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Abstract

Paolo Aluffi, inspired by an algebro-geometric problem, asked when the Kirchhoff polynomial of a graph
is in the Jacobian ideal of the Kirchhoff polynomial of the same graph with one edge deleted. We give
some results on which graph–edge pairs have this property. In particular, we show that multiple edges
can be reduced to double edges, we characterize which edges of wheel graphs satisfy the property, we
consider a stronger condition which guarantees the property for any parallel join, and we find a class of
series–parallel graphs with the property.
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1. Introduction

Over the last decade there has been an interest in taking an algebraic-geometry-
inspired approach to understanding Feynman integrals [3, 4, 7–12, 15]. The key
object of study is the graph hypersurface, which we can define as follows. Given a
multigraph G (henceforth we will just say graph with the understanding that multiple
edges and self-loops are permitted), to each edge e of G assign a variable te and define
the Kirchhoff polynomial1 of G by

ΨG =
∑

T spanning
tree of G

∏
e<T

te.

The graph hypersurface is then simply the variety given by the zero set of this
polynomial, viewed in projective space or in affine space depending on context. This
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1This polynomial is also known as the first Symanzik polynomial, and sometimes the Kirchhoff

polynomial is instead defined dually with the condition e ∈ T in place of e < T , see for example [5].
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relates back to Feynman integrals because the Kirchhoff polynomial plays a key role
in the integrand of the Feynman integral of G in parametric form, see, for example, [5].
In fact, viewing G as a massless scalar Feynman diagram, the first interesting piece of
the Feynman integral is simply ∫

ti≥0

Ω

Ψ2
G

where Ω =
∑|E(G)|

i=1 (−1)i dt1 · · · dti−1dti+1 · · · dt|E(G)|. This has come to be known as
the Feynman period, see [17], and is a very interesting object physically, number
theoretically, and combinatorially.

The interplay between Kirchhoff polynomials for different graphs will be crucial
to our argument. Therefore, to keep the notation light, we will abuse notation and
simply write G for ΨG. We will take the convention that the Kirchhoff polynomial of
a disconnected graph is 0.

At the level of the Kirchhoff polynomial, edge deletion (equivalently, partial
derivative) will be indicated by superscripts and edge contraction (equivalently, setting
variables to 0), by subscripts. That is, for Kirchhoff polynomials, in this notation,

Ge = G r e = ∂eG and Ge = G/e = G|e=0.

These facts are elementary consequences of the definition of the Kirchhoff polynomial.
A similar argument gives the classical contraction–deletion relation

G = teGe + Ge for e not a bridge or self-loop.

Aluffi and Marcolli in [2] gave a definition of algebro-geometric Feynman rules
that captured the most basic properties of Feynman rules in quantum field theory.
Specifically, they require the multiplicative property for disjoint unions of graphs,
which is a restatement of the multiplicative property of independent events in basic
probability, and they require the formula for recasting Feynman diagrams as trees of
one-particle-irreducible diagrams.

Other more advanced properties of physical Feynman rules can also be captured in
algebraic language, see, for example, [16], but that is another story.

Aluffi and Marcolli then look at examples of their algebro-geometric Feynman rules
which appear natively in the land of algebraic geometry. One example comes from
classes in the Grothendieck ring; another comes from Chern class calculations and
gives univariate polynomial output.

In the course of studying when this second example satisfies contraction–deletion
relations, Aluffi in [1] needed to assume two technical conditions, which he calls
Conditions 1 and 2, each of which is a condition on a pair of a graph G and an edge e
of G.

Aluffi’s Condition 1 is not difficult to state. Throughout the paper we follow [1] and
work over Q (see [1, Section 2.4]).
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Definition 1.1. Let G be a connected graph and e an edge of G. Then Condition 1 for
the edge e of G, written 1(G, e), is the statement

G ∈ 〈∂Ge〉

where 〈∂Ge〉 is the ideal of partial derivatives, that is, the Jacobian ideal, of Ge, the
Kirchhoff polynomial of G with e deleted.

There are a few immediate observations worth making. From the contraction–
deletion relation and Euler’s homogeneous function theorem, see Theorem 2.1,
Condition 1 for regular edges is equivalent to the statement

Ge ∈ 〈∂Ge〉.

Certain special cases of edges are easy to understand. If e is a self-loop then
G = teGe and so 1(G, e) is true. If e is a bridge then Ge = 0 since G r e is disconnected
and so has no spanning trees; thus 1(G, e) is false. Finally, if G r e is a tree then Ge = 1
and so again 1(G, e) is false. Aluffi calls an edge which does not fall into one of the
previous cases regular.

In this paper we investigate the graph-theoretic underpinning of Condition 1. We
are not able to obtain a full characterization of graph–edge pairs which satisfy the
condition, but we do obtain the following interesting results. Propositions 3.3 and 3.4
give that multiple edges of any multiplicity greater than 1 are equivalent to double
edges from the perspective of Condition 1. Propositions 4.2 and 4.4 show that for
wheels with at least 4 spokes, Condition 1 is false for all rim edges and true for all
spoke edges. Then we move to focusing on series–parallel graphs. Definition 5.1
gives a stronger condition which, by Corollary 5.9, shows when Condition 1 is stable
under parallel join. Finally, Corollary 6.14 describes a class of series–parallel graphs
where Condition 1 holds for all edges, and Proposition 6.16 builds from this a much
larger class of series–parallel graphs (and some other graphs) with specific edges for
which Condition 1 holds.

2. Preliminaries

For our arguments we want to consider cases of identifying vertices. We will use
the notation

12
G

for the Kirchhoff polynomial of the graph G with vertices 1 and 2 identified, and, more
generally, if s1, s2, . . . are sets of vertices of G then

s1,s2,...

G

is the Kirchhoff polynomial of the graph G with the vertices of s1 identified, the
vertices of s2 identified, and so on.
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By considering the possible spanning trees, we can write down the 1- and 2-cut
formulas for the Kirchhoff polynomial. Specifically, if G is formed from H and H′

joined at a vertex then
G = HH′

and if G is formed from H and H′ joined at two vertices, 1 and 2, then

G =
12
HH′ + H

12
H′.

One of the main algebraic tools we will use is Euler’s homogeneous function
theorem.

Theorem 2.1 (Euler’s theorem). Let R be a ring and let f ∈ R[x1, . . . , xn] be a
homogeneous function of degree m. Then

m · f =

n∑
j=1

x j
∂ f
∂x j

.

Next, we will give a few propositions explaining how small vertex and edge cuts
affect Condition 1.

Proposition 2.2. If G and H are connected graphs that are joined at one vertex and e
is a regular edge of G, then 1(G, e)⇔ 1(G ∪ H, e).

Proof. Let G and H be as in the statement.
(⇒) Suppose 1(G, e), so for some Pi in the edge variables ai of G,

Ge =
∑

i

PiGeai .

Then, since neither e nor the ai are variables of H,

(G ∪ H)e = Ge ∪ H = HGe = H
∑

i

PiGeai

=
∑

i

PiHGeai

=
∑

i

Pi(H ∪Geai )

=
∑

i

Pi(G ∪ H)eai .

Hence 1(G ∪ H, e).
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(⇐) Suppose 1(G ∪ H, e), so for some sets of polynomials {Pi} and {Q j}, with all
polynomials in the edge variables ai of G and b j of H,

(G ∪ H)e = HGe =
∑

i

Pi(G ∪ H)eai +
∑

j

Q(G ∪ H)ebi

=
∑

i

PiHGeai +
∑

j

Q jGeHb j

= H
∑

i

PiGeai + Ge
∑

j

Q jHb j .

Set all of the b j equal to 1. Then

H| b j=1
b j edge

of H

Ge = H| b j=1
b j edge

of H

∑
i

Pi| b j=1
b j edge

of H

Geai + Ge
(∑

u

QuHbu

) ∣∣∣∣∣ b j=1
b j edge

of H

.

So
Ge =

∑
i

RiGeai + S Ge,

where the Ri and S are polynomials in the variables ai. Since Theorem 2.1 implies
Ge ∈ 〈∂Ge〉 and the Geai are themselves partials, we have 1(G, e). �

Proposition 2.3. Whenever there is a two-edge cut-set, contracting one of these edges
has no effect on Condition 1 for the remaining edges. Formally, let G be a graph with
a two-edge-cut set {x, y}. Then for all e ∈ G\{x} we have 1(G, e) ⇐⇒ 1(Gx, e).

Proof. We can draw G as

With G as drawn, we see that

G = (x + y)AB +
12
AB + A

34
B

and

Gx = yAB +
12
AB + A

34
B.
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To get Gx from G we contracted x by setting x = 0. Notice that in G, the variables
x and y only appear in the term (x + y). We also see that the occurrence of (x + y) in
G corresponds exactly to the occurrence of y in Gx. Therefore, we can recover G from
Gx by making the replacement y→ x + y.

To delete y, we take the y derivatives of G and Gx, and we likewise delete x from G
and Gy. Then we have the identity

Gx = Gy = Gy
x = Gx

y = AB.

We will also use the contraction–deletion relation

Gy = xGx
y + Gyx.

