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Experimental and theoretical studies on millimetre-sized droplets suggest that at low
Reynolds number the difference between the drag force on a circulating water droplet
and that on a rigid sphere is very small (less than 1 %) (LeClair et al., J. Atmos. Sci.,
vol. 29, 1972, pp. 728–740). While the drag force on a spherical liquid droplet at high
viscosity ratios (of the liquid to the gas), is approximately the same as that on a rigid
sphere of the same size, the other quantities of interest (e.g. the temperature) in the case
of a rarefied gas flow over a liquid droplet differ from the same quantities in the case of
a rarefied gas flow over a rigid sphere. The goal of this article is to study the effects of
internal motion within a spherical microdroplet/nanodroplet – such that its diameter is
comparable to the mean free path of the surrounding gas – on the drag force and its overall
dynamics. To this end, the problem of a slow rarefied gas flowing over an incompressible
liquid droplet is investigated analytically by considering the internal motion of the liquid
inside the droplet and also by accounting for kinetic effects in the gas. Detailed results
for different values of the Knudsen number, the ratio of the thermal conductivities and
the ratio of viscosities are presented for the pressure and temperature profiles inside and
outside the liquid droplet. The results for the drag force obtained in the present work are
in good agreement with the theoretical and experimental results existing in the literature.

Key words: aerosols/atomization, non-continuum effects, drops

1. Introduction

Liquid droplets moving in a gaseous medium are frequently encountered in nature; for
instance, in rainfalls, in coughing or sneezing, in irrigation mist, etc.; they also have
tremendous industrial applications, such as in aerosol spray, spray cooling, thermal
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spray coating, agricultural spraying, spray painting, food processing, fuel injection, fuel
combustion, etc. Therefore, a clear understanding of the motion of liquid droplets in
a gaseous medium (or, in other words, gas flow over a liquid droplet) is crucial in
designing devices involving droplet motion in a gaseous medium and/or in improving their
performance.

For a gas flow over a liquid droplet, the ratio of the viscosities of the liquid inside
the droplet to that of the surrounding fluid – referred to as the inside-to-outside viscosity
ratio or, simply, the viscosity ratio and denoted by Λμ – is a non-zero finite number. The
two limiting cases of the problem are (i) fluid flow over a solid sphere (case of infinite
inside-to-outside viscosity ratio (Λμ → ∞)) and (ii) liquid flow over a gas bubble (case
of zero inside-to-outside viscosity ratio (Λμ ≈ 0)). In the former case, there is no question
of internal motion and in the latter case, the internal fluid motion has negligible effect
on the shape of the gas bubble as well as on the dynamics of the external flow (Oliver &
Chung 1985, 1987; Pozrikidis 1989). Thus, it is not surprising that these two limiting cases
have been explored extensively in the literature (see the references given in chapters 3 and
5 of the textbook (Clift, Grace & Weber 1978), which present a comprehensive review of
these two limiting cases), and they are now seemingly well understood. The internal fluid
motion in the case of liquid droplets, however, has a significant impact on the dynamics of
the external flow and, hence, should not be disregarded (Oliver & Chung 1987; Pozrikidis
1989). From a mathematical standpoint, the coupling of the external flow in the case of
a liquid droplet with the internal flow is through complicated boundary conditions on
the droplet interface that makes the theoretical and computational methods of analysis
considerably involved. From an experimental point of view, it is very challenging to
measure the flow inside the droplet without disturbing the shape of the droplet or without
changing the physical properties of the fluids. Consequently, only a handful of studies have
looked into the problem of gas flow over a liquid droplet considering the internal fluid
motion so far. Indeed, the authors could not find any paper on a rarefied gas flow over a
microsized/nanosized liquid droplet that accounts for the internal flow dynamics, although
the problem of rarefied gas flow past a microsized/nanosized evaporating/non-evaporating
droplet without internal circulation has been a subject of some recent works (see, e.g.
Rana, Lockerby & Sprittles 2018b, 2019; Rana et al. 2021a,b; Tiwari, Klar & Russo 2021;
De Fraja et al. 2022). Some open-source software, like OpenFOAM, in combination with
methods, such as the volume-of-fluid, level-set and direct simulation Monte Carlo (DSMC)
methods, have also been utilised to investigate gas–liquid multiphase flow problems
(Malekzadeh & Roohi 2015; Chakraborty 2019; Chakraborty et al. 2019). Nevertheless,
the problems studied with this software are typically in a somewhat different direction than
the one considered in this paper; for instance, the above references focus on bubble/droplet
formation and its dynamics.

The existence of internal circulation in liquid droplets falling in air (for whichΛμ ≈ 56)
was already speculated in the beginning of the last century by Lenard (1904) and was
confirmed later through wind tunnel experiments by Garner & Lane (1959) for large drops
and by Pruppacher & Beard (1970) for small drops. To the best of authors’ knowledge, the
first attempt to explain the effects of almost all the factors, including internal circulation,
on the shape and dynamics of large raindrops falling in air was made by McDonald
(1954). Through this study, McDonald (1954) concluded that, for large drops, the internal
circulation plays only a negligible role in controlling the shape of the drop. To investigate
the internal circulation in water drops falling at terminal velocity in air, LeClair et al.
(1972) proposed four theoretical approaches based on (i) creeping flow assumption for both
internal and external flows, (ii) the assumptions of irrotational external flow and inviscid
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internal flow, (iii) the boundary layer theory and (iv) solving the vorticity stream function
formalism of the Navier–Stokes equations numerically for both internal and external flows
together. In the same paper, they also presented a wind tunnel experimental study, similarly
to that of Pruppacher & Beard (1970), to gauge the validity of the results from their
theoretical approaches. By comparing the results obtained from the theoretical approaches
with those obtained from the wind tunnel experiment, LeClair et al. (1972) found that the
first approach markedly underestimated the internal velocity while the second approach
markedly overestimated it and that the results from the third and fourth approaches
were in reasonably good agreement with the experimental data for drops of diameters
smaller than 1 mm. However, for large drops (of diameters bigger than 1 mm), they found
that even their third approach overestimated the internal velocity significantly showing
a completely wrong trend and that their numerical approach, although overestimating the
internal velocity slightly, was able to capture the trend of the internal velocity qualitatively.
Furthermore, LeClair et al. (1972) also concluded that, for small values of the Reynolds
number Re, the drag force on the drop is practically the same as the drag force on a solid
sphere of the same Reynolds number. Following the numerical approach of LeClair et al.
(1972), Abdel-Alim & Hamielec (1975) investigated the effect of internal circulation on
the drag on a spherical droplet falling at terminal velocity and presented an empirical
formula – obtained by fitting their numerical results – for the drag coefficient as a function
of the viscosity ratio and external Reynolds number. In another similar numerical study,
Rivkind, Ryskin & Fishbein (1976) also solved the vorticity stream function formalism of
the Navier–Stokes equations numerically via the method of finite differences to determine
the drag on a spherical fluid drop falling in another fluid for viscosity ratios 0 ≤ Λμ < ∞
and for external Reynolds numbers 0.5 ≤ Re ≤ 100 that cover flow over a solid sphere,
over a liquid drop and over a small gas bubble. For Re � 1, they found that the drag
coefficient of the drop can be expressed as a convex combination of the drag coefficients of
the solid sphere and that of the gas bubble, with the coefficients in the combination being
functions of the viscosity ratio. Their formula for the drag coefficient of the drop turned out
to yield a fairly accurate drag coefficient for Re � 1. Rivkind & Ryskin (1976) furthered
the study to moderate Reynolds numbers and also gave another (empirical) formula for
the drag coefficient of the drop as a function of the viscosity ratio and external Reynolds
number. However, a comparison of the drag coefficients obtained from the formulae of
Abdel-Alim & Hamielec (1975) and Rivkind & Ryskin (1976) reveals that there could
be differences up to 20 % (for Re ≤ 20) in the values of the drag coefficients obtained
from them. Moreover, the drag coefficients computed from neither of the formulae of
Abdel-Alim & Hamielec (1975) nor Rivkind & Ryskin (1976) could approach the drag
coefficient obtained from the Hadamard and Rybczynski relation (Clift et al. 1978) in
the vanishing Reynolds number limit. Aiming to decipher the discrepancies arising from
the formulae of Abdel-Alim & Hamielec (1975) and Rivkind & Ryskin (1976), Oliver &
Chung performed two studies on flows inside and outside of a fluid sphere – first one for
low Reynolds numbers and the second one for moderate Reynolds numbers. In their first
study, Oliver & Chung (1985) employed a hybrid semianalytical method comprising of the
series-truncation technique and the finite-difference method to study the effect of internal
circulation on bubble and droplet dynamics at low Reynolds numbers. They found that the
density difference has no significant effect on the drag coefficient at low Reynolds numbers
and that the drag coefficient increases with increasing viscosity ratio. In their second study,
Oliver & Chung (1987) employed another hybrid semianalytical method comprising of the
series-truncation technique and the finite-element method to predict the flows inside and
outside a fluid droplet at low to moderate Reynolds numbers. In this study, they found
that the formula of the drag coefficient from Abdel-Alim & Hamielec (1975) is actually
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dubious while that from Rivkind & Ryskin (1976) is good in predicting the drag coefficient
for 2 ≤ Re ≤ 20. Since the formulae of both Abdel-Alim & Hamielec (1975) and Rivkind
& Ryskin (1976) for the drag coefficient are inadequate in the zero Reynolds number limit,
Oliver & Chung (1987) also gave a predictive formula for the drag coefficient valid for
0 < Re < 2. They also concluded that the strength of the internal circulation increases
with increasing Reynolds number.

