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Introduction. The development of the theory of local rings has been greatly stimulated
by the importance of the applications to algebraic geometry, but it is none the less true that
this stimulus has produced a theory which, on aesthetic grounds, is somewhat unsatisfactory.
In the first place, if a local ring Q arises in the ordinary way from a geometric problem, then
Q will have the same characteristic as its residue field. I t is partly for this reason that our
knowledge of equicharacteristic local rings is much more extensive than it is of those local
rings which present the case of unequal characteristics. Again, in the geometric case, the
integral closure of Q in its quotient field will be a finite Q-module. Here, once more, we have
a special situation which it would be desirable to abandon from the point of view of a general
abstract theory.

In recent years, substantial progress has been made towards the construction of a theory
of local rings freed from the restrictions suggested by geometry. There are still many
unsolved problems in this field, but if one considers only one-dimensional local rings then a
substantial body of results is known, which form, in a sense, a complete unit. The present
paper is an expository account of these results. I t contains, in particular, an investigation
of the relations which hold between a one-dimensional local ring and the discrete rank 1
valuations associated with it. This corresponds, of course, to the theory which connects a
point P of a curve with the places of the curve having P as centre. In this connection, it may
be noted that the main result of the paper (Theorem 6) is essentially a generalisation of the
theoremf which asserts that an intersection multiplicity of two curves (as defined, in a well-
known way, by means of "places ") involves the two curves symmetrically.

It is inevitable, because the basic concepts involved are both simple and familiar, that
the literature should contain many discussions which are connected with the one given here,
and indeed examples can be found which go back more than twenty years. However, among
all the original contributions to this subject, the paper of Krull (5) entitled Ein Satz iiber
primdre Integritdtsbereiche is of particular significance. The central result of Krull's paper
is effectively our Theorem 7, and this contains the unexpected element of the investigation.
Given Krull's theorem, many of the other results are to a certain extent inevitable, but the
proofs contain a number of interesting features which will well repay a closer examination.

1. Grell's theorem on lengths of primary ideals. The letter Q will be used to denote a local
ring, and m will denote its maximal ideal. The proposition which follows contains an
elementary observation concerning local rings of dimension unity. The formal proof is omitted.

PROPOSITION 1. For a local ring of dimension unity, every element of mis a zero-divisor if
and only if m belongs to the zero ideal. If there are elements of m luhich are not zero-divisors,
then all the prime ideals belonging to the zero ideal are of first dimension ; in this case, a proper
ideal is m-primary if and only if it contains an element which is not a zero-divisor.

In any particular theorem, our hypotheses will usually ensure that we are not dealing

t See Walker (10), Chapter IV, Theorem 5.1.
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160 D. G. NORTHCOTT

with a local ring in which the maximal ideal is composed exclusively of zero-divisors, even if
this assumption is not made explicitly.

PROPOSITION 2. Siippose that dim Q = l, that x belongs to m and is not a zero-divisor, and
that a is an m-primary ideal. Then ax is m-primary and

length (ax) = length a-(-length (a;).

Further, length (x) is equal to the length of a composition series of ideals from a to ax.
Proof. If we regard Q and Qx as Q-modules then the mapping q->qx defines a Q-homo-

morphism of Q on to Qx. Since x is not a zero-divisor, the inverse image of ax is simply a
and therefore there is a 1-1 correspondence relating the ideals between Q and a to those
between Qx and ax. Accordingly,

length a = length ax-length (x),

which proves the first assertion. Since the relation just proved can be rewritten as
length (x) = length ax - length a,

the second assertion follows.

COROLLARY. If dim Q = 1, x belongs to m and is not a zero divisor, then

length (xn) =n length (x).

For length (xn) = length (Qx"-1. x) = length (a;) + length (a;"-1)
by the Proposition, and on repeating the argument the Corollary follows. Incidently we see
that the length of (x) is equal to its multiplicity in the sense of Samuel (see (9), Chapter II, 2).