There are two cases to be considered: (1) the edge that Condition 1 is being tested
for belongs to the two-edge cut-set; (2) it does not belong to the cut-set.

Proof of case 1. Let y be the edge that we are testing for Condition 1.

(⇒) Suppose 1(G, y). Then
Gy ∈ 〈∂Gy〉 = 〈∂Gy

x〉.

Hence,
Gyx = Gy − xGx

y = Gy − xGy
x ∈ 〈∂Gy

x〉.

(⇐) Suppose 1(Gx, y). Then,
Gyx ∈ 〈∂Gy

x〉.

Then
Gy = xGx

y + Gyx = xGy
x + Gyx ∈ 〈∂Gy

x〉 = 〈∂Gy〉.

This concludes the proof of case 1. �

Proof of case 2. Let the edge e that we are testing for Condition 1 belong to either
A or B, and wherever the ai appear below, let them range over the edge variables not
equal to x, y, or e.

(⇒) Suppose 1(G, e), so that for some polynomials Pi,Q,R we have

Ge =
∑

i

PiGeai + QGex + RGey.

Now we use Gex = Gey = Gey
x and let S = Q + R so that

Ge =
∑

i

PiGeai + S Gey
x .

Then we set x = 0 to get

Gex =
∑

i

Pi(x = 0)Geai
x + S (x = 0)Gey

x .
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(⇐) Suppose 1(Gx, e) so that for some polynomials Pi,R we have

Gex =
∑

i

PiGeai
x + RGey

x .

Then, by the replacement y→ x + y, we recover Ge from Gex on the left-hand
side and we recover Geai and Gey on the right-hand side. Therefore,

Ge =
∑

i

Pi(y→ x + y)Geai + R(y→ x + y)Gey.

This concludes the proof of case 2. �

Next we will define some special classes of graphs that we will use.

Definition 2.4. The wheel with n spokes is the graph with n + 1 vertices consisting of
a cycle of length n along with an additional vertex that is adjacent to all the vertices of
the cycle. The edges of the cycle are called rim edges while the other edges are called
spoke edges.

Definition 2.5. A source–terminal graph is a graph G with two distinct marked
vertices s, t ∈ V(G).

If G and H are two source–terminal graphs then we can define their parallel join as
being the source–terminal graph G ? H, which is the disjoint union of G and H with
the sources and terminals identified and with these two vertices forming the source and
terminal of G ? H.

If G and H are two source–terminal graphs then we can define their series join as
being the source–terminal graph GEH, which is the disjoint union of G and H with
the source of H identified with the terminal of G, with the source of G becoming the
source of GEH and the terminal of H becoming the terminal of GEH.

Definition 2.6. We take a series–parallel graph to be a source–terminal graph G such
that G is either:

(1) G = K2.
(2) G is the parallel join of two series–parallel graphs H,H′, that is, G := H ? H′.
(3) G is the series join of two series–parallel graphs H,H′, that is, G := HEH′.

In the case of series–parallel graphs, the Kirchhoff polynomial for the graph with
the two terminals identified is particularly important and so we will use the notation

G =
st
G

for any source–terminal graph G.
If we interpret s, t ∈ V(G) as the only vertices with external edges then we recover

G as the second Symanzik polynomial. That is,

G =
∑
T1,T2

∏
e<T1∪T2

xe
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where T1, T2 are trees, s ∈ T1, t ∈ T2, T1 ∩ T2 = ∅, and V(G) ⊆ T1 ∪ T2. We call
spanning forests of two trees with these properties spanning-st-forests.

The following are all reformulations of the 1- and 2- vertex cut formulas for the
Kirchhoff polynomial as applied to the series and parallel operations.

Lemma 2.7. Let H,H′ be source–terminal graphs. Then:

(a) H ? H′ = HH′ + HH′;
(b) H ? H′ = H H′;
(c) HEH′ = HH′;
(d) HEH′ = HH′ + HH′;
(e) deg(H) = deg(H) + 1 and deg(H) > 0.

Any series–parallel graph has a natural recursive structure, which we can capture in
a tree.

Definition 2.8. For any series–parallel graph G we may associate to it a (not
necessarily unique) decomposition tree Υ, which is the rooted tree whose leaves
represent the edges of G and whose interior vertices represent the operations E, ? used
in the construction of G; the root vertex corresponds to the last operation used in the
construction. Conversely, any such tree uniquely defines a series–parallel graph.

The Υ-dual is the series–parallel graph associated to the decomposition tree Υ∨

obtained by exchanging every E with a ? and vice versa. Finally, ht(Υ) is the height of
Υ as a rooted tree.

3. Multiple edges
There are several interesting results concerning parallel edges and Condition 1.

Aluffi in [1] showed what we give as Proposition 3.1 to prove that the Chern class
obeys a multiple-edge formula. Extending beyond his work, Propositions 3.3 and 3.4
imply that where there is a pair of parallel edges, adding a third parallel edge or more
has no effect on condition 1, and if there are three or more edges, deleting all of them
except two has no effect. In the context of Condition 1, one can look at a multigraph
as a simple graph with two types of edges: the single edge and the multiple edge.

Proposition 3.1 (Aluffi, 2011). If e is a regular edge and e has at least one other edge
parallel to it in G then 1(G, e) is true.

The main idea for the proof of Proposition 3.1 is Euler’s homogeneous function
theorem, see [1].

The next three propositions have a common set-up.
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For a graph with edge e connected to A at vertices 1, 2 and parallel edges x, y
connected to A at vertices 3, 4, the condition 1(G, e) reads as

Ge = xy
12
A + (x + y)

12,34
A =

∑
i

Pi(xyAai + (x + y)
34
A

aia)

+ Q(yA +
34
A) + R(xA +

34
A). (3.1)

As the ideal generated by Ge is homogeneous, we may assume that Pi, Q, R are
homogeneous degree 2 polynomials in the variables x, y, ai (cf. [13, Section 4.2]).
Let us write these polynomials as the solution set

Pi, Q, R.

Equation (3.1) has a symmetry which is quite useful. Let τxy be the operation where x
and y are swapped. Applying τxy to both sides gives

xy
12
A + (x + y)

12,34
A =

∑
i

τxyPi(xyAai + (x + y)
34
A

aia)

+ τxyQ(xA +
34
A) + τxyR(yA +

34
A). (3.2)

The left-hand side is invariant under this operation. Thus we can sum equations (3.1)
and (3.2) and divide by 2, yielding the polynomials

P̃i =
Pi + τxyPi

2
, Q̃ =

Q + τxyR
2

, R̃ =
R + τxyQ

2

which satisfy Equation (3.1). Hence, from any given solution set Pi,Q, R, one can
construct P̃i, Q̃, R̃ such that

τxyP̃i = P̃i, τxyQ̃ = R̃, τxyR̃ = Q̃.

Focusing only on the x, y dependence, in order to satisfy these relations and
Equation (3.1), the P̃i, Q̃, R̃ must have the forms

P̃i = p0i + (x + y)p1i + (x2 + y2)p2i + xyp11i

Q̃ = q0 + xq10 + yq01 + x2q20 + y2q02 + xyq11

R̃ = q0 + xq01 + yq10 + x2q02 + y2q20 + xyq11.

Substituting these expressions into Equation (3.1) and collecting terms, we get the
equation:
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xy
12
A + (x + y)

12,34
A =

xyΣi p0iAai +(x + y)q0A +2q0
34
A

+(x2y + xy2)Σi p1iAai +2xyq10A +(x + y)q10
34
A

+(x3y + xy3)Σi p2iAai +(x2 + y2)q01A +(x + y)q01
34
A

+x2y2Σi p11iAai +(x2y + xy2)q20A +(x2 + y2)q20
34
A

+(x + y)Σi p0i
34
A

aia +(x3 + y3)q02A +(x2 + y2)q02
34
A

+(x2 + y2 + 2xy)Σi p1i
34
A

aia +(x2y + xy2)q11A +2xyq11
34
A.

+(x3 + y3 + x2y + xy2)Σi p2i
34
A

aia

+(x2y + xy2)Σi p11i
34
A

aia.

This is an equation as polynomials in x and y, so we can get a list of equations by
equating coefficients. This gives

[x0y0] : 0 = 2q0
34
A

[x1y0] :
12,34
A = Σi p0i

34
A

aia + q0A + (q10 + q01)
34
A

[x1y1] :
12
A = Σi p0iAai + 2Σi p1i

34
A

aia + 2q10A + 2q11
34
A

[x2y0] : 0 = Σi p1i
34
A

aia + q01A + (q20 + q02)
34
A

[x3y0] : 0 = Σi p2i
34
A

aia + q02A

[x2y1] : 0 = Σi p1iAai + Σi p2i
34
A

aia + Σi p11i
34
A

aia + (q20 + q11)A

[x3y1] : 0 = Σi p2iAai

[x2y2] : 0 = Σi p11iAai .

By following the steps in this derivation, we can determine a set of polynomials
satisfying these eight equations when Equation (3.1) is satisfied. Conversely, given
a solution set for these equations, we can obtain a solution set for Equation (3.1). In
this sense, the eight equations above are equivalent to Equation (3.1).

