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Abstract

The main aim of this paper is to establish the Lipschitz continuity of the (K,K′)-quasiconformal solutions
of the Poisson equation ∆w = g in the unit disk D.
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1. Introduction

Let

A =

(
a b
c d

)
∈ R2×2.

We consider the matrix norm

|A| = max{|Az| : z ∈ C, |z| = 1}

and the matrix function

`(A) = min{|Az| : z ∈ C, |z| = 1}.

Let D and G be subdomains of the complex plane C and let w = u + iv : D→ G be a
function that has both partial derivatives at a point z in D. By ∇u, we denote the matrix(

ux uy

vx vy

)
.

Obviously,
|∇w| = |wz| + |wz| and `(∇w) = ‖wz| − |wz‖.

We say that a function u : D→ R is absolutely continuous on lines in the region
D if, for every closed rectangle R ⊂ D with sides parallel to the axes x and y, u is
absolutely continuous on almost every horizontal line and almost every vertical line
in R. Such a function has, of course, partial derivatives ux and uy almost everywhere
in D.
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A sense-preserving homeomorphism w : D→ G, where D and G are subdomains
of the complex plane C, is said to be:

(1) (K,K′)-quasiconformal if

(a) w is absolutely continuous on lines in D,
(b) there are constants K ≥ 1 and K′ ≥ 0 such that |∇w|2 ≤ KJw + K′,

where Jw denotes the Jacobian of w, given by Jw = |wz|
2 − |wz|

2 = |∇w|`(∇w);
(2) K-quasiconformal if K′ = 0;
(3) Lipschitz continuous if there exists a constant L such that, for all z1, z2 ∈ D,

|w(z1) − w(z2)| ≤ L|z1 − z2|.

Let P be the Poisson kernel, that is, the function

P(z, eiθ) =
1 − |z|2

|z − eiθ|2
,

and let G denote the Green function of the unit disk D = {z ∈ C : |z| < 1}, that is,

G(z, ω) =
1

2π
log

∣∣∣∣∣1 − zω
z − ω

∣∣∣∣∣,
where z ∈ D \ {ω}. Then, P is harmonic in D (see [2]) and G is harmonic in D \ {ω}.
Let f : S→ C be a bounded integrable function on the unit circle S = {z ∈ C : |z| = 1}
and let g : D→ C be continuous. The solutions to the Poisson equation ∆w = g in D
satisfying the boundary condition w|S = f ∈ L1(S) have the representation

w = u − v, (1.1)

where

u(z) = P[ f ](z) =
1

2π

∫ 2π

0
P(z, eiϕ) f (eiϕ) dϕ,

v(z) = G[g](z) =

∫
D

G(z, ω)g(ω) dm(ω)

and dm(ω) denotes the Lebesgue measure in C. Further, if f (respectively, g) is
continuous in S (respectively, in D = D ∪ S), then w has a continuous extension w̃
to D, and w̃|S = f (see [4]).

If u is a harmonic univalent function, then by Lewy’s theorem (see [2]), u has a
nonvanishing Jacobian and consequently, according to the inverse mapping theorem,
u is a diffeomorphism.

Martio [13] was the first to consider harmonic quasiconformal mappings in C.
Recent papers [1, 5, 7, 8, 10, 15] shed much light on the topic of harmonic
quasiconformal mappings in C, and [6] extends the domain to the unit ball. In [12, 14,
16–19], the Lipschitz character of harmonic quasiconformal mappings is discussed. In
particular, Kalaj and Mateljević [9] proved that a harmonic diffeomorphism between
two Jordan domains with C2 boundaries is a (K,K′)-quasiconformal mapping for some
constants K ≥ 1 and K′ ≥ 0 if and only if it is Lipschitz continuous.
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Let g be a function from D to Ω with a continuous extension to the closure D of D,
let f : S→ C be a bounded integrable function on S and let Ω be a Jordan domain with
C2 boundary. Further, let

(1) DD→Ω(g) denote the family of solutions w : D→ Ω of the Poisson equation
∆w = g, where w|S = f ∈ L1(S) and each w is a sense-preserving diffeomorphism;

(2) QCD→Ω(K) denote the set of all K-quasiconformal mappings w from D to Ω;
(3) QCD→Ω(K,K′) denote the set of all (K,K′)-quasiconformal mappings w from D

to Ω;
(4) HQCD→Ω(K, K′) denote the set of all harmonic (K, K′)-quasiconformal

mappings w from D to Ω.