As aforementioned, we have found neither any theoretical work nor any experimental
work on rarefied gas flow around a microsized/nanosized liquid droplet – especially
when accounting for the internal circulation – in the literature. Given that setting up
an experiment at such a small scale is even more challenging, the objective of this
paper is to investigate the aforesaid problem theoretically. The liquid phase inside the
droplet can be modelled with the Navier–Stokes equations. However, it is important to
note that the Navier–Stokes–Fourier (NSF) equations are not adequate for describing
rarefied gas flow (Sone 2002; Struchtrup 2005) outside the droplet. Any fluid flow –
including a rarefied gas flow – can, in principle, be described by the Boltzmann equation;
nevertheless, its numerical solutions are computationally very expensive in general and
particularly for flows in the so-called transition regime (Struchtrup 2005). The main
source of problems in dealing with the Boltzmann equation is the Boltzmann collision
operator appearing on the right-hand side of the Boltzmann equation. Thus there has
been a significant amount of research in developing ways alternative to directly solving
the Boltzmann equation for investigating rarefied gas flows. One of the most commonly
used numerical techniques for investigating rarefied gas flows is the DSMC method,
which is a probabilistic particle-based method developed by Bird (1994) to solve the
Boltzmann equation numerically. Since its development, the DSMC method has been
ameliorated and employed to investigate several canonical rarefied gas flow problems;
see, e.g. Rana, Mohammadzadeh & Struchtrup (2015), Stefanov, Roohi & Shoja-Sani
(2022), Taheri, Roohi & Stefanov (2022), Sadr & Hadjiconstantinou (2023) and references
therein. Nevertheless, the DSMC method also demands a very high computational cost
for processes in the transition regime. Aiming to substitute for the involved Boltzmann
collision operator in the Boltzmann equation, some simplified models – generically
referred to as kinetic models – have also been proposed. Some widely used kinetic models
are the Bhatnagar–Gross–Krook model (Bhatnagar, Gross & Krook 1954), the ellipsoidal
statistical Bhatnagar–Gross–Krook model (Holway 1966) and the Shakhov model
(Shakhov 1968). These kinetic models have also been utilised with the DSMC method.
However, each of these kinetic models has its own shortcomings/difficulties; the reader is
referred to Struchtrup (2005) for details of these kinetic models. The widely accepted
models for describing transition-regime flows are the extended macroscopic equations
derived from the Boltzmann equation predominantly through two asymptotic-expansion
based approaches, namely the Chapman–Enskog expansion method (Chapman & Cowling
1970) and the Grad moment method (Grad 1949). The models resulting from both methods
again have their own merits and demerits. Let us skip the details of them for the sake of
succinctness; the interested reader may refer to Struchtrup (2005) and Torrilhon (2016)
for details. To circumvent the demerits associated with the above two methods, Struchtrup
& Torrilhon regularised the equations resulting from the Grad moment method (referred
to as the Grad moment equations) by performing a Chapman–Enskog-like expansion
on the Grad moment equations and derived the so-called regularised 13-moment (R13)
equations (Struchtrup & Torrilhon 2003; Struchtrup 2004). The R13 equations, since
their derivation, have been remarkably successful in describing rarefied gas flows in the
transition regime; see Torrilhon (2016) and reference therein. Since the R13 equations have
been derived via an asymptotic expansion in the powers of a dimensionless parameter
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the Knudsen number, which is defined as the ratio of the mean free path of the gas to
a characteristic length scale in the problem, it is not surprising that the R13 equations
yield meaningful results mostly for small Knudsen numbers (i.e. for flows in the early
transition regime). Aiming to cover more of the transition regime, Gu & Emerson (2009)
derived the regularised 26-moment (R26) equations by extending the method proposed by
Struchtrup & Torrilhon (2003). The R26 equations, in general, describe transition-regime
flows better than the R13 equations, especially for relatively large Knudsen numbers.
Notwithstanding, the R26 equations also have limitations due to their derivation also
through an asymptotic expansion in powers of the Knudsen number. It can be stated
empirically that the R26 equations yield very good results for transition-regime flows up
to the Knudsen number close to unity (Gu & Emerson 2009; Rana et al. 2018b, 2021a)
but may yield quantitatively different results for certain processes beyond the Knudsen
number unity; see, e.g. Rana et al. (2018b, 2021a). Despite this, the system comprised
of the R26 equations (Gu & Emerson 2009) is the best known macroscopic model up to
date for describing transition-regime rarefied gas flows. Therefore, we shall model the gas
phase (outside the droplet) with the system of the R26 equations (Gu & Emerson 2009)
and the liquid phase inside the droplet with the Navier–Stokes equations. For comparison
purpose, we shall also include the analytic solution obtained by solving the NSF equations
for the gas phase. It is worthwhile noting that although the surface tension force is an
important force that ought to be accounted for while investigating gas–liquid multiphase
flows, considering the effect of the surface tension forces is beyond the scope of this
paper and will be considered elsewhere in the future. Here, we shall assume that the
surface tension forces on the droplet are strong enough to maintain its spherical shape.
This assumption is justified at least for droplets made of some commonly used liquids, as
discussed in § 4.4.

To find appropriate boundary conditions concomitant to the R13 and R26 equations
is another challenging task; nevertheless, remarkable progress has been made in
this direction since the pioneering work of Gu & Emerson (2007) on deriving the
boundary conditions for the R13 equations. Torrilhon & Struchtrup (2008) noticed
some inconsistencies in the boundary conditions derived by Gu & Emerson (2007) and
presented improved boundary conditions for the R13 equations based on physical and
mathematical requirements for the problem under consideration. The boundary conditions
of Torrilhon & Struchtrup (2008) may generically be referred to as the macroscopic
boundary conditions (MBC). Following the approach of Torrilhon & Struchtrup (2008),
Gu & Emerson (2009) derived the MBC for the R26 equations. Recently, the MBC for
the R13 equations have also been combined with the discrete velocity method in a hybrid
approach by Yang et al. (2020) to make the computations faster in the near-wall region.
Notwithstanding, Rana & Struchtrup (2016) and Rana et al. (2021a) showed that the MBC
for the linearised R13 (LR13) equations as well as for the linearised R26 (LR26) equations
are thermodynamically inconsistent and violate the Onsager reciprocity relations (Onsager
1931a,b; Beckmann et al. 2018) for some boundary value problems, and proposed a new
set of phenomenological boundary conditions (PBC) for the LR13 equations in Rana &
Struchtrup (2016) and for the LR26 equations in Rana et al. (2021a). As a next step, the
PBC valid for processes involving phase change were also derived by Beckmann et al.
(2018) for the R13 equations and by Rana et al. (2021a) for the R26 equations. In this
paper, we shall employ the PBC derived in Rana et al. (2021a) for the external flow. In
summary, we solve the LR26 equations – and also the NSF equations for comparison
purposes – for the gas phase (outside the droplet) along with the PBC and the linearised
Navier–Stokes equations for the liquid phase (inside the droplet) along with the coupled
boundary conditions to obtain the analytic solution for the flow fields. To validate the
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analytic solution obtained in the present work, we also compare the drag force on the
liquid droplet computed analytically in the present work with that obtained from Millikan’s
famous oil-drop experiment. A comparison of the drag force obtained from the present
theory with the results obtained from Millikan’s oil-drop experiment reveals that the drag
force on a spherical liquid droplet at high viscosity ratios is nearly the same as that on a
rigid sphere of the same size. Hence, in many practical applications (wherein the viscosity
ratio is usually large), for example a water droplet moving through air, the droplet can
be treated as a rigid sphere for the drag force computations. However, we show that the
internal motion of the liquid in the droplet does have effects on the other quantities of
interest (e.g. the temperature).

The remainder of this paper is organised as follows. The governing equations in
spherical coordinates along with the boundary conditions are presented in § 2. The
methodology for solving the problem analytically is outlined in § 3. The main results on
the effect of the internal flow inside the liquid droplet on the motion of the rarefied gas
flow are illustrated in § 4. Finally, concluding remarks are made in § 5.

2. Problem formulation

We consider a slow steady uniform flow of a monatomic rarefied gas approaching from
the negative ẑ-direction with a uniform velocity û∞ over a spherical droplet made of an
incompressible liquid and centred at origin, as depicted in figure 1. Since incompressible
liquid flows can be described accurately by the most celebrated equations of fluid
dynamics, the Navier–Stokes equations, we model the flow inside the liquid droplet with
the Navier–Stokes equations. However, as stated in § 1, the Navier–Stokes equations are
not adequate for describing rarefied gas flows; therefore, we model the gas flow using
the R26 equations, which describe rarefied gas flows remarkably well. To exploit the
spherical symmetry of the droplet, we shall express all the equations in the spherical
coordinate system (r̂, θ, φ), which is related to the Cartesian coordinate system (x̂, ŷ, ẑ)
via (x̂, ŷ, ẑ) ≡ (r̂ sin θ cosφ, r̂ sin θ sinφ, r̂ cos θ). Here, r̂ ∈ [0,∞), θ ∈ [0,π] and φ ∈
[0, 2π). The spherical symmetry of the droplet implies that the flow parameters are
independent of the direction φ. Consequently, all the field variables pertaining to the
problem are functions of r̂ and θ only.

For the aforesaid problem, an analytic solution to the full Navier–Stokes equations
and the fully nonlinear R26 equations is seemingly impossible. Therefore, we restrict the
present study to Stokes flows, i.e. to small Reynolds number flows (Re � 1), and to slow
flows, i.e. to small Mach number flows (Ma � 1), so that the linearised equations and
linearised boundary conditions can be utilised in order to obtain an analytic solution of
the problem. Such an analytic solution is valid for slow flows (Ma � 1) and in for low
Reynolds numbers (Re � 1). Given that rarefied gas flows encountered in microdevices
and nanodevices are usually slow flows, an analytic solution obtained by solving the
linearised equations along with the linearised boundary conditions is very plausible for
all practical purposes.

To obtain the linearised equations, the governing equations and boundary conditions
are linearised around a reference state, given by a constant density ρ̂0, a constant
temperature T̂0 and all other field variables as zero. For simplicity, we shall work with
the dimensionless equations and boundary conditions, which are obtained by introducing
the dimensionless deviations from their reference state values. Here, the deviations are
assumed to be sufficiently small so that flow description with the linearised equations
remains valid.
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Gas Liquid droplet

ŷ

ẑ

r̂

x̂

φ

θ

Figure 1. Schematic of a rarefied gas flow past a spherical liquid droplet.

2.1. Modelling of the gas phase
The gas phase in the problem is modelled with the linear, dimensionless, steady-state
R26 equations. The (fully nonlinear) R26 equations in the Cartesian coordinate system
have been propounded in Gu & Emerson (2009). The field variables in the R26 equations
are the density ρ̂, velocity v̂i, temperature T̂ , stress tensor σ̂ij, heat flux q̂i, (trace-free)
third velocity moment m̂ijk, partially contracted (trace-free) fourth velocity moment R̂ij
and fully contracted fourth velocity moment (also referred to as the scalar fourth moment)
Δ̂. The field variables with hats are the usual quantities with dimensions, like the ones
taken in Gu & Emerson (2009) but without hats. The R26 equations are linearised
around the reference state described above and are made dimensionless by introducing
the dimensionless deviations in the field variables from their respective reference state
values,

ρ := ρ̂ − ρ̂0

ρ̂0
, vi := v̂i√

R̂T̂0

, T := T̂ − T̂0

T̂0
, p := p̂ − p̂0

p̂0
, σij := σ̂ij

p̂0
,

qi := q̂i

p̂0

√
R̂T̂0

, mijk := m̂ijk

p̂0

√
R̂T̂0

, Rij := R̂ij

p̂0R̂T̂0
, Δ := Δ̂

p̂0R̂T̂0
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.1)

where R̂ is the gas constant; p̂0 = ρ̂0R̂T̂0 is the pressure in the reference state; ρ, vi,
T , p, σij and qi are the dimensionless deviations in the density, velocity, temperature,
pressure, stress and heat flux of the gas, respectively; similarly, mijk, Rij and Δ are the
dimensionless deviations in the corresponding quantities. In addition, the droplet radius R̂0
is taken as the length scale for making the space variable r̂ dimensionless, i.e. r := r̂/R̂0.
We insert the dimensionless deviations (2.1) in the original R26 equations and drop all the
nonlinear terms in deviations along with the time derivative terms. Finally, on transforming
the resulting equations from the Cartesian coordinate system to the spherical coordinate
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system, we obtain the linear, dimensionless, steady-state R26 equations, which read (Rana
et al. 2021a)