We take the equation [x1y1], and use [x2y0] to substitute out Σi p1i
34
A

aia, and obtain the
equation

[x1y1]∗ :
12
A = Σi p0iAai + 2(q10 − q01)A + 2(q11 − q20 − q02)

34
A.

As a consequence of the [x0y0] equation, we have q0 = 0. (We see
34
A is not zero, so

q0 must be.) Hence we can remove the q0A term from the [x1y0] equation, yielding

[x1y0]∗ :
12,34
A = Σi p0i

34
A

aia + (q10 + q01)
34
A.

These two expressions will be used in the next three proofs.
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Proposition 3.2. If x, y are parallel edges then 1(G, e)⇒ 1(Gy
x, e).

Proof. Suppose 1(G, e). Then Equation (3.1) has a solution set. We look at the [x1y0]∗

equation:
12,34
A = Σi p0i

34
A

aia + (q10 + q01)
34
A.

The left-hand side is
12,34
A = Gy

xe. We want to show that it is in the ideal 〈∂Gye
x 〉. Here

Gye
x =

34
A. By Theorem 2.1 we have

34
A ∈ 〈∂

34
A〉. The

34
A

aia are partials of
34
A themselves.

Thus
12,34
A ∈ 〈∂

34
A〉, so 1(Gy

x, e) is satisfied. �

Proposition 3.3. If x, y are parallel edges then 1(G, e)⇒ 1(Gy, e).

Proof. First, note that Gye = xA +
34
A. Suppose 1(G, e) and create the equation

x[x1y1]∗ + [x1y0]∗.

x
12
A +

12,34
A = Σi p0i(xAai +

34
A

aia) + 2x(q10 − q01)A

+ [2x(q11 − q20 − q02) + (q10 + q01)]
34
A. (3.3)

The left-hand side of Equation (3.3) is Gy
e. Note that A and

34
A are both in the ideal of

partial derivatives of (xA +
34
A) because A = (∂/∂x)(xA +

34
A) and

34
A = (xA +

34
A) − xA.

Hence Gy
e is in the ideal 〈∂Gye〉, and therefore we have 1(Gy, e). �

Proposition 3.4. If x, y are parallel edges and G ∪ z is obtained by adding an edge z
parallel to x and y, then 1(G, e)⇒ 1(G ∪ z, e).

Proof. This proof is very similar to the proof of Proposition 3.3. We have

(G ∪ z)e = xyzA + (yz + xz + xy)
34
A.

The following polynomials are in the ideal 〈∂(G ∪ z)e〉:

yz
34
A, xz

34
A, xy

34
A, xyzA.

This is because

yz
34
A = (xyzA + (yz + xz + xy)

34
A) − x(∂/∂x)(xyzA + (yz + xz + xy)

34
A).

A similar argument works for xz
34
A, xy

34
A. Additionally,

xyzA = (xyzA + (yz + xz + xy)
34
A) − yz

34
A − xz

34
A − xy

34
A.
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Suppose 1(G, e). We make the equation xyz[x1y1]∗ + (yz + xz + xy)[x1y0]∗:

xyz
12
A + (yz + xz + xy)

12,34
A = Σi p0i(xyzAai + (yz + xz + xy)

34
A

aia)

+ 2xyz(q10 − q01)A + 2xyz(q11 − q20 − q02)
34
A

+ (yz + xz + xy)(q10 + q01)
34
A.

It follows that 1(G ∪ z, e). �

4. Wheel graphs

We can give a full characterization of which edges of wheel graphs satisfy Condition
1. Specifically for wheels with more than 3 spokes, Condition 1 is false for all rim
edges and true for all spoke edges.

We need a few lemmas to obtain the results. The next lemma is closely related
to Proposition 2.3 and says that if two edges form a two-edge cut-set of Ge then
contracting one of them is Condition 1 preserving.

Lemma 4.1. If a graph G has the form of the graph on the left below,

with the equation

G = (ey + ex + xy)A + x
34
A + y

45
A + e

35
A,

then 1(G, e)⇒ 1(Gy, e).

Note that here the central vertex connecting x, y, and e is only connected to the rest
of the graph A through x, y, and e.

Proof. The equation for 1(G, e) is

xyA + x
34
A + y

45
A =

∑
i

Pi((x + y)Aai +
35
A

aia) + QA + RA. (4.1)

The equation for 1(Gy, e) is

xA +
34
A =

∑
i

S i(xAai +
35
A

aia) + T A. (4.2)

Set y = 0 in Equation (4.1). Then we have a solution for Equation (4.2) by selecting

S i = Pi(y = 0); T = Q(y = 0) + R(y = 0).

This completes the proof. �
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Proposition 4.2. For the wheel graphs with n > 3 sides, Condition 1 is false for all rim
edges.

Proof. This will be proved by induction. Let Wn be a wheel graph with n sides and let
r be any rim edge. We will show that for n > 3 we have

1(Wn, r)⇒ 1(Wn−1, r). (4.3)
Assuming n > 3 guarantees that r is a regular edge of Wn−1.

Now assume 1(Wn, r). Then, looking at the diagram above, we see that r satisfies the
conditions of Lemma 4.1, so we can contract the rim edge y beside r to get 1(Wn y, r).

But then x and z are parallel in Wn y, so by Proposition 3.3 we can delete z
to get 1(W z

n y, r). But this is just Condition 1 for the wheel graph with one less
side, as W z

n y = Wn−1. Therefore we have proved Equation (4.3). Then, taking the
contrapositive,

¬1(Wn−1, r)⇒ ¬1(Wn, r)
for n > 3.

The base cases can be verified explicitly. By induction with n = 4 as the base case
we obtain ¬1(Wn, r) for n > 3. �

Lemma 4.3. 1(G, e) is true for all graphs having the form

with the equation

G = e[(yz + xz + xy)A + x
34
A,+y

45
A + z

35
A +

345
A ] + (yz + xz + xy)

34
A + (y + z)

345
A .

Proof. The equation 1(G, e) reads

(yz + xz + xy)
34
A + (y + z)

345
A

=
∑

i

Pi[(yz + xz + xy)Aai + x
34
A

aia + y
45
A

aia + z
35
A

aia +
345
A

aia]

+ Q[(y + z)A +
34
A] + R[(x + z)A +

45
A] + S [(x + y)A +

35
A]. (4.4)

Now we will make use of Proposition 2.1 to try to guess what the solution polynomials
to Equation (4.4) are.
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The Pi are the logical polynomials to guess first because
345
A occurs with them and

nowhere else on the right-hand side of Equation (4.4). Then to equate the
345
A terms,

we will try

Pi =
(y + z)ai

l − 1
.

The loop number1 of G, which we denote by l, is chosen as a reference value. Here, A

(with four fewer edges and one less vertex than G) has loop number l − 3,
34
A (with one

less vertex than A) has loop number l − 2, and
345
A has loop number l − 1.

With this choice of the Pi, the
∑

i Pi[· · · ] in Equation (4.4) evaluates to

y + z
l − 1

[(yz + xz + xy)(l − 3)A + x(l − 2)
34
A + y(l − 2)

45
A + z(l − 2)

35
A + (l − 1)

345
A ].

Next, we show that the
34
A terms work out. Notice that

l − 2
l − 1

= 1 −
1

l − 1
.

Then we endeavour to satisfy

(yz + xz + xy)
34
A = x(y + z)

(
1 −

1
l − 1

)34
A + Q

34
A,

which can be accomplished by choosing

Q = yz +
x(y + z)

l − 1
.

Finally, to make
45
A and

35
A work out, we choose

R =
−y(y + z)(l − 2)

l − 1
; S =

−z(y + z)(l − 2)
l − 1

.

Then, with these choices, by construction, all of the terms involving
34
A,

45
A,

35
A, and

345
A equate on both sides of Pi,Q,R, S . Finally, then, as the reader can verify, the terms
involving A all cancel, which gives a valid solution set Pi,Q,R, S . �

Proposition 4.4. For the wheel graphs with n ≥ 3 sides, Condition 1 is true for all
spoke edges.

Proof. This is an immediate consequence of Lemma 4.3. Let s be a spoke edge of Wn.

1In graph theory language the loop number of a graph is the dimension of the cycle space of the graph;
the term ‘loop number’ comes from physics.
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With the edges as labelled, we see that (Wn, s) has the form specified by the lemma,
and therefore 1(Wn, s) is true. �

The cancellation of terms involving A in Lemma 4.3 seems like something of a
minor miracle. It is suggestive that making a ∆ to Y transformation in the graph ought
to preserve condition 1. In fact, this possibility is what suggested Lemma 4.3 to us.
See Section 7 for further discussion of this point.

5. Simultaneous combinations in series–parallel graphs

Condition 1 itself is not ideally suited to the recursive constructions involved
in building series–parallel graphs. Specifically, one frequently wants to combine
expansions of the polynomials G and G but lacks any information on how the
coefficient polynomials relate. To work around this, we first consider a stronger
condition where the coefficients are controlled.

Definition 5.1. Let G be a source–terminal (series–parallel) graph and e1 ∈G an edge.
We say that simultaneous combination holds for (G, e1), or S (G, e1) holds, if there are
polynomials A j, B,C such that

G =
∑

A jG1 j + B ·G1

G =
∑

A jG
1 j

+ C ·G
1
.