We remark that, if w ∈ HQCD→Ω(K,K′), then w = u. By [9], we have the following
result.

Proposition 1.1. Suppose that w ∈ HQCD→Ω(K, K′) and z = reiθ. Then |∂w/∂r| =
|∂u/∂r| is bounded.

Assume that Ω = D and w(0) = 0 for all elements w in DD→Ω(g). Under these
assumptions, Kalaj and Pavlović proved that the family DD→Ω(g) ∩ QCD→Ω(K) is
uniformly Lipschitz [11, Theorem 1.2]. Moreover, Kalaj and Mateljević discussed
the Lipschitz continuity of elements in HQCD→Ω(K, K′) [9, Theorem 1.1 and
Corollary 1.3]. The aim of this paper is to generalise the main results in [9] to the
setting of DD→Ω(g) ∩ QCD→Ω(K, K′), that is, we consider the Lipschitz character of
elements in DD→Ω(g) ∩ QCD→Ω(K, K′) with the natural assumption that |∂u/∂r| is
bounded (see Proposition 1.1). Our main results are Theorems 3.2 and 3.3, which
will be stated and proved in Section 3. In Section 2, we will construct examples to
show the existence of the (K, K′)-quasiconformal solutions of the Poisson equation
∆w = g with special functions g.

2. Examples

In this section we will construct two examples to show the existence of (K, K′)-
quasiconformal solutions of the Poisson equation ∆w = g with special functions g.
Our first example shows that there is a (K, K′)-quasiconformal solution of a Poisson
equation, which is not M-quasiconformal for any M ≥ 1. The second example shows
that there is a (K, K′)-quasiconformal solution of a Poisson equation with K′ , 0,
which is also M-quasiconformal for some M > 1.

Example 2.1. Let w(z) = 3z − |z|2z in D. Then

(1) w satisfies the equation ∆w = −8z and w|S = 2eiθ;
(2) w is a (1, 9)-quasiconformal mapping of D onto D2 = {z : |z| < 2};
(3) w is not M-quasiconformal for any M ≥ 1;
(4) w is Lipschitz continuous.
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Proof. Since w(z) = 3z − |z|2z, we have

wz = 3 − 2|z|2 and wz = −z2.

Obviously, ∆w = −8z. It follows from

Jw = |wz|
2 − |wz|

2 = 9 − 12|z|2 + 3|z|4 > 0,

together with the fact that w(z)|S = 2eiθ and the degree principle, that w is a sense-
preserving homeomorphism from D onto D2. Further, we know that w is a (1, 9)-
quasiconformal mapping since

|∇w|2 ≤ Jw + (|wz| + |wz|)2 ≤ Jw + 9.

The limit

lim
|z|→1

|wz|

|wz|
= lim
|z|→1

|z|2

3 − 2|z|2
= 1

tells us that w is not M-quasiconformal for any M ≥ 1.
For z1, z2 ∈ D, here and henceforth, we let [z1, z2] denote the segment in D with the

endpoints z1 and z2. Then

|w(z1) − w(z2)| =
∣∣∣∣∣∫

[z1,z2]
wz(z) dz + wz(z) dz

∣∣∣∣∣ ≤ ∫
[z1,z2]

|∇w| |dz|.

Thus, the Lipschitz continuity of w follows easily from the estimate:

|∇w| = |wz| + |wz| = 3 − |z|2 ≤ 3.

Hence the proof is complete. �

Example 2.2. Let w(z) = 1
3 z + |z|2z in D. Then

(1) w satisfies the equation ∆w = 8z and w|S = 4
3 eiθ;

(2) w is a (1, 20
3 )-quasiconformal mapping of D onto D4/3 = {z : |z| < 4

3 };
(3) w is a 5

2 -quasiconformal mapping;
(4) w is Lipschitz continuous.