∂vr

∂r
+ 2vr

r
+ Dvθ

r
= 0, (2.2)

∂p
∂r

+ ∂σrr

∂r
+ 3σrr

r
+ Dσrθ

r
= 0, (2.3a)

∂σrθ

∂r
+ 3σrθ

r
− 1

2r
∂σrr

∂θ
+ 1

r
∂p
∂θ

= 0, (2.3b)

∂qr

∂r
+ 2qr

r
+ Dqθ

r
= 0, (2.4)

∂mrrr

∂r
+ 4mrrr

r
+ 4

5
∂qr

∂r
+ 2

∂vr

∂r
+ Dmrrθ

r
= − 1

Kn
σrr, (2.5a)

∂mrrθ

∂r
+ 4mrrθ

r
+ 2

5

(
∂qθ
∂r

− qθ
r

)
+ ∂vθ

∂r
− vθ

r

− 1
2r
∂mrrr

∂θ
+ 1

r
∂vr

∂θ
+ 2

5r
∂qr

∂θ
= − 1

Kn
σrθ , (2.5b)

1
2

(
∂Rrr

∂r
+ 3Rrr

r

)
+ 1

2
DRrθ

r
+ 1

6
∂Δ

∂r
− ∂p
∂r

+ 5
2
∂T
∂r

= − Pr
Kn

qr, (2.6a)

1
2

(
∂Rrθ

∂r
+ 3Rrθ

r

)
+ 1

6r
∂Δ

∂θ
− 1

4r
∂Rrr

∂θ
− 1

r
∂p
∂θ

+ 5
2r
∂T
∂θ

= − Pr
Kn

qθ , (2.6b)

1
r
D

(
−6

5
σrθ +Φrrrθ − 6

35
Rrθ

)
+ 9

5

(
∂σrr

∂r
− 2σrr

r

)

+ ∂Φrrrr

∂r
+ 5Φrrrr

r
+ 9

35

(
∂Rrr

∂r
− 2Rrr

r

)
= −Prm

Kn
mrrr, (2.7a)

6
5r
∂σrr

∂θ
+ 6

35r
∂Rrr

∂θ
− 1

2r
∂Φrrrr

∂θ
+ 8

5

(
∂σrθ

∂r
− 2σrθ

r

)

+ 8
35

(
∂Rrθ

∂r
− 2Rrθ

r

)
+ ∂Φrrrθ

∂r
+ 5Φrrrθ

r
= −Prm

Kn
mrrθ , (2.7b)

1
r
D

(
2mrrθ − 2

15
Ωθ + ψrrθ − 28

15
qθ

)
+ 56

15

(
∂qr

∂r
− qr

r

)

+ 2
(
∂mrrr

∂r
+ 4mrrr

r

)
+ ∂ψrrr

∂r
+ 4ψrrr

r
+ 4

15

(
∂Ωr

∂r
− Ωr

r

)
= −PrR

Kn
Rrr,

(2.8a)

2
(
∂mrrθ

∂r
+ 4mrrθ

r

)
+ ∂ψrrθ

∂r
+ 4ψrrθ

r
+ 1

5

(
∂Ωθ

∂r
− Ωθ

r

)

+ 14
5

(
∂qθ
∂r

− qθ
r

)
− 1

r
∂mrrr

∂θ
+ 14

5r
∂qr

∂θ
− 1

2r
∂ψrrr

∂θ
+ 1

5r
∂Ωr

∂θ
= −PrR

Kn
Rrθ ,

(2.8b)
1
r
D (8qθ +Ωθ)+ 8

(
∂qr

∂r
+ 2qr

r

)
+ ∂Ωr

∂r
+ 2Ωr

r
= −PrΔ

Kn
Δ (2.9)
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Rarefied gas flow past a liquid droplet

with the additional unknowns in (2.7)–(2.9) being

Φrrrr = −4
Kn

PrΦ

[
4
7

(
∂mrrr

∂r
− 3mrrr

r

)
− 3

7
Dmrrθ

r

]
, (2.10a)

Φrrrθ = −4
Kn

PrΦ

[
15
28

(
∂mrrθ

∂r
− 3mrrθ

r

)
+ 5

14r
∂mrrr

∂θ

]
, (2.10b)

ψrrr = −27
7

Kn
Prψ

[
3
5

(
∂Rrr

∂r
− 2Rrr

r

)
− 2

5
DRrθ

r

]
, (2.11a)

ψrrθ = −27
7

Kn
Prψ

[
8
15

(
∂Rrθ

∂r
− 2Rrθ

r

)
+ 2

5r
∂Rrr

∂θ

]
, (2.11b)

Ωr = −7
3

Kn
PrΩ

[
∂Δ

∂r
+ 12

7
DRrθ

r
+ 12

7

(
∂Rrr

∂r
+ 3Rrr

r

)]
, (2.12a)

Ωθ = −7
3

Kn
PrΩ

[
1
r
∂Δ

∂θ
+ 12

7

(
∂Rrθ

∂r
+ 3Rrθ

r

)
− 6

7r
∂Rrr

∂θ

]
. (2.12b)

Here D ≡ cot θ + ∂/∂θ . Equations (2.2)–(2.12), henceforth, will be referred to as
the linearised R26 (LR26) equations. The coefficients Kn, Pr, Prm, PrR, PrΔ, PrΦ ,
Prψ , PrΩ in the LR26 equations are the dimensionless numbers arising from the
non-dimensionalisation of the equations. In particular, the numbers

Kn = μ̂

ρ̂0

√
R̂T̂0R̂0

and Pr = 5
2
μ̂

κ̂
R̂ (2.13a,b)

are referred to as the Knudsen number and the Prandtl number, respectively, with μ̂ being
the viscosity of the gas and κ̂ being the thermal conductivity of the gas. It should be noted
that, owing to the linearisation, the viscosity μ̂ and thermal conductivity κ̂ in (2.13a,b)
are the viscosity and thermal conductivity of the gas at the reference state temperature
T̂0; and hence both are constant. Let us denote the viscosity and thermal conductivity of
the gas at the reference state temperature T̂0 by μ̂0 and κ̂0, respectively. Thus, owing to
the linearisation, μ̂ = μ̂0 and κ̂ = κ̂0 throughout this work. The values of the numbers
Pr, Prm, PrR, PrΔ, PrΦ , Prψ , PrΩ depend on the choice of the interaction potential
between two gas molecules. For the Maxwell interaction potential used in the present
work, the values of these numbers are Pr = 2/3, Prm = 3/2, PrR = 7/6, PrΔ = 2/3,
PrΦ = 2.097, Prψ = 1.698, PrΩ = 1 (Gu & Emerson 2009). The subscripts r and θ with
the vectors/tensors in the LR26 equations denote their respective components; for instance,
vr is the r-component of the deviation in the velocity vector and σrθ is the rθ -component
of the deviation in the stress tensor. Equation (2.2) can be identified as the equation of
continuity for the gas, (2.3a) and (2.3b) as the momentum balance equations in the r- and
θ -directions, respectively, and (2.4) as the energy balance equation, (2.5a) and (2.5b) as
the balance equations for the rr- and rθ -components of the stress, (2.6a) and (2.6b) as the
heat flux balance equations in the r- and θ -directions, and so on.

For comparison purposes, we shall also model the gas phase with the linearised
NSF equations. In this case, the linear, dimensionless, steady-state NSF equations are
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(2.2)–(2.4) along with the closure

σrr = −2Kn
∂vr

∂r
, σrθ = −Kn

(
∂vθ

∂r
− vθ

r
+ 1

r
∂vr

∂θ

)
, (2.14a,b)

qr = −5
2

Kn
Pr
∂T
∂r

and qθ = −5
2

Kn
Pr

1
r
∂T
∂θ
. (2.15a,b)

2.2. Modelling of the liquid phase inside the droplet
The liquid phase inside the spherical droplet is modelled with the linearised, steady-state,
incompressible NSF equations. The complete (fully nonlinear and unsteady) NSF
equations in the spherical coordinate system can be found in some standard textbooks
on fluid dynamics; see, for example, the textbook by Batchelor (1967). The linear,
dimensionless, steady-state NSF equations are obtained by dropping the time derivative
terms in the full NSF equations, linearising the field variables around the reference state
defined above and making them dimensionless using the density ρ̂0 and temperature T̂0
in the reference state and the droplet radius R̂0 as the length scale. After simplification,
the linear, dimensionless steady-state NSF equations for modelling the liquid phase of the
problem under consideration read

∂v
()
r

∂r
+ 2v()r

r
+ Dv()θ

r
= 0, (2.16)

∂p()

∂r
+ ∂σ

()
rr

∂r
+ 3σ ()rr

r
+ Dσ ()rθ

r
= 0, (2.17a)

∂σ
()
rθ
∂r

+ 3σ ()rθ
r

− 1
2r
∂σ

()
rr

∂θ
+ 1

r
∂p()

∂θ
= 0, (2.17b)

∂q()r

∂r
+ 2q()r

r
+ Dq()θ

r
= 0, (2.18)

with

σ ()rr = −2ΛμKn
∂v
()
r

∂r
, σ

()
rθ = −ΛμKn

(
∂v
()
θ

∂r
− v

()
θ

r
+ 1

r
∂v
()
r

∂θ

)
, (2.19a,b)

q()r = −5
2
Λκ

Kn
Pr
∂T()

∂r
and q()θ = −5

2
Λκ

Kn
Pr

1
r
∂T()

∂θ
. (2.20a,b)

The superscript ‘()’ in (2.16)–(2.19a,b) has been used to indicate that the variables with
the superscript ‘()’ belong to the liquid phase (i.e. to the liquid droplet). The variables in
(2.16)–(2.19a,b) are as follows. Firstly,

v()r = v̂
()
r√
R̂T̂0

and v
()
θ = v̂

()
θ√
R̂T̂0

(2.21a,b)

are the dimensionless deviations in the r- and θ -components of the velocity of the liquid,
respectively;

p() = p̂() − p̂()0
p̂0

(2.22)
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Rarefied gas flow past a liquid droplet

is the dimensionless deviation in the pressure of the liquid droplet from its pressure in
the equilibrium state p̂()0 , which is given by the pressure inside a stationary droplet in a
quiescent environment, i.e. p̂()0 = p̂0 + 2γ̂ /R̂0. Note that the reference pressure inside a
stationary droplet is higher than the reference pressure outside the droplet because of the
surface tension γ̂ . Furthermore, in (2.16)–(2.19a,b),

σ ()rr = σ̂
()
rr

p̂0
and σ

()
rθ = σ̂

()
rθ
p̂0

(2.23a,b)

are the dimensionless deviations in the rr- and rθ -components of the stress tensor for the
liquid, respectively;

q()r = q̂()r

p̂0

√
R̂T̂0

and q()θ = q̂()θ

p̂0

√
R̂T̂0

(2.24a,b)

are the dimensionless deviations in the r- and θ -components of the heat flux of the liquid,
respectively;

T() = T̂() − T̂0

T̂0
(2.25)

is the dimensionless deviation in the temperature of the liquid droplet from the temperature
in the reference state T̂0; Λμ = μ̂()/μ̂ is the ratio of the viscosity of the liquid to
the viscosity of the gas and Λκ = κ̂ ()/κ̂ is the ratio of the thermal conductivity of
the liquid to the thermal conductivity of the gas. Similarly to the above, owing to the
linearisation, μ̂() and κ̂ () are the viscosity and thermal conductivity of the liquid
at the reference temperature T̂0; consequently, μ̂, μ̂(), κ̂ , κ̂ (), Λμ and Λκ are all
constant in the present work. The field variables with hats and superscript ‘()’ can
be identified as the field variables of the original NSF equations. Furthermore, (2.16)
can be identified as the equation of continuity, (2.17a) and (2.17b) as the momentum
balance equations in the r- and θ -directions, respectively, and (2.18) as the energy balance
equation.