We say that simultaneous combination holds for G, or S (G) holds, if S (G, e) holds for
all e ∈ G.

Note that if S (G, e) holds, then by Euler’s Theorem we can choose either B = 0 or
C = 0 in the statement of Definition 5.1. The freedom to choose which is 0 is quite
handy and explains why this symmetric, albeit redundant, definition was chosen.

Proposition 5.2. The simultaneous combination property S (G, e) implies that
Condition 1 holds for e ∈ G.

Proof. Immediate from the definitions. �

Simultaneous combinations are well behaved with respect to both series and parallel
operations.

Lemma 5.3. Let H, H′ be source–terminal graphs and let e ∈ H. If S (H, e) then
S (H ? H′, e) and S (HEH′, e).
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The basic plan is to put the required linear combinations together using Euler’s
theorem. This technique will be a theme in what follows, but since this is the first such
argument, we will go into detail.

Proof for S (H ? H′, e). Let e = e1, let n := deg(H) , let m := deg(H′), and let G :=
H ? H′. Then

G = HH′ + HH′

G = H H′

so

〈G1 j〉 = 〈H1 jH′ + H
1 j

H′,H1H′
j
+ H

1
H′ j
〉

〈G
1 j
〉 = 〈H

1 j
H′,H

1
H′

j
〉.

We note that deg(H) = deg(H) + 1, so by Euler’s theorem the components of the
vector [

(n − 2) (n − 1)
m (m − 1)

] H1H′

H
1
H′


are in 〈G1 j〉. Thus, so is

m
∑
j∈H

x jG1 j − (n − 2)
∑
j∈H′

x jG1 j = (n + m − 2)H
1
H′.

We also have that

m
∑
j∈H

x jG
1 j
− (n − 2)

∑
j∈H′

x jG
1 j

= m(n − 1)H
1
H′ − (n − 2)mH

1
H′

= mH
1
H′.

For j ∈ H, pick A j,C as in the statement of S (H, e1) (using the previously observed
freedom to set B = 0). Then for

B j :=


A j +

C
n + m − 2

(mx j) if j ∈ H,

−
(n − 2)C
n + m − 2

x j otherwise,

C′ :=
(
1 −

m
n + m − 2

)
C,

we verify that we have S (H ? H′, e):∑
j∈G

B jG1 j =
∑
j∈H

(
A j +

C
n + m − 2

(mx j)
)
G1 j +

∑
j∈H′

(
−

(n − 2)C
n + m − 2

x j

)
G1 j

=
∑
j∈H

A jG1 j +
∑
j∈H

C
n + m − 2

(mx j)G1 j −
∑
j∈H′

(n − 2)C
n + m − 2

x jG1 j
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=
∑
j∈H

A jG1 j +
C

n + m − 2

(
m

∑
j∈H

x jG1 j − (n − 2)
∑
j∈H′

x jG1 j
)

=
∑
j∈H

A j(H1 jH′ + H
1 j

H′) + C · H
1
H′.

By S (H, e1), we can simplify the remaining expression

=
∑
j∈H

A jH1 jH′ +
∑
j∈H

A jH
1 j

H′ + C · H
1
H′

= HH′ + H′(H −CH
1
) + C · H

1
H′

= G.

Meanwhile,∑
j∈G

B jG
1 j

=
∑
j∈H

(
A j +

C
n + m − 2

(mx j)
)
G

1 j
+

∑
j∈H′

(
−

(n − 2)C
n + m − 2

x j

)
G

1 j

=
∑
j∈H

A jG
1 j

+
∑
j∈H

C
n + m − 2

(mx j)G
1 j
−

∑
j∈H′

(n − 2)C
n + m − 2

x jG
1 j

=
∑
j∈H

A jG
1 j

+
C

n + m − 2

(
m

∑
j∈H

x jG
1 j
− (n − 2)

∑
j∈H′

x jG
1 j
)

=
∑
j∈H

A j(H
1 j

H′) +
C

n + m − 2
· mH

1
H′.

By S (H, e1), we can simplify the remaining expression

= H′(H −CH
1
) +

mC
n + m − 2

· H
1
H′

= G −
(
1 −

m
n + m − 2

)
C ·G

1
.

So S (G, e1) holds. �

Proof for S (HEH′, e). We use a similar argument for the series join. Let e = e1, let
n := deg H, let m := deg H′, and let G := HEH′. Then

G = HH′

G = HH′ + HH′

so

〈G1 j〉 = 〈H1 jH′,H1H′ j
〉

〈G
1 j
〉 = 〈H

1 j
H′ + H1 jH′,H

1
H′ j

+ H1H′
j
〉.

We note that deg(H) = deg(H) + 1, so by Euler’s theorem, the coordinates of[
(n − 1) (n − 2)
(m − 1) m

] H1
H′

H1H′
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Figure 1. Graphs illustrating the gap between Condition 1 and S .

are in 〈G
1 j
〉. Thus, so is

−(m − 1)
∑
j∈H

x jG
1 j

+ (n − 1)
∑
j∈H′

x jG
1 j

= (n + m − 2)H1H′.

We also have that

−(m − 1)
∑
j∈H

x jG1 j + (n − 1)
∑
j∈H′

x jG1 j

= −(m − 1)(n − 2)H1H′ + (n − 1)(m − 2)H1H′

= (m − 1)H1H′.

For j ∈ H, pick A j, B as in the statement of S (H, e1), this time suppressing C = 0.
Then for

A′j :=


A j −

(m − 1)B
n + m − 2

x j if j ∈ H,

(n − 1)B
n + m − 2

x j otherwise,

B′ :=
(
1 −

m − 1
n + m − 2

)
B,

we can verify that we have S (HEH′, e) in exactly the same way as before. �

Simultaneous combination is stronger than Condition 1. For example, let G and H
be as in Figure 1; then one can check that 1(H, e) is true but S (H, e) is false. However,
in some sense, simultaneous combination classifies when Condition 1 is stable under
parallel join. In the example of Figure 1, we see that G is an extension of H by a
parallel join but 1(G, e) is false. This is the content of Corollary 5.9.

First, we need a few observations on factorizations in Kirchhoff polynomials. Recall
that a biconnected component of a graph G is a maximal connected subgraph of G that
has no cut vertex. The terms block and biconnected component are synonymous.

Lemma 5.4. The nontrivial factors of the Kirchhoff polynomial of a loopless graph G
correspond to the biconnected components of G which are not isomorphic to K2.

Note that a tree has only copies of K2 as biconnected components corresponding
correctly to the Kirchhoff polynomial being 1. Also, the result can easily be extended
to graphs with self-loops by noting that a self-loop contributes a factor of its variable
and any such factors arise in this manner.
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Proof. First, note that spanning trees in the different biconnected components meet
only at cut vertices, so they are independent. Thus, the Kirchhoff polynomial of G is
the product of the Kirchhoff polynomials of these components.

Next, we need to show that there are no other factors. Suppose G has no cut vertices
but assume for a contradiction that G = P · Q for some nonconstant P and Q. Note, a
priori, that we do not know whether P,Q are Kirchhoff polynomials of a graph. The
Kirchhoff polynomial G is linear in each of the edge variables, so any factorization
gives a partition of the edges of G. Call the two subgraphs that the factorization into
P · Q induces A, whose edges are red, and B, whose edges are blue. Let H0(X) denote
the set of connected components of the graph X. Let Υ be the graph whose vertices
are elements of H0(A) ∪ H0(B) and whose edges are shared vertices in G.

Choose spanning trees Ta for each a ∈ H0(A), and notice
⋃

a Ta can always be
extended to a spanning tree of G using (necessarily) blue edges. Thus,

λ
( ∏

a∈H0(A)

∏
e<Ta

e
)

is a monomial of P, and λ , 0, since otherwise this product will never show up in the
polynomial G, contradicting that the spanning trees Ta can be extended to a spanning
tree of G. Similarly,

µ
( ∏

b∈H0(B)

∏
e<Tb

e
)

is a nonzero monomial of Q. But now

λµ
( ∏

a∈H0(A)

∏
e<Ta

e
)( ∏

b∈H0(B)

∏
e<Tb

e
)

is a monomial of G. In particular,
⋃

a Ta ∪
⋃

b Tb must be a spanning tree, and hence
acyclic, so Υ must be a tree. In particular, G has at least one cut vertex. �

Corollary 5.5. If G is biconnected, does not have self-loops, and is not K2, then the
Kirchhoff polynomial of G is irreducible and nonconstant in every edge variable.

Proof. By Lemma 5.4 the irreducibility is immediate. If G is biconnected and not K2
then it does not have a bridge, so each edge is avoided in at least one spanning tree. �

Corollary 5.6. Let H be a connected subgraph of a biconnected graph G that does
not have self-loops. If gcd(H,G) , 1, then H = G as graphs.

