can show $\sigma|_M = 1$ we are finished (since the fixed field of $G^i(G, G)$ is generated by such cyclic extensions). Since G^i fixes M, $G_{M|K}^{i} = 1$. Hence $N(y) \in N_{M|K}(M^{\times})$ by Lemma 3 applied to M|K. Thus there exists $y' \in M$ such that $N_{L'|M'}(y)$ and y' have the same norm in M'|K'. From this point, the proof that $\sigma|_M = 1$ parallels the latter part of the proof of Theorem 1.

References

- 1. L. Geissinger, A reciprocity law for maximal fields, Trans. Amer. Math. Soc. 125 (1966), 422-431.
- 2. M. Marshall, Ramification theory for valuations of arbitrary rank, Can. J. Math. 26 (1974), 908-916.
- 3. T. Nakayama, Über die Beziehungen zwischen den Faktorensystemen und der Normklassengruppe eines galoisschen Erweiterungskörpers, Math. Ann. 112 (1936), 85-91.
- 4. O. F. G. Shilling, *The theory of valuations*, Math. Surveys, No. IV (Amer. Math. Soc. publ., Providence, 1950).

University of Saskatchewan, Saskatoon, Saskatchewan