2.3. Boundary conditions
The physically admissible boundary conditions, which respect the second law of
thermodynamics and satisfy the Onsager reciprocity relations, for the LR26 equations have
been derived in Rana et al. (2021a). It may be noted that the boundary conditions derived
in Rana, Gupta & Struchtrup (2018a) and Rana et al. (2021a) are general – they consider
the motion of both gas and boundary in the normal direction along with evaporation.
In the problem under consideration, evaporation has been ignored for simplicity, the
interface between the liquid and gas has been assumed to be fixed, and that neither
the liquid nor the gas can penetrate the interface is assumed. Therefore, we would take
the evaporation/condensation coefficient ϑ = 0 and the normal component of the flow
velocity relative to the interface velocity Vn = 0 in the boundary conditions given in Rana
et al. (2021a). We skip more details of the boundary conditions for the sake of succinctness
and present them here directly; interested readers are referred to Rana et al. (2021a,b) for
more details. For the problem under consideration, the r-direction is the normal direction
while the θ - and φ-directions are the two tangential directions; nevertheless, the present
problem is independent of φ due to spherical symmetry. Therefore, we shall replace the
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subscripts n with r and i with θ in the boundary conditions derived in Rana et al. (2021a).
Consequently, the boundary conditions complementing the LR26 equations (2.2)–(2.12) –
for the problem under consideration – at the interface (i.e. at r = 1) read (Rana et al.
2021a)

vr = vI
r = 0, (2.26a)

qr = − χ

2 − χ

√
2
π

(
2T + 1

2
σrr + 5

28
Rrr + 1

15
Δ− 1

6
Φrrrr

)
, (2.26b)

mrrr = χ

2 − χ

√
2
π

(
2
5
T − 7

5
σrr − 1

14
Rrr + 1

75
Δ− 13

15
Φrrrr

)
, (2.26c)

Ψrrr = χ

2 − χ

√
2
π

(
6
5
T + 9

5
σrr − 93

70
Rrr + 1

5
Δ+ 11

15
Φrrrr

)
, (2.26d)

Ωr = χ

2 − χ

√
2
π

(
8T + 2σrr − Rrr − 4

3
Δ− 2

3
Φrrrr

)
, (2.26e)

σrθ = − χ

2 − χ

√
2
π

(
Vθ + 1

5
qθ + 1

2
mrrθ − 1

14
Ψrrθ − 1

70
Ωr

)
, (2.26f )

Rrθ = − χ

2 − χ

√
2
π

(
−Vθ + 11

5
qθ + 1

2
mrrθ + 13

14
Ψrrθ + 13

70
Ωr

)
, (2.26g)

Φrrrθ = − χ

2 − χ

√
2
π

(
−4

7
Vθ − 12

35
qθ + 9

7
mrrθ − 2

49
Ψrrθ − 2

245
Ωr

)
, (2.26h)

where vI
r is the velocity of the interface and is zero for the present problem, χ is the

accommodation coefficient, Vθ = vθ − v
()
θ is the velocity slip and T = T − T() is the

temperature jump. Note that the remaining boundary conditions for the rank-2 and rank-3
tensors given in Rana et al. (2021a) are not needed due to the fact that the present problem
is independent of φ.

While solving the gas phase with the linearised NSF equations (for comparison
purposes), the appropriate boundary conditions are (2.26a) and the ones obtained by
ignoring the higher-order moments in boundary conditions (2.26b) and (2.26f ). Thus, for
the linearised NSF equations, the appropriate boundary conditions are (2.26a) and

χ

2 − χ

√
2
π

(
2T + 1

2
σrr

)
+ qr = 0, (2.27)

χ

2 − χ

√
2
π

(
Vθ + 1

5
qθ

)
+ σrθ = 0. (2.28)

In order to solve the equations corresponding to the liquid and gas phases together,
we need additional boundary conditions, which are as follows. (i) Similarly to the gas,
the liquid cannot penetrate the interface. This means that the normal component of the
velocity of the liquid should also vanish at the interface, i.e.

v()r = 0 at r = 1. (2.29)

(ii) The heat flux and shear stress are continuous at the interface; this implies that

qr = q()r and σrθ = σ
()
rθ at r = 1. (2.30)
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Rarefied gas flow past a liquid droplet

It is worthwhile noting that the density ratio (of the liquid to the gas) – despite being
an important parameter in gas–liquid interfacial flows – appear neither in the governing
equations (2.2)–(2.9) and (2.16)–(2.18), nor in the constitutive relations (2.10)–(2.12),
(2.19a,b) and (2.19a,b) nor in boundary conditions (2.26), (2.29) and (2.30) due to our
assumptions of no phase change and of the surface tension force being strong enough to
keep the spherical shape and size of the droplet unchanged. Hence, the density ratio does
not play any role in the present work. Nevertheless, when taking the effect of the surface
tension force into account (i.e. when the droplet is allowed to change its shape) and/or
taking the phase-change into account (i.e. when the droplet is allowed to change its size),
boundary conditions (2.26a) and (2.29) need to be modified appropriately. The modified
boundary conditions will consist of the densities of both liquid and gas, and hence the
density ratio. In addition, when accounting for the effects of the surface tension forces,
the stress boundary condition (the second of (2.30)) also needs to be changed. A general
force balance condition at an interface between two fluids (labelled ‘1’ and ‘2’) is given
by (Landau & Lifshitz 1959)

(p̂1 − p̂2 + γ̂cκ̂)ni = −
[
σ̂
(1)
ij − σ̂

(2)
ij

]
nj + ∂γ̂c

∂ x̂i
, (2.31)

where p̂1 and p̂2 are the pressures exerted on the interface by the fluids ‘1’ and ‘2’,
respectively; γ̂c is the surface tension coefficient; κ̂ is the local surface curvature; ni is the
unit normal at the interface; and σ̂ (1)ij and σ̂ (2)ij are the stress tensors of the fluids ‘1’ and
‘2’, respectively. In the present work, we assume that the droplet remains spherical without
any growth or shrinkage and that it does not deform either; in other words, the radius of the
droplet R̂0 is assumed to remain constant. Therefore, we neglect the non-equilibrium force
balance in the normal direction as described in (2.31). It is justified since the equilibrium
aspect has already been considered when defining p̂()0 above. Additionally, for the force
balance in the tangential direction, we multiply (2.31) by the unit tangent vector ti at the
interface. This multiplication makes the left-hand side of the resulting equation vanish. By
disregarding the effect of surface tension forces, specifically the term ∂γ̂c/∂ x̂i (commonly
referred to as the Marangoni surface tension gradient) in (2.31), the boundary condition
simplifies to σ̂ (1)nt = σ̂

(2)
nt , which in the dimensionless form is the same as the second

boundary condition in (2.30) considered in the present work.

3. Analytic solution methodology

We solve the equations derived in § 2 analytically by following a method proposed in
Torrilhon (2010) and Rana et al. (2018b). The key idea of this method is to convert the
system of partial differential equations to a system of ordinary differential equations by
presuming the dependence of the field variables on the azimuthal angle θ through the sine
and cosine functions alone. In this method, the scalar variables and vectorial/tensorial
components of a field variable having an even number of θ indices are taken to be
proportional to cos θ , the vectorial/tensorial components having an odd number of θ
indices are taken to be proportional to sin θ and the proportionality constants are taken
to be functions of r alone (Torrilhon 2010; Rana et al. 2021a). Using this idea, we assume
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that the field variables are given by

vr(r, θ) = v1(r) cos θ, vθ (r, θ) = −v2(r) sin θ

p(r, θ) = p(r) cos θ, T(r, θ) = T(r) cos θ,

σrr(r, θ) = s1(r) cos θ, σrθ (r, θ) = s2(r) sin θ,

qr(r, θ) = q1(r) cos θ, qθ (r, θ) = −q2(r) sin θ,

mrrr(r, θ) = m1(r) cos θ, mrrθ (r, θ) = m2(r) sin θ,

Rrr(r, θ) = R1(r) cos θ, Rrθ (r, θ) = R2(r) sin θ,

Δ(r, θ) = d(r) cos θ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

v()r (r, θ) = v()1 (r) cos θ, v
()
θ (r, θ) = −v()2 (r) sin θ,

p()(r, θ) = p()(r) cos θ, T()(r, θ) = T()(r) cos θ,

}
(3.2)

where the functions v1,v2,p,T, s1, s2,q1,q2,m1,m2,R1,R2,d,v
()
1 ,v()2 ,p() and

T() are the functions of r alone.
The above ansatzes for the field variables are inserted in (2.2)–(2.12) and in

(2.16)–(2.19a,b). After simplification (cos θ and sin θ in each equation get cancelled), one
obtains two systems of ordinary differential equations – one for the liquid and the other
for the gas. These systems of ordinary differential equations are solved independently and
analytically. The analytic solution for the system associated with the liquid phase is easy
to obtain. It turns out to be

v()1 (r) = b1 + b2r2

2
, v()2 (r) = b1 + b2r2, p()(r) = 5b2ΛμKn r, T()(r) = b3r,

(3.3a–d)

where b1, b2 and b3 are the integration constants, which are computed using the interface
conditions (2.29) and (2.30). While obtaining solution (3.3a–d), we have also used the fact
that the solution should remain bounded as r approaches zero. The analytic solution for the
system associated with the gas phase is, however, not so straightforward to obtain. We have
used the computer algebra software Mathematica to obtain the analytic solution for the
system associated with the gas phase. For better readability, the solution has, however, been
relegated to the Appendix A. It may be noted that this solution contains eight integration
constants, namely C1, C2, C3 and K1,K2, . . . ,K5, which are computed using the eight
boundary conditions (2.26). After applying the boundary conditions, the solution for all
field variables for both the liquid and gas phases become known.

4. Results and discussion

To access the validity of the findings of this work, we first present the results on the drag
force and compare them with those obtained from an experiment. After validating the drag
force, we shall present the results on the physical field variables, which are often difficult
to measure through experiments.