Proof. Since gcd(H,G) , 1, we have that neither G nor H is a tree. As H is
connected, its Kirchhoff polynomial is nonzero. Since the Kirchhoff polynomial of
G is irreducible, by Corollary 5.5 we see that G and H have the same Kirchhoff

polynomials. In particular, H is nonconstant in all of the edge variables of G, so
the subgraph H must contain all of the edges of G. �

We remark that the condition that H be a subgraph of G in the previous corollary is
essential.
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Figure 2. Graphs used for proof of Proposition 5.8.

Lemma 5.7. Let G be a connected graph with terminal vertices s and t. If the
polynomials G and G have a nontrivial common factor then either G has a biconnected
component which is connected to the rest of G at a single vertex and includes neither
s nor t except possibly one of them as the cut vertex, or G has a self-loop.

Proof. If G has a self-loop, the result is immediate, so we may assume otherwise.
Let Γ be the graph G with s and t identified and note G is the Kirchhoff polynomial
Γ, which by the gcd condition is nontrivial. Additionally, note that there is a natural
morphism of graphs ϕ : G→ Γ induced by identifying s and t. Let v be the vertex in Γ

that is the image of both s and t under ϕ. Observe that the restriction ϕ : G\{s, t} → Γ\v
is an isomorphism.

Observe that deg(G) = deg(G) + 1, so G and G having a factor in common implies
that G has a nontrivial factor. Furthermore, Γ is not K2, and so by Corollary 5.5 we see
that Γ has at least one cut vertex.

Let {Y1, . . . , Yn} be the biconnected components of Γ. If Γ has a cut vertex w which
is not v then there is a Y j not containing v. Thus ϕ−1(Y j) is a biconnected component of
G\{s, t}. There is at most one neighbour of v in Y j, namely w, so it follows that ϕ−1(Y j)
is a biconnected component of G that does not contain either s or t.

Otherwise, the unique cut vertex of Γ is v. Suppose G has no biconnected
component as described in the statement. Then either G is biconnected or G is a
series join of at least two biconnected components running from s to t. In this latter
case, Γ is a cycle of biconnected components and hence has no cut vertex, giving a
contradiction. Finally, suppose the graph G is biconnected. Since gcd(G, Γ) , 1, we
see that G is not K2, and so by Corollary 5.5 the polynomial G is irreducible. Thus
by looking at the degrees, we see G = G · L where deg L = 1. Also, by Corollary 5.5,
the polynomial G is nonconstant in every edge variable, so any variable in L appears
quadratically in G, which is a contradiction. Thus, G has a biconnected component as
described in the statement. �

Proposition 5.8. Let G and H be series–parallel graphs of the form illustrated in
Figure 2 and suppose Condition 1 holds for e in G ? H. Then S (G, e) holds.

Proof. Let e = e1 and note that series–parallel graphs do not contain self-loops.
In what follows, we identify the edge variables of H with their counterparts in

H ↪−→ G. Let Γ := G\(H ∪ {e}). Note G1 = HΓ and G
1

= HΓ. Since Condition 1
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holds, we may write G ? H as

GH + GH =
∑

j∈H⊂G

B′jH
jΓH +

∑
j∈Γ

C jHΓ jH +
∑
j∈H

B′′j HΓH
j

+
∑

j∈H⊂G

B′jH
j
ΓH +

∑
j∈Γ

C jHΓ jH +
∑
j∈H

B′′j HΓH j + DHΓH

= H
(∑

j∈H

B jG1 j +
∑
j∈Γ

C jG1 j
)

+ H
(∑

j∈H

B jG
1 j

+
∑
j∈Γ

C jG
1 j
)

+ DHΓH

where B j = B′j + B′′j . Since H is series–parallel, it does not have a cut vertex with a
biconnected component joining only at that vertex and containing neither s nor t except
possibly as the cut vertex, so gcd(H,H) = 1. Thus, from rearranging and factoring we
get

H | G −
(∑

j∈H

B jG
1 j

+
∑
j∈Γ

C jG
1 j
)

(5.1)

H | G −
(∑

j∈H

B jG1 j +
∑
j∈Γ

C jG1 j
)
. (5.2)

If Γ were also to divide each of the expressions above, then by disjointness of the
variables of H,Γ we see G

1
= HΓ divides the first expression and G1 = HΓ divides the

second. Hence, S (G, e) would hold. We proceed to prove exactly this.
Notice for j ∈ H that Γ remains a 1-cut component of G\{1, j}, so Γ |G

1 j
and Γ |G1 j.

Since H is connected we get by the 2-vertex-cut formula that

G = H(xeΓ + Γ) +
uv
HΓ

G = H(xeΓ + Γ)
st,uv
H Γ

where u, v are the source and terminal of ΓEe. So the right-hand sides of (5.1) and (5.2)
modulo 〈Γ〉 become

HΓ −
∑
j∈Γ

C jG1 j + 〈Γ〉

H Γ −
∑
j∈Γ

C jG
1 j

+ 〈Γ〉,

or, further simplifying with our explicit expressions of G,G,

HΓ −
∑
j∈Γ

C jHΓ j + 〈Γ〉

H Γ −
∑
j∈Γ

C jHΓ j + 〈Γ〉.
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Again, since H,H are coprime to Γ it suffices to verify

Γ|Γ −
∑
j∈Γ

C jΓ
j.

Returning to the original expression, we see that

G ? H + 〈Γ〉 =
∑
j∈H

B jG1 jH +
∑
j∈Γ

C jG1 jH

+
∑
j∈H

B jG
1 j

H +
∑
j∈Γ

C jG
1 j

H + 〈Γ〉

=
∑
j∈Γ

C jG1 jH +
∑
j∈Γ

C jG
1 j

H + 〈Γ〉

=
∑
j∈Γ

C jΓ
jHH +

∑
j∈Γ

C jΓ
jHH + 〈Γ〉

= 2
∑
j∈Γ

C jΓ
jHH + 〈Γ〉.

Meanwhile, from Figure 2 we see by the two-vertex cut formula that

G ? H + 〈Γ〉 = (Γ + xeΓ)(H ? H) + Γ(H
st,uv
H + H

uv
H) + 〈Γ〉

= Γ(H ? H) + 〈Γ〉

= 2HHΓ + 〈Γ〉.

Thus, taking the difference of the two previous calculations,

0 = 2HH
(
Γ −

∑
j∈Γ

C jΓ
j
)

+ 〈Γ〉.

Since both H and H are coprime to Γ, we may cancel these terms to obtain the
result. �

Corollary 5.9. Suppose G is a series–parallel graph such that S (G, e) does not hold
but Condition 1 does hold for e. Then there is a series–parallel graph H such that
Condition 1 fails for e in G ? H.

Proof. Note that G is series–parallel and so does not have self-loops. Condition 1
holds for e in G, so e is regular, and so at some point in the construction of G by
series and parallel operations we have the subgraph B ? (C1EeEC2), where one or both
of C1 and C2 may be empty. Without loss of generality, we may instead consider
B ? (CEe) where C = C1EC2, since the Kirchhoff polynomial is invariant under this
transformation. By Proposition 2.3, we may subdivide e if necessary to ensure that C
is nonempty (if e is subdivided, the two halves are the two-edge cut-set). Therefore G is
of the form to apply Proposition 5.8. Let H be as in Proposition 5.8. Since S (G, e) does
not hold by assumption, we see by Proposition 5.8 that Condition 1 does not hold for e
in G ? H. �
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Figure 3. Graph (a) satisfies condition T . Graph (b) does not satisfy condition T , which demonstrates that
condition T is not well behaved with respect to series join. Finally, graph (c) does not satisfy condition T

for the trivial reason that the derivatives of its Kirchhoff polynomial are identically 0.

6. Carving out a series–parallel class for Condition 1

As we saw in the previous section, simultaneous combination is well behaved with
respect to series and parallel joins, implies Condition 1, and is strictly stronger than
Condition 1. Furthermore, the way in which it is stronger is itself well behaved under
parallel join in the sense made precise in Corollary 5.9.

Consequently, characterizing a class of series–parallel graphs which have the
simultaneous combination property would give a class of series–parallel graphs whose
edges all satisfy Condition 1. Because of the nice behaviour with respect to series
and parallel joins, one would expect that we could give a recursively defined family
of series–parallel graphs with the simultaneous combination property. Unfortunately,
simultaneous combination is not well suited to pulling out a good base case for
implementing this plan. We need instead a variant on simultaneous combination to
generate a larger class of graphs that satisfy S (G). The point of this condition shows
up most strongly in Corollary 6.6; specifically, it captures when a parallel join with
edge e will satisfy S (G, e). As an added benefit, we are then able to apply these
technical results to identify a combinatorial condition that ensures S (G).

Definition 6.1. Let G be a series–parallel graph. We say T (G) holds if there are
polynomials A j,C such that

G =
∑

A jG j

C ·G =
∑

A jG
j
∈ 〈G〉.

We give some examples of condition T for small graphs in Figure 3. It is helpful to
compare these examples to the example in Figure 1. Condition 1 is false for the edge
e ∈ G in Figure 1. By Corollary 5.9, we see that S (H, e) does not hold, where H is the
graph from Figure 1. Finally, we will see by Lemma 6.7(i) that condition T fails for
the graph in Figure 3b, explaining why S (H, e) fails.

Condition T is well behaved with respect to parallel join, and we can understand
both joins with paths.