Proof. Since w(z) = 1
3 z + |z|2z, we have

wz = 1
3 + 2|z|2 and wz = z2,

which implies ∆w = 8z. It follows from

Jw = |wz|
2 − |wz|

2 = 1
9 + 4

3 |z|
2 + 3|z|4 > 0,

together with the fact that w|S = 4
3 eiθ and the degree principle, that w is a sense-

preserving homeomorphism from D onto D4/3. Since

|∇w|2 = (|wz| + |wz|)2 = 1
9 + 2|z|2 + 9|z|4 = Jw + 2

3 |z|
2 + 6|z|4 ≤ Jw + 20

3 ,
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we see that w is a (1, 20
3 )-quasiconformal mapping. Moreover, we infer from

|wz|

|wz|
=

|z|2
1
3 + 2|z|2

≤
3
7

that w is a 5
2 -quasiconformal mapping. The Lipschitz continuity of w follows easily

from the estimate:
|∇w| = 1

3 + 3|z|2 ≤ 10
3 .

Hence the proof is complete. �

3. Statements and proofs of the main results

We start with a lemma which will be useful for the proofs of the main results.

Lemma 3.1. Suppose that w ∈ DD→Ω(g) ∩ QCD→Ω(K,K′) with the representation (1.1)
and |∂u/∂r| ≤ L in D for some constant L. Then, for z1, z2 ∈ D,

|w(z1) − w(z2)| ≤
(
KL + 2

3 K|g|∞ +
√

K′
)
|z1 − z2|, (3.1)

where |g|∞ = sup|z|<1 |g(z)|.

Proof. For z1, z2 ∈ D, it is easy to see that

|w(z1) − w(z2)| =
∣∣∣∣∣∫

[z1,z2]
wz(z) dz + wz(z) dz

∣∣∣∣∣ ≤ ∫
[z1,z2]

|∇w| |dz|.

Thus, in order to prove inequality (3.1), we only need to show that

|∇w| ≤ KL + 2
3 K|g|∞ +

√
K′. (3.2)

Obviously,
|∇w|2 ≤ KJw + K′ = K|∇w|`(∇w) + K′,

which implies

|∇w| ≤
K`(∇w) +

√
K2`(∇w)2 + 4K′

2
≤ K`(∇w) +

√
K′.

For z ∈ D, set z = reiθ. Then

∂w(reiθ)
∂r

= eiθwz + e−iθwz.

Hence
`(∇w) ≤

∣∣∣∣∣∂w
∂r

∣∣∣∣∣,
and we deduce that

|∇w| ≤ K
∣∣∣∣∣∂w
∂r

∣∣∣∣∣ +
√

K′.
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To prove (3.2), it suffices to derive the estimate∣∣∣∣∣∂w
∂r

∣∣∣∣∣ ≤ L +
2
3
|g|∞.

For all z , ω,

Gz(z, ω) =
1

4π

( 1
ω − z

−
ω

1 − zω

)
=

1
4π

1 − |ω|2

(z − ω)(zω − 1)

and

Gz(z, ω) =
1

4π
1 − |ω|2

(z − ω)(zω − 1)
,

so we see that ∣∣∣∣∣∂G(reiθ)
∂r

∣∣∣∣∣ = |eiθGz + e−iθGz| ≤ 2|Gz|

and [11, Lemma 2.7] implies ∣∣∣∣∣∂v
∂r

∣∣∣∣∣ ≤ 2
3
|g|∞.

It follows that ∣∣∣∣∣∂w
∂r

∣∣∣∣∣ ≤ ∣∣∣∣∣∂u
∂r

∣∣∣∣∣ +

∣∣∣∣∣∂v
∂r

∣∣∣∣∣ ≤ L +
2
3
|g|∞,

as required, and the lemma is proved. �

The Hilbert transform of a function f in L1(S) is defined by the formula

H[ f ](ϕ) = −
1
π

∫ π

0+

f (ϕ + t) − f (ϕ − t)
2 tan(t/2)

dt.

The integral is improper and converges for almost all ϕ ∈ [0, 2π]. See [20, Ch. VII] for
more properties of this transform. Our first main result is the following theorem.