4.1. Drag force
Before computing the drag force with the analytic solution obtained in the present work,
let us first comment on the experimental data, which will be used to validate our analytical
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Rarefied gas flow past a liquid droplet

findings on the drag force. The experimental data is actually from the famous oil-drop
experiment conducted in 1909 by R. A. Millikan, the Nobel laureate in Physics 1923, to
measure the electric charge carried by a single electron. Through this experiment, he also
computed the drag force on oil drops of different radii falling in the air at terminal velocity
(Millikan 1923). Millikan’s experimental data have been fitted by several researchers to
obtain an empirical formula for the drag force in the Knudsen–Weber form (Knudsen &
Weber 1911)

F = FStokes

[
1

1 + Kn
(
𝔞 + 𝔟 e−𝔠/Kn

)
]
, (4.1)

where FStokes = 6π Kn u∞ is the Stokes drag with u∞ = û∞/
√

R̂T̂0 being the far-field
dimensionless velocity of gas approaching the droplet (for simplicity, we have taken
u∞ = 1 in this article), and 𝔞, 𝔟 and 𝔠 are the experimentally determined constants. It
turns out that for an oil drop of size comparable with the mean free path of the air (i.e. in
the transition regime), the experimental data for oil drops in air from Millikan’s oil-drop
experiment requires these constants to be (Kennard 1938)

𝔞 = 1.23, 𝔟 = 0.41 and 𝔠 = 0.88. (4.2a–c)

The most accurate raw data from Millikan’s experiment were reviewed later by Allen &
Raabe (1982) using very precise values of the physical constants known at that time and
the nonlinear least-squares fitting technique. With these, the new values of the constants
𝔞, 𝔟 and 𝔠 obtained by Allen & Raabe (1982) are

𝔞 = 1.155 ± 0.008, 𝔟 = 0.471 ± 0.011 and 𝔠 = 0.596 ± 0.050. (4.3a–c)

An improved version of Millikan’s experimental apparatus was designed and built by Allen
& Raabe (1985) aiming to replace the oil drops by solid spheres in Millikan’s experiment
and to determine new values of the constants 𝔞, 𝔟 and 𝔠 corresponding to the drag force
on a solid sphere suspended in air. By taking three different types of solid spherical
particles – namely, polystyrene latex-divinylbenzene particles, polyvinyltoluene particles
and polystyrene latex particles – with the Knudsen number ranging from 0.03 to 7.2 in
this experiment, they found the values of the constants 𝔞, 𝔟 and 𝔠 to be

𝔞 = 1.142 ± 0.0024, 𝔟 = 0.558 ± 0.0024 and 𝔠 = 0.999 ± 0.0212. (4.4a–c)

Using the modulated dynamic light scattering technique – a technique fundamentally
different from the ones used by Millikan and by Allen and Raabe, Hutchins, Harper &
Felder (1995) also measured the drag force on spherical polystyrene latex (solid) particles
suspended in dry air for the Knudsen number values ranging from 0.06 to 500, and found
the values of the constants 𝔞, 𝔟 and 𝔠 to be

𝔞 = 1.2310 ± 0.0022, 𝔟 = 0.4695 ± 0.0037 and 𝔠 = 1.1783 ± 0.0091. (4.5a–c)

To compare the drag force computed analytically in the present work, we use the data
resulting from formula (4.1) with the constants 𝔞, 𝔟 and 𝔠 given in (4.2a–c) (taken from the
textbook Kennard (1938)) and in (4.2a–c) (determined by Allen & Raabe (1982)), which
give accurate fit to the experimental data from Millikan’s oil-drop experiment. In addition,
we shall also include the data resulting from formula (4.1) on taking the constants 𝔞, 𝔟 and
𝔠 given in (4.2a–c) (determined by Allen & Raabe (1985)) and in (4.2a–c) (determined
by Hutchins et al. (1995)), which give accurate fit to the data obtained from experiments
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performed with the (aforementioned) solid spheres suspended in air. Although one may
remonstrate that comparing the results on the drag force obtained in the present work,
which is on a monatomic gas flow over a liquid droplet, with those from Millikan’s oil-drop
experiment, which was on oil drops falling in air, would not be fair due to the fact that
air is not a monatomic gas, the viscosity of the monatomic gas in the present work is
taken to be the same as that of air used in Millikan’s oil-drop experiment – making the
comparison sensible. Furthermore, we are not aware of any theoretical/experimental work,
which presents the data for monatomic gas flow over a liquid droplet. Therefore, it is
reasonable to compare the results on the drag force obtained in the present work with the
data from Millikan’s oil-drop experiment.

In the present work, the drag force is computed analytically as follows. The drag force
in the integral form can be written as (Torrilhon 2010)

F = −2π

∫ π

0
zx(θ) · (P(r, θ) · k) sin θ dθ, (4.6)

where zx(θ) = (cos θ,− sin θ, 0), k = (1, 0, 0) and P = pI + σ is the pressure tensor.
The force on the surface of the liquid droplet is represented by P · k and its scalar product
with zx gives the component of the force in the direction of the flow. Substituting ansatz
(3.1) in (4.6), we obtain

F = 4π

3
[−p(1)− s1(1)+ 2s2(1)] . (4.7)

This, on simplifying further, yields

F = −2πC1Kn, (4.8)

where the constant C1 is determined using the boundary conditions given in (2.3).
Figure 2 exhibits the drag force normalised with the Stokes drag FStokes plotted over the

Knudsen number. The figure illustrates the drag force estimated by the LR26 equations
for a fixed value of the thermal conductivity ratio Λκ = 100 and for different values of
the viscosity ratio Λμ. In addition, the explicit values of the normalised drag force for
the same value of the thermal conductivity ratio Λκ = 100 and for different values of the
Knudsen number and viscosity ratio are also given in table 1.

It is clear from figure 2 and table 1 that as the Knudsen number increases, the drag force
decreases and approaches zero (in general, except for that from the NSF equations with
which the drag force seemingly attains a non-zero positive value) as the Knudsen number
approaches infinity. On the other hand, it can be seen from figure 2 and table 1 that with
the increase in the viscosity ratio Λμ, the drag force approaches unity for smaller values
of the Knudsen number. Since the viscosity ratio of an oil to air is somewhere in between
102 to 103 (depending on the oil), the figure clearly shows that the drag force predicted by
the LR26 equations for higher values of the viscosity ratios is in an excellent agreement
with the experimental data from Millikan’s oil-drop experiment for the Knudsen number
values as big as 1. It is also worthwhile noting that the oil used in Millikan’s experiment
not only has a very high viscosity but also has a high thermal conductivity; therefore the
results on the drag force from Millikan’s experiment (and also those in the present work
for high viscosity ratios) are very close to the drag force on a solid sphere (of the same
size as the size of the liquid droplet) – as also manifested by the propinquity of symbols in
figure 2.

Figure 3 depicts the drag force computed with the LR26 equations and normalised with
the drag force given by (4.9) again for a fixed value of the thermal conductivity ratio
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Allen & Raabe (1985)
Hutchins et al. (1995)
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0
101100
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Figure 2. Drag force (normalised with the Stokes drag FStokes = 6π Kn u∞) on a liquid droplet from the
linearised NSF and R26 theories as a function of the Knudsen number for a fixed thermal conductivity ratio
Λκ = 100. The square and star symbols denote the experimental data from Millikan’s oil-drop experiment
fitted by the empirical formulae of Kennard (1938) ((4.1) with (4.2a–c)) and Allen & Raabe (1982) ((4.1) with
(4.2a–c)), respectively. The disk and diamond symbols denote the data from experiments performed with solid
spherical particles in air fitted by the empirical formulae of Allen & Raabe (1985) ((4.1) with (4.2a–c)) and
Hutchins et al. (1995) ((4.1) with (4.2a–c)), respectively, and are included just for comparison.

F/FStokes (Λκ = 100)

Knudsen number Λμ = 1 Λμ = 5 Λμ = 10 Λμ = 100 Λμ = 1000

0.01 0.826315 0.929546 0.952284 0.976313 0.978936
0.1 0.772654 0.843830 0.857370 0.870973 0.872416
0.5 0.544453 0.570468 0.574446 0.578199 0.578583
1.0 0.396739 0.408531 0.410211 0.411767 0.411926
5.0 0.154088 0.155314 0.155473 0.155617 0.155631
10.0 0.091075 0.091425 0.091470 0.091510 0.091514

Table 1. Drag force normalised with the Stokes drag, FStokes = 6π Kn u∞, for different values of the
Knudsen number and viscosity ratios at a fixed thermal conductivity ratio Λκ = 100.

Λκ = 100 and for different values of the viscosity ratioΛμ. In addition, the explicit values
of the normalised drag force for the same value of the thermal conductivity ratioΛκ = 100
and for different values of the Knudsen number and viscosity ratio are also given in table 2.
We also compare the drag force computed analytically with the LR26 equations in the
present work with the drag force computed with an explicit formula given by Happel &
Brenner (1965), which – in our notations – reads

FHB = FStokes ×
1 + 2

3Λμ

1 + 1
Λμ

. (4.9)

From figure 3 and table 2, the drag force normalised with the drag force FHB (given by
(4.9)) for very small Knudsen numbers is very close to unity for all values of the viscosity
ratio Λμ, which is not the case when the drag force normalised with the Stokes drag
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Figure 3. Drag force on the liquid droplet normalised with the drag force given by (4.9). The thermal
conductivity ratio is Λκ = 100.

F/FHB (Λκ = 100)

Knudsen number Λμ = 1 Λμ = 5 Λμ = 10 Λμ = 100 Λμ = 1000

0.01 0.991579 0.984226 0.982044 0.979546 0.979262
0.1 0.927186 0.893468 0.884164 0.873857 0.872707
0.5 0.653344 0.604026 0.592398 0.580114 0.578777
1.0 0.476088 0.432563 0.423030 0.413131 0.412063
5.0 0.184906 0.164450 0.160332 0.156133 0.155684
10.0 0.109291 0.096803 0.094328 0.091813 0.091545

Table 2. Drag force normalised with the drag force given by (4.9) for different values of the Knudsen number
and viscosity ratio with the thermal conductivity ratio being fixed at 100.

(cf. figures 2 and 3 for small Knudsen numbers). However, for large Knudsen numbers,
the drag force scaled with FHB is more or less same as the drag force scaled with FStokes.
Indeed, from (4.9), as Λμ → ∞, FHB → FStokes; therefore for large viscosity ratios the
scaling with FHB or FStokes does not matter. Hence the dotted green lines and solid red
lines in figures 2 and 3 coincide with each other.