Lemma 6.2. If H,H′ are series–parallel graphs and T (H) then T (H ? H′).
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Proof. Let G := H ? H′ and note that G = HH′ + HH′. Let n := deg H and let
m := deg(H′). Thus,

〈G j〉 = 〈H jH′ + H
j
H′,HH′

j
+ HH′ j

〉.

Now,

HH′ = −
1

n + m − 1

(
(m − 1)

∑
j∈H

x jG j − n
∑
j∈H′

x jG j
)
.

By T (H), we may choose B j, j ∈ H and C such that∑
j∈H

B jG j =
∑
j∈H

B j(H jH′ + H
j
H′) = H H′ + CHH′.

Let

B′j :=


B j −

C(m − 1)
n + m − 1

x j if j ∈ H,

nC
n + m − 1

x j otherwise.

We verify that T (G) is satisfied with a calculation.∑
j∈G

B′jG
j =

∑
j∈H

(
B j −

C(m − 1)
n + m − 1

x j

)
G j +

∑
j∈H′

( nC
n + m − 1

x j

)
G j

= H H′ + CHH′ −CHH′

= G.

Meanwhile,∑
j∈G

B′jG
j
=

∑
j∈H

(
B j −

C(m − 1)
n + m − 1

x j

)
H

j
H′ +

∑
j∈H′

( nC
n + m − 1

x j

)
H H′

j

= H′
(∑

j∈H

B jH
j
)

+
C

n + m − 1

(∑
j∈H′

nx jH H′
j
−

∑
j∈H

(m − 1)x jH
j
H′

)
= H′

(∑
j∈H

B jH
j
)

+
C

n + m − 1
(nmH H′ − n(m − 1)H H′),

which by T (H) is in the ideal 〈H H′〉. �

Condition T has special behaviour for paths which we illustrate with the following
lemmas.

Lemma 6.3. Let H be a series–parallel graph such that T (H). Then T (HEK2).

Proof. Let e be the edge of K2, let n := deg H, and let A j,C be polynomials such that∑
j∈H

A jH j = H
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j∈H

A jH
j
= C · H.

Note that for the polynomials, HEK2 = H and HEK2 = H + xeH. Now let

C′ :=
(
C + xe +

n + 1
n

xe

)
and observe that∑

j∈H

(
A j +

xe

n
x j

)
H j + xe(C′ − xe)

∂

∂xe
(H) = H + xeH + 0

together with ∑
j∈H

(
A j +

xe

n
x j

)
(H + xeH) j + xe(C′ − xe)

∂

∂xe
(H + xeH)

= C · H + xeH +
n + 1

n
xeH + x2

e H + xe(C′ − xe)H

=

(
C + xe +

n + 1
n

xe

)
H + C′xeH

= C′(H + xeH)

proves the result. �

Lemma 6.4. Let H be a series–parallel graph and Γ a path. Then T (H ? Γ).

Proof. Let G := H ? Γ, let n := deg(G), and let z1, . . . , zm be the edge variables for Γ.
Now,

G := (z1 + · · · + zm)P, G = (z1 + · · · + zm)H + H,

from which it is clear that

G = (z1 + · · · + zm)
(1
n

∑
j∈G

x jG j −
∑
j∈Γ

z jG j
)

and

(z1 + · · · + zm)
(1
n

∑
j∈G

x jG
j
−

∑
j∈Γ

z jG
j
)

= (z1 + · · · + zm)
(n + 1

n
G −G

)
∈ 〈G

j
〉,

so we have T (G). �

Now we are positioned to see what condition T (H) is really for, namely,
guaranteeing S (G, e) when G is H parallel joined with e and, more generally, for series
joins of such Hs.
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Lemma 6.5. LetH be a finite collection of series–parallel graphs such that T (H) holds
for each H ∈ H . Let G be the series join of all H ∈ H . Then G ∈ 〈G j〉.

Proof. We have that
G =

∏
H∈H

H, G =
∑
H∈H

H
∏

H′,H

H′.

So,

〈G j〉 =
⊕
H∈H

〈
H j

∏
H′,H

H′ : j ∈ H
〉
.

By T (Hi), we may choose BH
j such that∑

H∈H

∑
j∈H

BH
j G j =

∑
H∈H

H
∏

H′,H

H′. �

The next corollary is an easy consequence of Lemma 6.5 but is not essential to the
rest of the paper.

Corollary 6.6. Let H be a finite collection of series–parallel graphs such that T (H)
holds for each H ∈ H . Let G be the series join of all H ∈ H . Then Condition 1 holds
for (the edge of) K2 in K2 ?G.

Proof. Let Γ := K2 ?G and e be the edge of K2. Then

Γ := xeG + G.

By the previous lemma, Condition 1 holds for e in Γ. �

Next we look at the base cases for building series–parallel graphs with the
simultaneous combination property. A notable obstacle in classifying series–parallel
graphs satisfying simultaneous combination is the fact that a series–parallel graph G
can decompose as H ? H′ where one of H or H′ has edges which are not regular.
Lemma 6.7 shows how we can sometimes overcome this obstacle. The distinct cases
of Lemma 6.7 are due to the fact that condition T and simultaneous combination are
sensitive to the marking of source and terminal.

Lemma 6.7. Let H := H1E · · · Ee1E · · · EHr be a series–parallel graph where e1 ∈ H is a
bridge, and let Γ be a series–parallel graph. If any of:

(i) T (Γ) holds and H is a path;
(ii) T (Γ) holds and T (Hi) holds for all i;
(iii) Γ is a path and T (Hi) holds for all i;

are satisfied, then S (H ? Γ, e1) and T (H ? Γ).

Proof. Note that T (Γ) implies T (Γ ? H), so this condition is satisfied in cases (i) and
(ii). Let G := H ? Γ. We prove that S (G, e1) holds case by case.
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(i) Note that
G = (x1 + · · · + xn)Γ + Γ, G = (x1 + · · · + xn)Γ.

Let A j,C be the polynomials as in T (Γ). Then∑
j∈Γ

A jG1 j + (x1 + · · · + xn)G1 = G

and ∑
j∈Γ

A jG
1 j

+ ((x1 + · · · + xn) −C)G
1

= G

so we are done.
(ii) We observe that the claim is equivalent to proving S ((H1E · · · EHrEe1) ? Γ, e1),

since the relevant polynomials associated to these two graphs are identical. Let
us relabel H := H1E · · · EHr and G := (HEe1) ? Γ. Now,

G = Γ(Hx + H) + HΓ

G = Γ(Hx + H).

Choose B j,D as in T (Γ). Since T (Hi) for all i, we have by Lemma 6.5 that there
are C j such that ∑

j∈H

C jH j = H.

Letting m := deg Γ, we verify that

D′ := −
(
D +

x
m

)
, A j :=


xx j

m
+ B j if j ∈ Γ,

C j otherwise,

are certificates for S (H ? Γ, x):∑
j∈G

A jG1 j =
∑
j∈H

C jΓH j +
∑
j∈Γ

( xx j

m
+ B j

)
Γ jH

= ΓH + xΓH + ΓH.

Meanwhile,∑
j∈G

A jG
1 j
− DG

1
=

∑
j∈H

C jΓH j +
∑
j∈Γ

( xx j

m
+ B j

)
Γ

j
H −

(
D +

x
m

)
ΓH

= Γ H + xΓH.

(iii) Again we observe that the claim is equivalent to proving

S ((H1E · · · EHrEe1) ? Γ, e1),

so we relabel H := H1E · · · EHr. Write Γ = z1 + · · · + zm and note

G = H(z1 + · · · + zm) + (xeH + H)
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G = (xeH + H)(z1 + · · · + zm).

Since T (Hi) holds for all i, we may choose A j as in Lemma 6.5. Now let

B j :=

A j if j ∈ H,
0 otherwise,

C := (z1 + · · · + zm + xe), D := xe.

Then ∑
j∈G

B jGe j + CGe = H + (z1 + · · · + zm + xe)H,

∑
j∈G

B jG
e j

+ DG
e

= (z1 + · · · + zm)H + xe(z1 + · · · + zm)H,

and so S (G, e1) holds. In this case we also need to show T (G), but this follows
from Lemma 6.4. �

Cycles are graphs which behave very nicely under series and parallel joins despite
the fact that Condition 1 is false for every edge. It will be convenient to use cycles as
building blocks for larger graphs satisfying simultaneous combination.

Lemma 6.8. Let H be a series–parallel graph which is a cycle and Γ be any series–
parallel graph. Then T (H), T (H ? Γ), and S (H ? Γ, e) holds for any edge e ∈ H. If Γ

is not a path then S (HEΓ, e) as well.

Proof. Write H := PP′ with P,P′ paths. Let Γ be a series–parallel graph. By
Lemma 6.4, we get that all of T (P ? Γ), T (P′ ? Γ), and T (H) hold. Thus, if e ∈ P
we have S (P ? (Γ ? P′), e) by Lemma 6.7. Moreover, T (Γ ? P) implies T (Γ ? H) by
Lemma 6.2.