Theorem 3.2. Suppose that w ∈ DD→Ω(g) with the representation (1.1) and that Ω is
convex. Then the following conditions are equivalent:

(1) w is a (K,K′)-quasiconformal mapping and |∂u/∂r| ≤ L in D;
(2) w is Lipschitz with respect to the Euclidean metric;
(3) u is Lipschitz with respect to the Euclidean metric;
(4) u is a (K,K′)-quasiconformal mapping;
(5) f is absolutely continuous on S, f ′ ∈ L∞(S) and H[ f ′] ∈ L∞(S).

Proof. Obviously, the assumptions on w and on Ω show that f is sense-preserving.
Thus it follows from the Radó–Kneser–Choquet theorem (see [2]) that u is a harmonic
univalent function from D to Ω and also that u is sense-preserving.

For the equivalence between (2) and (3), we remark that, by [11, Lemma 2.6],

∇v =

∫
D

∇zG(z, ω)g(ω) dm(ω),
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and [11, Lemma 2.3] leads to
|∇v| ≤ 2

3 |g|∞.

Thus the equivalence between (2) and (3) easily follows from the estimates

|∇u| ≤ |∇v| + |∇w| and |∇w| ≤ |∇u| + |∇v|.

The implication from (1) to (2) is obvious from Lemma 3.1. For the converse
implication, the assumption that ‘w is Lipschitz’ and the equivalence of (2) and (3)
show that u is Lipschitz and so there are constants P and L such that

|∇w| ≤ P and |∇u| ≤ L.

Thus
|∇w|2 ≤ Jw + |∇w|2 ≤ Jw + P2,

from which we see that w is (1, P2)-quasiconformal. Further,∣∣∣∣∣∂u
∂r

∣∣∣∣∣ ≤ |∇u| ≤ L.

Hence (1) and (2) are equivalent.
The equivalence between (3), (4) and (5) easily follows from [9, Corollary 1.3] and

the proof of the theorem is complete. �

The next theorem is our second main result.

Theorem 3.3. Suppose that h : Ω → D is a sense-preserving diffeomorphism and
φ : D→ Ω is a conformal transformation. If w = h ◦ φ and w ∈ DD→D(g) with the
representation (1.1), then the following two statements are equivalent:

(1) h is (K,K′)-quasiconformal and |∂u/∂r| ≤ L in D;
(2) h is Lipschitz with respect to the Euclidean metric.

Proof. Assume that h is (K,K′)-quasiconformal and |∂u/∂r| ≤ L. Then

|∇w|2 = |∇h|2|φ′|2 ≤ K(Jh|φ
′|2) + K′|φ′|2 = KJw + K|φ′|2.

Thus w is (K, K
′

1)-quasiconformal with K
′

1 = K||φ′||2∞, where ||φ′||∞ = sup{|φ′| : z ∈ D}
is finite by Kellogg’s theorem (see [7, Proposition 2.1] or [3]), and then it follows
from Lemma 3.1 that w is Lipschitz. Also, Kellogg’s theorem guarantees that φ−1 is
Lipschitz, and therefore, h = w ◦ φ−1 is Lipschitz. This completes the proof of the
implication from (1) to (2). To prove the converse implication, we assume that h is
Lipschitz. Then there is a constant M such that |∇h| ≤ M, and thus,

|∇h|2 ≤ Jh + M2.

This implies that h is (1, M2)-quasiconformal. Again, Kellogg’s theorem shows that φ
is Lipschitz and so w = h ◦ φ is Lipschitz. Hence |∇w| ≤ M′, where M′ is a constant.
By [11, Lemma 2.6],

∇v =

∫
D

∇zG(z, ω)g(ω) dm(ω)
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and so [11, Lemma 2.3] gives
|∇v| ≤ 2

3 |g|∞.

Consequently, ∣∣∣∣∣∂u
∂r

∣∣∣∣∣ ≤ |∇u| ≤ |∇w| + |∇v| ≤ M′ +
2
3
|g|∞.

Hence the proof of the theorem is complete. �
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[7] D. Kalaj and M. Mateljević, ‘Inner estimate and quasiconformal harmonic maps between smooth

domains’, J. Anal. Math. 100 (2006), 117–132.
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