4.2. Flow fields: temperature and heat flux
Figures 4, 5 and 6 illustrate the heat flux lines and temperature contours in the ŷ = 0 plane
for a fixed viscosity ratio Λμ = 100 and for the thermal conductivity ratios Λκ = 1, 10
and 100, respectively. Figures 4(a,d), 5(a,d) and 6(a,d) display the results for the Knudsen
number Kn = 0.09. Figures 4(b,e), 5(b,e) and 6(b,e) display the results for the
Knudsen number Kn = 0.36. Figures 4(c, f ), 5(c, f ) and 6(c, f ) display the results for
the Knudsen number Kn = 0.9. Figures 4(a–c), 5(a–c) and 6(a–c) illustrate the results
obtained with the LR26 equations for the rarefied gas flow outside the droplet and with the
linear NSF equations for the liquid inside the droplet. Figures 4(d–f ), 5(d–f ) and 6(d–f )
are obtained with the NSF equations for both the liquid inside the droplet and gas flow
outside the droplet. Comparing the respective panels in figures 4(a–c), 5(a–c) and 6(a–c)
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Figure 4. Heat flux lines plotted on top of the temperature contours for the viscosity ratio Λμ = 100 and for
different values of the Knudsen number: Kn = 0.09 (a,d), Kn = 0.36 (b,e) and Kn = 0.9 (c, f ). The results for
the liquid phase (internal flow) have been computed with the linear NSF equations in all the cases while those
for the gas phase (external flow) have been computed with the LR26 equations (a–c) and with the linear NSF
equations (d–f ). The thermal conductivity ratio is Λκ = 1.

with those in figures 4(d–f ), 5(d–f ) and 6(d–f ), the R26 equations show that the heat in
the external flow transfers from the cold region (back side of the liquid droplet) to the hot
region (front side of the liquid droplet), which is a non-Fourier effect and for the liquid
droplet inside as predicted by the NSF equations it is just the other way round, i.e. the
heat flows from the hot region to cold region inside the liquid droplet. On the other hand,
panels in figures 4(d–f ), 5(d–f ) and 6(d–f ) show that the NSF equations cannot capture
the non-Fourier heat transfer in the external (rarefied gas) flow. In fact, the R26 equations
for the external flow give high (low) temperature on the front (back) side of the liquid
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Figure 5. Same as figure 4 but for the thermal conductivity ratio Λκ = 10.

droplet while the NSF equations for the external flow predict the opposite of this (cf. the
corresponding panels in figures 4a–c, 5a–c and 6a–c, with figures 4d–f , 5d–f and 6d–f ).
In addition, comparing figures 4, 5 and 6 with those obtained by Rana et al. (2021a), the
difference in the values of temperature profiles is evident, which is caused due to the effect
of the internal circulation inside the liquid droplet.

In order to get an insight of the temperature and heat flux at a given position, we
plot the temperature and radial component of the heat flux (both divided by cos θ to
understand the results for any angle θ ) with respect to the position r in figures 7 and 8,
respectively, again for a fixed viscosity ratio Λμ = 100 and for the thermal conductivity
ratios Λκ = 1, 10 and 100. Figures 7(a,b) and 8(a,b) display the results for the Knudsen
number Kn = 0.09. Figures 7(c,d) and 8(c,d) display the results for the Knudsen number
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Figure 6. Same as figure 4 but for the thermal conductivity ratio Λκ = 100.

Kn = 0.36. Figures 7(e,f ) and 8(e,f ) display the results for the Knudsen number Kn = 0.9.
Figures 7(a,c,e) and 8(a,c,e) illustrate the results obtained with the LR26 equations for the
rarefied gas flow outside the droplet and with the linear NSF equations for the liquid inside
the droplet while figures 7(b,d,f ) and 8(b,d,f ) display the results obtained with the linear
NSF equations for both liquid inside the droplet and gas outside the droplet. The droplet
interface has been demarcated by a vertical black line at r = 1 in all panels of figures 7
and 8. For the liquid phase, the analytic solution for the temperature and radial component
of the heat flux can actually be written quite easily from the first equation in (2.19a,b), the
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Figure 7. Dimensionless deviations in the temperature (scaled with cos θ ) as a function of position r for a
fixed viscosity ratio Λμ = 100 and for different values of the Knudsen number: Kn = 0.09 (a,b), Kn = 0.36
(c,d) and Kn = 0.9 (e, f ). The vertical black line at r = 1 demarcates the interface between the liquid and gas.
The results for the liquid phase (internal flow) have been computed with the NSF equations in all the cases
while those for the gas phase (external flow) have been computed with the LR26 equations (a,c,e) and with the
NSF equations (b,d, f ).

fourth equation in (3.2) and the third equation in (3.3a–d), and they read

T() = b3r cos θ and q()r = −5
2
Λκ

Kn
Pr

b3 cos θ. (4.10a,b)

Therefore, T()/ cos θ for the liquid phase is a linear function of r while q()r / cos θ for the
liquid phase at a given Knudsen number and at a given thermal conductivity ratio is just
a constant. Consequently, the curves on the left of the vertical black lines in figure 7 are
straight lines and the curves on the left of the vertical black lines in each panel of figure 8
are horizontal lines.

The temperature contours depicted in figures 4, 5 and 6 actually correspond to
temperature profiles exhibited in figure 7 by red, black and green lines, respectively. To see
this, let us, for example, fix θ = 0 and let us focus on figure 4 and the red lines in figure 7
(figures 5 and 6 and the lines of other colours in figure 7 can be understood analogously).
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Figure 8. Dimensionless radial heat flux (scaled with cos θ ) as a function of position r for a fixed viscosity ratio
Λμ = 100 and for different values of the Knudsen number: Kn = 0.09 (a,b), Kn = 0.36 (c,d) and Kn = 0.9
(e, f ). The vertical black line at r = 1 demarcates the interface between the liquid and gas. The results for the
liquid phase (internal flow) have been computed with the NSF equations in all the cases while those for the gas
phase (external flow) have been computed with the LR26 equations (a,c,e) and with the NSF equations (b,d, f ).

From (the red lines in) figure 7, the temperature of the liquid droplet decreases when
moving from its centre towards its interface. However, on comparing figure 7(a,c,e)
and figure 7(b,d, f ), one finds that the temperature of the external gas predicted by the
LR26 equations (figure 7a,c,e) increases on moving away from the interface whereas
that predicted by the linear NSF equations (figure 7a,c,e) decreases on moving away
from the interface. These are in agreement with the temperature contours portrayed in
figure 4 (notice the contours for θ = 0 when moving away from the centre of the droplet).
Furthermore, figure 7 clearly shows a non-zero temperature jump T = T − T() at the
interface. From figure 7(b,d, f ), the temperature of the liquid (gas) predicted by the linear
NSF equations is minimum (maximum and positive) at the interface, and hence the
temperature jump T = T − T() predicted by the NSF equations is always positive. This
is not the case when the LR26 equations are used for the external flow (see figure 7a,c,e).
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In fact, when the LR26 equations are used for the external flow, the temperature jump
T = T − T() is negative in most of the cases but positive in some cases.

Figure 8 exhibits the radial component of the heat flux (scaled with cos θ ) with respect
to the position r. As described above, the radial component of the heat flux for the liquid
phase is constant (notice the horizontal lines on the left of the vertical black line in
figure 8). On the contrary, the radial component of the heat flux is non-constant for the gas
phase (see the curves on the right of the vertical black line in figure 8), and is decreasing
monotonically for r > 1.

4.3. Flow fields: pressure and velocity
Figures 9, 10 and 11 illustrate the velocity streamlines plotted over the pressure contours
in the ŷ = 0 plane for a fixed thermal conductivity ratio Λκ = 100 and for the viscosity
ratios Λμ = 1, 10 and 100, respectively. Figures 9(a,d), 10(a,d) and 11(a,d) denote the
results for the Knudsen number Kn = 0.09. Figures 9(b,e), 10(b,e) and 11(b,e) denote
the results for the Knudsen number Kn = 0.36. Figures 9(c,f ), 10(c,f ) and 11(c,f ) denote
the results for the Knudsen number Kn = 0.9. Figures 9(a–c), 10(a–c) and 11(a–c)
illustrate the results obtained with the LR26 equations for the rarefied gas flow outside
the droplet and with the linear NSF equations for the liquid inside the droplet while
figures 9(d–f ), 10(d–f ) and 11(d–f ) are obtained with the linear NSF equations for both
liquid inside the droplet and gas flow outside the droplet. The streamlines in figures 9,
10 and 11 exhibit that, owing to the motion of the gas in the ẑ-direction, the liquid
inside the droplet near the top (close to (r, θ, φ) = (1,π/2, 0)) and bottom (close to
(r, θ, φ) = (1,π/2,π)) surfaces of the droplet starts moving in direction of the gas flow
but since the liquid cannot move outside of the droplet, it flows in the opposite directions
near the centre of the droplet, hence forming two counter-rotating vortices inside the
droplet. The pressure contours in figures 9, 10 and 11 show that the magnitude of the
pressure at a point (inside or outside of the liquid droplet) increases with an increase in the
Knudsen number.

Furthermore, a comparison of figures 9(a–c), 10(a–c) and 11(a–c) with figures 9(d–f ),
10(d–f ) and 11(d–f ) reveals that there are practically no differences in the magnitudes
of the pressure contours inside the liquid droplet but there are noticeable differences in
the magnitudes of the pressure contours for the gas phase in the two cases (i.e. when
using the LR26 equations (figures 9a–c, 10a–c and 11a–c) and the linear NSF equations
(figures 9d–f, 10d–f and 11d–f ) for the gas phase). Nonetheless, the differences in the
magnitudes of the pressure contours for the gas phase decrease with an increase in the
Knudsen number.

Similarly to the above, in order to get an insight of the pressure and velocity at a given
position, we plot the pressure (divided by cos θ to understand the results for any angle θ )
with respect to the position r in figure 12 and the z-component of the velocity for a fixed
θ = π/2 with respect to the position r in figure 13. For both figures 12 and 13, the thermal
conductivity ratio is again fixed toΛκ = 100 and the viscosity ratios are taken asΛμ = 1,
10 and 100. Figures 12(a,b) and 13(a,b) exhibit the results for the Knudsen number
Kn = 0.09. Figures 12(c,d) and 13(c,d) exhibit the results for the Knudsen number Kn =
0.36. Figures 12(e,f ) and 13(e,f ) exhibit the results for the Knudsen number Kn = 0.9.
Figures 12(a,c,e) and 13 (a,c,e) depict the results obtained with the LR26 equations for
the rarefied gas flow outside the droplet and with the linear NSF equations for the liquid
inside the droplet while figures 12(b,d, f ) and 13(b,d, f ) depict the results obtained with
the linear NSF equations for both liquid inside the droplet and gas outside the droplet.
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Figure 9. Velocity streamlines plotted over the pressure contours for the thermal conductivity ratio Λκ = 100
and for different values of the Knudsen number: Kn = 0.09 (a,d), Kn = 0.36 (b,e) and Kn = 0.9 (c, f ). The
results for the liquid phase (internal flow) have been computed with the NSF equations in all the cases while
those for the gas phase (external flow) have been computed with the LR26 equations (a–c) and with the NSF
equations (d–f ). The viscosity ratio is Λμ = 1.