Finally we consider series join. Let G := HEΓ, let xi denote the edge variables of P,
and let yi denote the edge variables of P′. Note

G = (x1 + · · · + xn)(y1 + · · · + ym)Γ + (x1 + · · · + xn + y1 + · · · + ym)Γ
G = (x1 + · · · + xn + y1 + · · · + ym)Γ

= HΓ.

Then

〈G1 j〉 = 〈0,Γ j〉

〈G
1 j
〉 = 〈0,Γ, (y1 + · · · + ym)Γ j + Γ

j
〉.

Let k := deg Γ. We verify that the choice of

B j :=



1
k

Hx j if j ∈ Γ,

H − (y1 + · · · + ym)
(
1 −

1
k

)
H if x j = y1,

0 otherwise,
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C := −
1
k

H

works as a certificate for S (G, e1). We see that∑
j∈G

B jG1 j =
∑
j∈Γ

1
k

Hx jΓ
j + 0

and that∑
j∈G

B jG
1 j

+ CG
1

=
∑
j∈Γ

1
k

Hx j((y1 + · · · + ym)Γ j + Γ
j
)

+

(
H − (y1 + · · · + ym)

(
1 −

1
k

)
H

)
Γ −

1
k

H((y1 + · · · + ym)Γ + Γ)

= (y1 + · · · + ym)HΓ +
k + 1

k
HΓ + HΓ − (y1 + · · · + ym)

(
1 −

1
k

)
HΓ

−
1
k

H((y1 + · · · + ym)Γ + Γ)

= HΓ + HΓ +

(
1 −

(
1 −

1
k

)
−

1
k

)
(y1 + · · · + ym)HΓ.

So we are done. �

Corollary 6.9. Let H be a cycle, let P be a path, let M := HEP, and let Γ be a series–
parallel graph. Then:

(i) T (M);
(ii) T (M ? Γ);
(iii) S (M ? Γ, e) for all e ∈ H; and
(iv) if T (Γ) then S (M ? Γ, e) for all e ∈ M.

Proof. We obtain T (M) by repeatedly invoking Lemma 6.3 and T (M ? Γ) from
Lemma 6.2. Define G := M ? Γ. If e ∈ P and T (Γ) then we have S (G, e) from
Lemma 6.7. Therefore (iv) follows from (iii) and all that is left to prove is (iii). If
e ∈ H, let n := deg(Γ) and write

H = (e + x1 + · · · + xr)(y1 + · · · + ym)
H = e + x1 + · · · + xr + y1 + · · · + ym

P = (z1 + · · · + zk), P = 1.

Then

G = HΓ + (H + H(z1 + · · · + zk))Γ
G = M Γ = (H + H(z1 + · · · + zk))Γ

Ge = Γ + (y1 + · · · + ym + z1 + · · · + zk)Γ
G

e
= (y1 + · · · + ym + z1 + · · · + zk)Γ.
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We notice that Gey1 = Γ, G
ey1

= Γ,∑
j∈Γ

x jHGe j − (n − 1)HGe

= nHΓ + (n − 1)H(y1 + · · · + ym + z1 + · · · + zk)Γ − (n − 1)HGe

= HΓ,

and ∑
j∈Γ

x jHG
e j

= nH(y1 + · · · + ym + z1 + · · · + zk)Γ

= nHG
e
.

So it follows that

A j :=


x jH if j ∈ Γ,

HEP if j = y1,

0 otherwise,

B := −(n − 1)H, C := −nH

serve as witnesses for S (G, e). �

We are now ready to give a class of series–parallel graphs which satisfy Condition 1.
A key class of graphs is those which have a planar embedding where one of the faces
gives a Hamiltonian cycle, that is, the cycle defined by the face includes all the vertices
of the graph.

For convenience in what follows, we make the following definition.

Definition 6.10. We call the operation ?e(G) := G ? e the restricted parallel join.
Similarly, we call Ee(G) := eEG and Ee(G) := GEe the restricted series joins.

Remark 6.11. Let G be a graph with a planar embedding that has a Hamiltonian cycle
as a facial cycle and let s, t be two vertices which are consecutive on this cycle (joined
by the edge e). We may always view G as a noncrossing arc diagram with the Hamilton
path from s to t as a horizontal line segment whose left endpoint is s and right endpoint
t, and all other edges as arcs above this line segment. Since the aforementioned
Hamilton path together with the edge e form the Hamiltonian face, the arc e is always
the outermost arc. In such an arc diagram the Hamiltonian face is the unbounded face.

Lemma 6.12. Let G be a graph that has a planar embedding with a Hamiltonian cycle
as a facial cycle and let s, t ∈G be vertices consecutive on the Hamiltonian face. Then
there is an isomorphism φ to a series–parallel graph (G̃, s′, t′) built out of ?e and E
such that φ(s) = s′ and φ(t) = t′. Conversely, if (G, s, t) is a series–parallel graph built
out of ?e and E with no cut vertex, then G has a planar embedding with a Hamiltonian
cycle as a facial cycle, where s, t are consecutive on the Hamiltonian face.
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Proof. (⇒) Let π : G → C be a planar embedding with a Hamiltonian face and
let s, t ∈ G be two consecutive vertices on the Hamiltonian face. Then, as in
Remark 6.11, we may view G as a noncrossing arc diagram with s the leftmost
vertex, t the rightmost vertex, and e the outermost arc which completes the
Hamiltonian face.
Remove the arc e from G. Then the biconnected components of the resulting
graph are either single edges or are embedded in the plane as noncrossing arc
diagrams with an arc connecting the leftmost and rightmost vertices (this is still
true even when e has a parallel edge in G). Let H be one of these biconnected
components.
If H is just a single edge then it is a series–parallel graph. Otherwise, H is
already embedded as a noncrossing arc diagram such that all of the vertices of
H lie on a horizontal path with an arc connecting the leftmost vertex s′ and
rightmost vertex t′. In particular, (H, s′, t′) is a smaller graph with a marked
pair of vertices satisfying the hypothesis, so by an inductive argument we see
that H is a series–parallel graph with source s′ and terminal t′, built using only
the prescribed operations. We now recover G in two steps:

(i) taking the series join of all biconnected components;
(ii) taking the (restricted) parallel join with the single arc e.

In particular, G is series–parallel with source the leftmost vertex of the first
biconnected component, which is s, and terminal the rightmost vertex of the
last biconnected component, which is t.

(⇐) Let (G, s, t) be a series–parallel graph satisfying the criterion of the lemma.
We prove the result by induction on min{ht Υ}, with Υ running over the
decomposition trees for (G, s, t). Fix Υ to be a decomposition tree of smallest
height for G.
If ht Υ = 0 then G = K2. If ht Υ = 1 then since G has no cut vertex, G = K2 ? K2,
for which the result is clear. Assuming the result for all ht Υ ≤ k, we prove the
result for height k + 1. Since G has no cut vertex, the root of Υ cannot be a E
operation. Thus G = H ? e, where

H = H1EH2E · · · EHn

for some n ≥ 1, and each Hi is either K2 or does not have a cut vertex. But each
Hi is built out of only {E, ?e} and has height strictly smaller than k + 1, so by the
induction hypothesis, any Hi has an arc diagram embedding as in Remark 6.11.
Concatenating the arc diagrams of the Hi and adding e as an outer arc above
the rest shows that G has a face which is a Hamiltonian cycle, namely, the outer
face given by the horizontal path in the arc diagram and the arc e. In particular,
s and t are consecutive on this face. �

We recall the definition of the Υ-dual from Definition 2.8 to state the next result,
which gives a criterion for condition T on series–parallel graphs.
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Corollary 6.13. Let G be a graph with a planar embedding with a Hamiltonian face
and let s, t ∈G be consecutive on the Hamilton face. Invoking the previous lemma, fix a
decomposition tree Υ for (G, s, t). If V(G) = {s, t} then the Υ-dual is a path. Otherwise,
the Υ-dual is a series–parallel graph satisfying condition T .

Proof. Let G∨ be the Υ-dual of G. By definition of the Υ-dual, we see that G∨ is a
series–parallel graph built out of {?, Ee, Ee}. In particular, condition T is stable under
these operations by Lemmas 6.3 and 6.2. If G∨ is not a path then Υ∨ contains at least
one ? operation, so there must be one furthest from the root (under the obvious partial
order). The subtree rooted at this ? builds a cycle, so, in particular, T holds for this
cycle. As previously mentioned, T then extends to G∨. Otherwise, Υ contains only ?
operations, so V(G) = {s, t}. �

We are finally ready to produce a combinatorial condition on a graph which implies
simultaneous combination and hence Condition 1 for every edge.

Corollary 6.14. Let H∨i for 2 ≤ i ≤ n be graphs which either have a Hamiltonian face
with two consecutive marked vertices or are paths. View each of these as a series–
parallel graph and let G∨ := H∨1 E · · · EH∨n . Fix an arbitrary decomposition tree Υ∨ for
G∨ and let G be the Υ∨-dual. If G∨ has at least four vertices then S (G, e) holds for
every e ∈ G.

Remark 6.15. As in Remark 6.11, we may view each of the H∨i as noncrossing arc
diagrams with a horizontal Hamilton path. Thus, we may view G∨ as a noncrossing
arc diagram with the Hamilton path from s to t a horizontal line segment whose left
endpoint is s and right endpoint t, and all other edges as arcs above this line segment.