The droplet interface has again been demarcated by a vertical black line at r = 1 in
figures 12 and 13. For the liquid phase, the analytic solution for the pressure and
z-component of the velocity can also be written quite easily from equations one to three
(3.2) and equations one to three (3.3a–d), and they read

p() = 5b2ΛμKn r cos θ (4.11)

980 A4-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

99
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.994


R. Bhattacharjee, S. Saini, V.K. Gupta and A.S. Rana

Kn = 0.09

LR26

Kn = 0.09

LR26

–2

–1

0

1

2

–2 –1 0 1 2

p(�) × 102

p(�) × 102

p × 102

p × 102

p(�) × 102

p(�) × 102

p × 102

p × 102

(b) (e)

(c) ( f )

(d )(a)

–23.5

–14.1

–4.7

4.7

14.1

23.5

–2 –1 0 1 2
–2

–1

0

1

2

–10.4

–7.8

–5.2

–2.6

0

2.6

5.2

7.8

10.4

p(�) × 102 p(�) × 102p × 102 p × 102

–55

–33

–11

11

33

55

–32

–24

–16

–8

0

8

16

24

32

–80

–48

–16

16

48

80

–2 –1 0 1 2
–2

–1

0

1

2

–52

–39

–26

–13

0

13

26

39

52

Kn = 0.36

LR26

–23.5

–14.1

–4.7

4.7

14.1

23.5

–2 –1 0 1 2
–2

–1

0

1

2

–5.2

–3.9

–2.6

–1.3

0

1.3

2.6

3.9

5.2

Kn = 0.09

NSF

–55

–33

–11

11

33

55

–2 –1 0 1 2
–2

–1

0

1

2

–19.2

–14.4

–9.6

–4.8

0

4.8

9.6

14.4

19.2

Kn = 0.36

NSF

–80

–48

–16

16

48

80

–2 –1 0 1 2
–2

–1

0

1

2

–44

–33

–22

–11

0

11

22

33

44

Kn = 0.09

LR26

Figure 10. Same as figure 9 but for the viscosity ratio Λμ = 10.

and

v()z = v()r cos θ − v
()
θ sin θ = b1 + b2r2 − b2r2

2
cos2 θ. (4.12)

Therefore, inside the droplet, p()/ cos θ is a linear function of r while v()z is parabolic in r
for θ = π/2. Consequently, the curves on the left of the vertical black lines in figure 12 are
straight lines and the curves on the left of the vertical black lines in figure 13 are parabolas.
Figure 12 delineates that the dependence of the pressure in the gas on the viscosity ratio is
negligible and that the pressure in the liquid increases with increasing the viscosity ratio,
although the increase in pressure in the liquid for large viscosity ratios is also insignificant.
It is important to note that figure 12 illustrates the deviations in the pressures in the liquid
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Figure 11. Same as figure 9 but for the viscosity ratio Λμ = 100.

droplet and in the gas from the pressures in their respective equilibrium states, which are
different for the liquid and gas due to the Laplace pressure. The dimensional pressure in
the liquid from (2.22) is given by

p̂() = p̂0[p() + 1 + 2γ Kn] (4.13)

where

γ = γ̂

μ̂0

√
R̂T̂0

, (4.14)

is the dimensionless surface tension. The dimensionless deviation in the liquid pressure
p() can be made as small as desired in comparison with 1 + 2γ Kn by taking û∞ to be
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Figure 12. Dimensionless deviations in the pressure (scaled with cos θ ) as a function of position r for
a fixed thermal conductivity ratio Λκ = 100 and for different values of the Knudsen number: Kn = 0.09
(a,b), Kn = 0.36 (c,d) and Kn = 0.9 (e, f ). The vertical black line at r = 1 demarcates the interface between
the liquid and gas. The results for the liquid phase (internal flow) have been computed with the NSF equations
in all the cases while those for the gas phase (external flow) have been computed with the LR26 equations
(a,c,e) and with the NSF equations (b,d, f ).

sufficiently small. This keeps our assumptions of the shape of the droplet being spherical
and its size being fixed justifiable.

Figure 13 is actually a one-dimensional interpretation of the velocity streamlines shown
in figures 9, 10 and 11. To see the interpretation, notice that figures 9, 10 and 11 show the
results in the ŷ = 0 plane while figure 13 displays the results in the ẑ = 0 (or θ = π/2)
plane, and hence we can see the results in both figures along a common line, which is the
x-axis. Figure 13 reveals that as we start from the centre of the droplet along the positive
x-axis, the z-component of the velocity of the liquid inside the droplet is initially negative,
then at some point it becomes zero and then it turns positive as we approach towards
the surface of the droplet, rendering a vortex in the upper half of the droplet. Further, on
moving outside of the droplet (along the positive x-axis), the z-component of the velocity
of the gas remains always positive and approaches u∞ = 1 as r approaches ∞. This is
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Figure 13. The z-component of the (dimensionless) velocity as a function of position r in the plane θ = π/2
for a fixed thermal conductivity ratio Λκ = 100 and for different values of the Knudsen number: Kn = 0.09
(a,b), Kn = 0.36 (c,d) and Kn = 0.9 (e, f ). The vertical black line at r = 1 demarcates the interface between
the liquid and gas. The results for the liquid phase (internal flow) have been computed with the NSF equations
in all the cases while those for the gas phase (external flow) have been computed with the LR26 equations
(a,c,e) and with the NSF equations (b,d, f ).

exactly what figures 9, 10 and 11 show if we focus on the streamlines falling on the positive
x-axis in figures 9, 10 and 11. It is evident from figure 13 that there is a discontinuity in the
z-components of the velocities of the liquid and gas at the interface of the liquid droplet –
referred to as the velocity slip – and that the magnitude of the discontinuity increases with
increase in the Knudsen number. Furthermore, figure 13 also reveals that the velocity of
the liquid droplet approaches zero as the viscosity ratio Λμ becomes larger and larger,
which is consistent with the case of a rarefied gas flow over a solid sphere.

4.4. Discussion on results for some commonly used fluids
In the above subsections, we have analysed the drag force on the droplet and flow profiles
(streamlines, heat flux lines, velocity, temperature, pressure and heat flux) of the liquid
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Liquid Λμ Λκ γ p̂0 (in bars)

Water 37.6 34.2 12.625 0.05
Propyl Alcohol 84.5 9.0 4.175 0.05
Methanol 23.3 11.2 3.875 0.2
Ammonia 5.5 26.2 3.540 11
Pentane 9.5 6.2 2.685 7
Propyne 6.1 6.5 1.965 7
Isobutane 6.5 5.0 1.725 4
R134a 8.4 4.5 1.370 7.5
Propane 4.2 5.2 1.200 12.5

Table 3. Parameters for some common engineering fluids at 300 K. The viscosity and thermal conductivity
ratios are with respect to the argon gas.

and gas over a range of dimensionless parameters, namely, the Knudsen number Kn, the
viscosity ratio Λμ and the thermal conductivity ratio Λκ . In this section, we pick some
commonly used fluids to gauge the applicability/limitations of the present work.

Table 3 exhibits the parameters, namely the viscosity ratioΛμ, the thermal conductivity
ratio Λκ , the dimensionless surface tension γ and the reference pressure p̂0, for some
commonly used liquids at the reference temperature T̂0 = 300 K. The viscosity and
thermal conductivity ratios are with respect to the argon gas, which has the viscosity
μ̂0 = 2.2725 × 10−5 Pa s at the reference temperature T̂0 = 300 K. The gas constant for
argon is R̂ = 208.1 J(kg K)−1. The parameters listed in table 3 have been determined
using the data provided by the National Institute of Standards and Technology (2023).
The reference pressure p̂0 is taken to be slightly above the saturation pressure of the fluid
at the reference temperature T̂0 = 300 K.

Recall from § 4.1 that, for large viscosity ratios, the drag force on the liquid droplet
approaches the drag force on a rigid sphere (the case of Λμ → ∞). As a matter of fact,
Happel & Brenner’s formula (4.9) also deduces that the percentage error between the
drag force on the liquid droplet with respect to the drag force in the rigid sphere case is
less than 10 % for all Λμ ≥ 2.5. For most common engineering fluids, the viscosity ratio
Λμ is apparently bigger than 2.5 (see table 3). Hence, for many practical applications
(such as, a water droplet moving through air), the viscosity ratio is high enough to treat
the liquid droplet to be a rigid sphere – as far as one is only concerned about the drag
force. Notwithstanding, the coupled dynamics of the liquid droplet and gas leads to some
interesting flow features in the temperature and heat profiles, as shown in §§ 4.2 and 4.3,
that could potentially play important roles in processes involving phase change (Rana et al.
2018b). To emphasise the point, we plot in figure 14 the temperature profile in the case of
argon gas flow past a rigid spherical ball made of glass, which has the thermal conductivity
approximately twice of that of water, at Kn = 0.3 by solid red lines. The corresponding
temperature profiles in the cases of argon gas flow past spherical liquid droplets of water
(dashed blue lines), propyl alcohol (purple dot–dashed lines) and methanol (green solid
lines) are also shown in figure 14. The vertical black line at r = 1 demarcates the interface
between the solid/liquid and gas. Evidently, there are significant differences in temperature
profiles in all above cases. The differences are primarily due to their different thermal
conductivity ratios and are more pronounced within the solid sphere or liquid droplet.
Smaller heat conductivity ratio apparently leads to larger temperature gradients within
and outside the liquid droplet or solid sphere.
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Figure 14. Dimensionless deviations in the temperature (scaled with cos θ ) as a function of position r for
Kn = 0.3 in the case of argon gas flow past a rigid spherical glass ball (solid red lines), in the cases of argon
gas flow past spherical liquid droplets of water (dashed blue lines), propyl alcohol (purple dot–dashed lines) and
methanol (green solid lines). The vertical black line at r = 1 demarcates the interface between the solid/liquid
and gas.
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Figure 15. The ratio of the temperature jump at the interface of a liquid droplet (made of water, propyl alcohol
and methanol) to the temperature jump at the interface of a corresponding solid sphere (Λμ → ∞) having the
same thermal conductivity as that of the liquid against plotted over the Knudsen number.

In order to highlight the effects of the internal motion on the temperature profiles, we
plot in figure 15 the ratio of the temperature jump at the interface of a liquid droplet to the
temperature jump at the interface of a corresponding solid sphere (Λμ → ∞) having the
same thermal conductivity as that of the liquid against the Knudsen number. We choose
the liquid droplets to be made of water (dashed blue lines in figure 15), propyl alcohol
(dot–dashed purple lines in figure 15) and methanol (solid green lines in figure 15) so that
our assumption of the liquid droplet being spherical holds good. The differences in the
temperature jump ratios for different liquid droplets with respect to its solid counterpart
(having the same thermal conductivity) are evident in figure 15, especially for relatively
smaller Knudsen numbers, although the differences decrease with the increasing Knudsen
number. Methanol having the viscosity ratio approximately 23 shows the largest deviation
(of approximately 30 %).

An important assumption made in this work is that the liquid droplet remains spherical
throughout. This assumption, in other words, means that the surface tension force on the
droplet is assumed to be larger than the pressure difference between inside and outside of
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the droplet at the interface, i.e.

p̂() − p̂ <
2γ̂

R̂0
, (4.15)

where γ̂ is the surface tension and R̂0 is the radius of the droplet. Condition (4.15) in the
dimensionless form reads

p() − p
Kn

< 2γ. (4.16)

From figure 12, ( p() − p)/Kn at the interface is approximately 4.44 (for figure 12a,b),
approximately 3.33 (for figure 12c,d) and approximately 2 (for figure 12e, f ). Comparing
these numbers with the twice of the dimensionless surface tension given in table 3, one
can see that condition (4.16) holds true for water, propyl alcohol, methanol, ammonia and
pentane but does not hold for isobutane, R134a and propane. Therefore, there are some
liquids (e.g. water, propyl alcohol, methanol, etc.) for which our assumptions of the droplet
being spherical is valid. Nevertheless, there are also many liquids for which the surface
tension forces are not strong enough to maintain the liquid droplet spherical. For such
liquids, it will be necessary to account for the effect of surface tension forces and to extend
the present work.

5. Conclusion

In this article, we have studied the effects of internal motion within a spherical liquid
droplet with its diameter being comparable to the mean free path of the surrounding
(monatomic) gas under the assumptions of no phase change involved and the surface
tension force being strong enough to maintain the liquid droplet spherical throughout.
The rarefied gas phase in this article has been modelled with the LR26 equations while
the flow in the liquid phase has been modelled with the incompressible NSF equations.
Owing to our assumptions, the problem has become somewhat simplified – allowing for
the analytic solution, which was still not so easy to obtain. The analytic solution plays a
vital role in understanding the kinetic effects in rarefied gases and also helps in developing
a deeper understanding on the effects, which the internal motion in a liquid droplet has on
the flow pattern of the rarefied gas flowing past it. With the analytic solution, the effects
of the liquid to gas viscosity ratio and the liquid to gas thermal conductivity ratio on the
drag force and the overall flow dynamics have been investigated.

To validate the analytic solution obtained in the present work, the analytic results for the
drag force obtained from the LR26 theory in the present work have been compared with the
limited experimental measurements available in the literature. It turns out that the analytic
results for the drag force obtained from the LR26 theory agree closely with experimental
data even for significantly large values of the Knudsen number. After validating the
analytic results on the drag force, the physical field variables, which are usually difficult to
measure in experiments, have been presented. The analytic results obtained in the present
work show a clear discontinuity in the velocities of the liquid and gas at the interface of
the liquid droplet (figure 13). It is worthwhile noting that the viscosity ratio of the liquid
to the gas in practical applications is usually large. Thus, from the findings of figure 2, it is
acceptable in such applications to treat the liquid droplet as a rigid sphere of the same size
if one is concerned only about the drag force. Nevertheless, § 4.4 shows that there could
be significant differences in the other quantities (e.g. the temperature) when treating the
liquid droplet as a rigid sphere. In addition, for some liquids and gases used in some other
applications, the viscosity ratio could be close to unity even at standard conditions (at
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25 ◦C and 1 atmospheric pressure); for instance, the viscosity ratio between water (liquid)
and ammonia (gas) at standard conditions is approximately 3.6. For such applications, the
presented theory would yield meaningful results.

It is important to note that, owing to our assumptions, the density ratio does not appear
in our analysis and hence does not affect the results in the present work. Nevertheless,
the density ratio as well as the surface tension are the two most important parameters,
whose effects are significant in problems of rarefied gas flow past liquid droplets and
cannot be ignored in practical applications. The present work may be treated as a first
step to achieving a good mathematical understanding of the (simplified) problem. More
realistic problems, involving surface tension and/or phase change, will be subjects of future
research.
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Appendix A. Analytic expressions for the unknowns in the ansatz (3.1) and (3.2)

The analytic solution for the unknowns appearing in (3.1) and (3.2) are as follows:

v1(r) = C1

2r
+ C2

3r3 − K1Θ1(r)

(
0.975701Kn3

r3 + 0.497885Kn2

r2

)

− K2Θ2(r)

(
1.4893Kn3

r3 + 1.88528Kn2

r2

)
, (A1)

v2(r) = C1

4r
− C2

6r3 + K1Θ1(r)

(
0.487851Kn3

r3 + 0.248943Kn2

r2 + 0.127032Kn
r

)

+ K2Θ2(r)

(
0.74465Kn3

r3 + 0.942641Kn2

r2 + 1.19327Kn
r

)
, (A2)

p(r) = C1Kn
2r2 − K3Θ3(r)

(
0.931108Kn2

r2 + 1.08307Kn
r

)

− K4Θ4(r)

(
0.254173Kn2

r2 + 0.172163Kn
r

)

− K5Θ5(r)

(
0.0501203Kn2

r2 + 0.0226838Kn
r

)
, (A3)
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T(r) = C3

45r2 − K3Θ3(r)

(
0.0172036Kn2

r2 + 0.0200113Kn
r

)

− K4Θ4(r)

(
0.0629047Kn2

r2 + 0.0426083Kn
r

)

− K5Θ5(r)

(
0.443094Kn2

r2 + 0.200538Kn
r

)
, (A4)

s1(r) = C1Kn
r2 + Kn4

r4

(
−10C1

Kn
+ 2C2

Kn3 + 2C3

5Kn2

)

+ K3Θ3(r)

(
6.19341Kn4

r4 + 7.20421Kn3

r3 + 3.72443Kn2

r2 + 1.08307Kn
r

)

+ K4Θ4(r)

(
4.98597Kn4

r4 + 3.37723Kn3

r3 + 1.01669Kn2

r2 + 0.172163Kn
r

)

+ K5Θ5(r)

(
2.20218Kn4

r4 + 0.996676Kn3

r3 + 0.200481Kn2

r2 + 0.0226838Kn
r

)
,

(A5)

s2(r) = Kn4

r4

(
−5C1

Kn
+ C2

Kn3 + C3

5Kn2

)

+ K3Θ3(r)

(
3.09671Kn4

r4 + 3.6021Kn3

r3 + 1.39666Kn2

r2

)

+ K4Θ4(r)

(
2.49299Kn4

r4 + 1.68862Kn3

r3 + 0.381259Kn2

r2

)

+ K5Θ5(r)

(
1.10109Kn4

r4 + 0.498338Kn3

r3 + 0.0751805Kn2

r2

)
, (A6)

q1(r) = Kn2

r3

(
C3

6Kn
− 3C1

2

)
+ K1Θ1(r)

(
1.50825Kn3

r3 + 0.769634Kn2

r2

)

− K2Θ2(r)

(
0.80299Kn3

r3 + 1.01649Kn2

r2

)
, (A7)

q2(r) = Kn2

r3

(
3C1

4
− C3

12Kn

)

− K1Θ1(r)

(
0.754123Kn3

r3 + 0.384817Kn2

r2 + 0.196366Kn
r

)

+ K2Θ2(r)

(
0.401495Kn3

r3 + 0.508246Kn2

r2 + 0.643381Kn
r

)
, (A8)
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m1(r) = 24C1Kn2

5r3 + Kn5

r5

(
−7344C1

49Kn
+ 16C2

Kn3 + 208C3

35Kn2

)

+ K1Θ1(r)

(
64.3578Kn5

r5 + 32.8408Kn4

r4 + 6.70326Kn3

r3 + 0.570095Kn2

r2

)

+ K2Θ2(r)

(
50.8419Kn5

r5 + 64.3599Kn4

r4 + 32.5889Kn3

r3 + 6.87563Kn2

r2

)

+ K3Θ3(r)

(
30.5159Kn5

r5 + 35.4962Kn4

r4 + 18.5802Kn3

r3

+ 5.60327Kn2

r2 + 0.931108Kn
r

)

+ K4Θ4(r)

(
72.4497Kn5

r5 + 49.0736Kn4

r4 + 14.9579Kn3

r3

+ 2.62674Kn2

r2 + 0.254173Kn
r

)

+ K5Θ5(r)

(
71.6731Kn5

r5 + 32.4383Kn4

r4 + 6.60653Kn3

r3

+ 0.775193Kn2

r2 + 0.0501203Kn
r

)
, (A9)

m2(r) = 4C1Kn2

5r3 + Kn5

r5

(
−3672C1

49Kn
+ 8C2

Kn3 + 104C3

35Kn2

)

+ K1Θ1(r)

(
32.1789Kn5

r5 + 16.4204Kn4

r4 + 3.91023Kn3

r3

+ 0.570095Kn2

r2 + 0.0484851Kn
r

)

+ K2Θ2(r)

(
25.4209Kn5

r5 + 32.18Kn4

r4 + 19.0102Kn3

r3

+ 6.87563Kn2

r2 + 1.45063Kn
r

)

+ K3Θ3(r)

(
15.2579Kn5

r5 + 17.7481Kn4

r4 + 8.25788Kn3

r3 + 1.60094Kn2

r2

)
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+ K4Θ4(r)

(
36.2249Kn5

r5 + 24.5368Kn4

r4 + 6.64796Kn3

r3 + 0.750496Kn2

r2

)

+ K5Θ5(r)

(
35.8366Kn5

r5 + 16.2192Kn4

r4 + 2.93623Kn3

r3 + 0.221484Kn2

r2

)
.

(A10)

R1(r) = Kn4

r4

(
12C3

5Kn2 − 228C1

7Kn

)

+ K1Θ1(r)

(
46.338Kn4

r4 + 23.6455Kn3

r3 + 4.02199Kn2

r2

)

− K2Θ2(r)

(
4.00877Kn4

r4 + 5.07465Kn3

r3 + 2.14131Kn2

r2

)

− K3Θ3(r)

(
42.868Kn4

r4 + 49.8643Kn3

r3 + 25.7788Kn2

r2 + 7.49652Kn
r

)

+ K4Θ4(r)

(
7.38704Kn4

r4 + 5.00359Kn3

r3 + 1.5063Kn2

r2 + 0.255071Kn
r

)

+ K5Θ5(r)

(
37.9774Kn4

r4 + 17.1881Kn3

r3 + 3.45738Kn2

r2 + 0.391191Kn
r

)
,

(A11)

R2(r) = Kn4

r4

(
6C3

5Kn2 − 114C1

7Kn

)

+ K1Θ1(r)

(
23.169Kn4

r4 + 11.8228Kn3

r3 + 3.01649Kn2

r2 + 0.51309Kn
r

)

− K2Θ2(r)

(
2.00439Kn4

r4 + 2.53732Kn3

r3 + 1.60598Kn2

r2 + 0.677662Kn
r

)

− K3Θ3(r)

(
21.434Kn4

r4 + 24.9321Kn3

r3 + 9.66706Kn2

r2

)

+ K4Θ4(r)

(
3.69352Kn4

r4 + 2.50179Kn3

r3 + 0.564861Kn2

r2

)

+ K5Θ5(r)

(
18.9887Kn4

r4 + 8.59403Kn3

r3 + 1.29652Kn2

r2

)
, (A12)
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d(r) = K3Θ3(r)

(
14.0055Kn2

r2 + 16.2913Kn
r

)

− K4Θ4(r)

(
1.71119Kn2

r2 + 1.15907Kn
r

)

+ K5Θ5(r)

(
3.75265Kn2

r2 + 1.6984Kn
r

)
. (A13)

In (A1)–(A13), the coefficients

Θ1(r) = exp
(

−0.510285(r − 1)
Kn

)
, Θ2(r) = exp

(
−1.26588(r − 1)

Kn

)
,

Θ3(r) = exp
(

−1.16321(r − 1)
Kn

)
,

Θ4(r) = exp
(

−0.677347(r − 1)
Kn

)
and Θ5(r) = exp

(
−0.452587(r − 1)

Kn

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A14)

describe the Knudsen layer functions that vanish as r → ∞.
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