Proof. By fixing Υ∨ for G∨ we implicitly fix a decomposition tree Υ∨i for each H∨i .
Indeed, Υ∨i is the rooted subtree of Υ∨ whose leaves are exactly those labelled with
the edges of H∨i . Note by definition of the Υ∨-dual that G = H1 ? · · · ? Hn. If H∨i has
at most three vertices then Υ∨i has at most one E operation. Thus, Υi has at most one
? operation, so Hi has at most one cycle. With this in mind, we divide the proof into
three cases: (1) each Hi is a path; (2) each Hi has at most one cycle; (3) H∨1 has at least
four vertices.

(1) If each Hi is a path then each H∨i has two vertices, by Corollary 6.13. As G∨

has at least 4 vertices, we have n ≥ 3. In particular, H1 ? H2 is a cycle, so by
Lemmas 6.8 and 6.7 we have both S (G) and T (G).

(2) If H1 has exactly one cycle then H1 = CEP with C a cycle and P a path. Thus
we have T (H1) by Corollary 6.9. If H2 is a path then by Lemma 6.7 we have
S (H1 ? H2, e) for all e ∈ H2. By Corollary 6.9, we have S (H1 ? H2, e) for all
e ∈ H1 and T (H1 ? H2). We apply the same techniques to the rest of the Hi to
get S (G) and T (G).

(3) As H∨1 has arcs connecting its source and terminal we have that H∨1 = Γ∨ ?
e1 ? · · · ? ek. Since H∨1 has at least four vertices so, too, does Γ∨, so it is
a graph satisfying the hypothesis of Corollary 6.14. Thus, from an inductive
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argument on ht Υ∨ we may assume that Γ satisfies both conditions S and T .
Since H1 = ΓEe1E · · · Eek, we have by Lemma 6.3 that T (H1) and by Lemma 5.3
that S (H1, e) for all e ∈ Γ.
Now, by symmetry and the previous cases, either H2 is a path or it satisfies
T (H2), so by Lemma 6.7 we have that S (H1 ? H2, e) for all e ∈ P. Since we
already have S (H1, e) for all e ∈ Γ, we have S (H1 ? H2, e) for all e ∈ H1. By
T (H1), we have T (H1 ? H2), so, in particular, if H2 is a path or has exactly one
cycle then we have S (H1 ? H2); on the other hand, if H∨2 has at least four vertices
then by symmetry we obtain S (H1 ? H2) anyway. We can repeat the symmetry
argument to get S (G) and T (G). �

In fact, we can conclude substantially more. We can take any graph and replace an
edge with a piece as in Corollary 6.14 and conclude that Condition 1 holds for edges
from the piece. The key is that Lemmas 5.3 and 6.8 hold for any source–terminal
graphs, not just series–parallel graphs, since the proofs never use more than that, so
we can do a parallel join with any graph once we have a piece satisfying S .

If G is a graph, (u, v) ∈ G is an edge, and H is a source–terminal graph, then we can
construct a new graph by deleting (u, v) and gluing the source (respectively, terminal)
of H to u (respectively, v). In effect, we replace the edge (u, v) with H.

Proposition 6.16. Let H be a graph which either is a cycle or satisfies the hypothesis
of Corollary 6.14. Let G be any graph, and replace any edge (u, v) ∈ G which is not
a self-loop with H; call the new graph G̃. Then Condition 1 holds for any e ∈ H ⊆ G̃
provided the loop number of G̃ is at least 2.

Note that this proposition also gives an alternate (albeit considerably less
elementary) proof for Proposition 3.1, by replacing an edge by the cycle consisting
of two parallel edges.

Proof. If H is just a cycle, G has at least one cycle, and (u, v) is not a bridge, then
by Lemma 6.8 we obtain simultaneous combination for e and thus Condition 1.
Otherwise, we have S (H, e) by Corollary 6.14, so this implies S (G̃, e) and thus
Condition 1. �

To underscore the freedom available from the fact that G is unrestricted, note that
if we choose G to be any series–parallel graph then we can construct a new series–
parallel graph G̃ such that S (G̃) holds, by applying Proposition 6.16 to every edge
of G. We can also feed these graphs through Proposition 6.16 into any other graph Γ,
et cetera.

We provide an example of this procedure using the graphs in Figure 4. Recall
that the wheel graph W4 satisfies Condition 1 for spoke edges and does not satisfy
Condition 1 for rim edges. The graph H∨ is the series join of graphs satisfying the
conditions of Corollary 6.14. We see that H is an Υ-dual of H∨ and has at least four
vertices, so in particular we have S (H, e) for all e ∈ H by Corollary 6.14.
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Figure 4. Example for Proposition 6.16.

Replacing the rim edges of W4 with H and doubling the spoke edges gives the
graph G. By Proposition 6.16, we see that S (G, e) holds if e lies in a copy of H.
Additionally, if e is not in a copy of H then e is a double edge. Therefore, Condition 1
holds for every edge of G.

We can verify that Condition 1 holds explicitly in this example for the edge η ∈ G.
Calculations were done with Magma [6], and a script is provided at [14]. For H we
have

H = (x + y)η + (xy + (x + y)(z + w))
H = η(xy + (x + y)(z + w)).

Let n := deg(H) = 3 and let

Ax := 1
2 yz + 1

2 yw − 1
2 yη,

Ay := xy + xz + xw + xη + 1
2 yz + 1

2 yw + 3
2 yη,

Az := 0,
Aw := −xy − xz − xw − xη − 3

2 yz − 3
2 yw + 1

2 yη − z2 − 2zw − w2,

Aη := 0,
C := y.

One can check that

H =
∑
j∈H

A jHη j

H =
∑
j∈H

A jH
η j

+ CH
η
.

That is, we have satisfied S (H, η). Let Γ be the undotted subgraph of G. Note that
Γ has 11 vertices and 23 edges, so each spanning tree excludes 13 edges. That is,
deg(Γ) = 13 and deg(Γ) = 14 =: m. We note G = H ? Γ, so

G = ((x + y)η + (xy + (x + y)(z + w)))Γ + η(xy + (x + y)(z + w))Γ
G = η(xy + (x + y)(z + w))Γ.
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The explicit forms of Γ and Γ are too large to be included in print. However, for the
computations checking S (G, η), it is enough to know that they are homogeneous of
degrees m − 1 and m respectively. Setting

B j :=


A j +

C
n + m − 2

(mx j) if j ∈ {x, y, z,w, η},

−
(n − 2)C
n + m − 2

x j otherwise,

C′ :=
(
1 −

m
n + m − 2

)
C,

we obtain polynomials which verify S (G, η). In particular, Condition 1 is satisfied for
η ∈ G.

7. Conclusion

Our results significantly increase the number of graphs and edges for which we
know whether or not Condition 1 holds. This means that there are many more graphs
for which the tools of [1] can be applied.

After our investigations of multiple edges, wheel graphs, and series–parallel graphs,
we are left with some questions. Lemma 4.3 was inspired by the possibility that
Condition 1 might carry through ∆ to Y transformations. Consider graphs containing
the following structure.

Suppose we have a graph G∆, as on the left in the above diagram, with three edges
forming a ∆ shape and a distinct fourth edge e. The assertion that ∆ implies Y for
Condition 1 would mean that if 1(G∆, e) is true then we could replace the ∆-forming
edges with edges forming a Y , to make the graph GY , and 1(GY , e) would still be true.
We suspect that this is the case.

The following heuristic has been very useful in this paper. The equations for
Condition 1 are unstable under natural operations such as gluing two graphs along
n > 1 vertices or adding parallel edges. However, properties or transformations one
suspects to imply condition 1 are sometimes preserved by these operations. For
example, when we investigated whether or not Condition 1 was true for all regular
edges in series–parallel graphs, we found extra conditions that were well behaved
under the operation of gluing two series–parallel graphs together, which could be
related to Condition 1. A study of these conditions then led us to the example
of Figure 1, which was a counterexample to our initial hopes. The relationship
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between Condition 1 and the ∆ − Y transformation could be approached using this
idea. Furthermore, Aluffi observes [1, page 5] that, in general, ‘condition 1 depends on
the global features of the graph’; we can see the simultaneous combination conditions
as serving to correct this, enabling us to obtain local results like Proposition 6.16 even
for Condition 1 itself.

One could hope for a full characterization of graph–edge pairs satisfying
Condition 1. We have been looking for a structural graph-theoretic characterization,
but one could also ask about the computational question – what is the computational
complexity of checking Condition 1 on a graph–edge pair? Continuing our series–
parallel investigations, both the structural and computational questions could be asked
for specific classes of graphs. It would also be interesting to study the proportion of
edges that satisfy condition 1 for large graphs. We suspect that this proportion may
asymptotically approach zero, simply because as graphs become larger the condition
becomes more complicated and difficult to satisfy; however, we would like to have a
more rigorous analysis of this problem.

Finally, one could consider Aluffi’s Condition 2. Condition 2 seems to be much
more geometric and less graph-theoretic, so we expect it to be less amenable to this
sort of analysis.
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