To avoid overburdening the statement of the main result of this section, we shall make
some preliminary remarks. Let Q be a one-dimensional local ring and denote by S its full
ring of quotients. Further, let P be any extension ring of Q which is contained in 5 and
which is a finite Q-module. In these circumstances there is a conductor f from Q to P
consisting of all elements a belonging to 5 such that aP Q Q. Concerning f it should be noted
that, besides being contained in Q, it is both a Q-ideal and a P-ideal. Moreover, we can find
an element of f which is not a zero-divisor, consequently either f is m-primary or \ = Q.

The ring P will be a semi-local ring ; let pv p2, ... , p£ be its maximal ideals. If now x
belongs to m and is not a zero-divisor, then the prime ideals which belong to Px are just
Pi> Pa> ••• > PJ- This shows that a normal decomposition of Px can, because the p4 are
maximal, be written in either of the forms

Pa; = qx ^ q2 ^ ... ^ qt = qiq2.. . q(,

where q,- is prprimary. Here the components q,- are unique because the p,- will be minimal
prime ideals of Px. We make use of these observations and also of these notations in

THEOREM 1 (GrelV\). Suppose that x belongs to m and is not a zero-divisor in Q, and let

P x = q 1 q 2 . . . q I )

where qt is Pf-primary. Then
i

length (Qx) = E (length q{) [P/p<: Q/m].
t=i

Proof. Choose n so large that xn e f; then

Pxn+1 = q»+1 q»+*... q»+! £ pxn = qnqn _ qn c f C Q.

t A theorem of very similar character but with rather different assumptions, is due originally to Grell (4).
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GENERAL THEORY OF ONE-DIMENSIONAL LOCAL RINGS 161

We shall first consider a composition series of P-ideals from

qn+iqn+i... qn+i to q»q» ... q».

Let q? = qio => qii O q» => ••• Dqi< = q?+1

be a composition series of p^primary ideals ; then

is clearly a composition series of P-ideals. But all these ideals are contained in Q ; con-
sequently they can be regarded as Q-ideals as well as P-ideals. Of course, if we regard them
as Q-ideals then they need no longer form a composition series. Now q^Px Q qi,,+i; hence

and therefore

is a vector space over the field B/pv Further, since there are no P-ideals between
qi<q2+1 ••• q"+1 anc* qi, i+iq2+ 1-"q"+ 1 ' t n e dimension of this vector space is unity. I t
follows that as vector space over the subfield Q/m its dimension is [P/Px : Q/vn] =/i (say) ;
consequently a composition series of Q-ideals from q̂ qg"*"1 ••• q"+1 to qî +iq^"1"1 ••• q{*+1

has length fv Accordingly, if we combine these results for the various possible values of i we
find that the length of a composition series of Q-ideals from q^+1qg+1 ... <\f+1 to
q^qg+i ... q ^ 1 is

[P / P l : <2/m]* = [ P / P l : Q/m] [length q«+i -length q»]

By means of the same device, a composition series of Q-ideals from

is seen to contain

[P/pa : Q/m] [length q ^ 1 -length q«]

terms. Continuing this process, it emerges that

E [P/p, : Q/m] [length q"+! -length q«]

is the length of a composition series of Q-ideals from

qn+iqn+itti q«+i to

But if Pa;" = a (say), then Pxn+l = ax and therefore, by Prop. 2, length (Qx) is the length of a
composition series of Q- ideals from Pxn+1 to Pxn. The theorem will therefore follow if we
show that

length q?+x -length q?=length q,-.

To establish this, let Q[ be the generalised ring of quotients of P with respect to p< (see, for
example, (8) Chapter 2, § 2.7); then Q[ is a one-dimensional local ring. Further, if
q2 = Q,'q,-, then, for any integer r, length qj = length q,'r and so it will suffice to show that

length q-^1 -length q^n=length q̂  (1.1)

But from
Pa; = qj r\ o8 r\ ... r^ q,
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follows

where x' is the residue of x modulo the component of the zero ideal (of P) determined by
P - p,-. Since, however, x is not a zero-divisor, it follows that x' is not a zero-divisor,
consequently (see Prop. 2, Cor.)

length (a;'"+1) -length (x'n) = length (a;')

and this is equivalent to (1.1). This completes the proof.
2. Effects of the structure of the zero ideal. As before, we denote by Q a one-dimensional

local ring having the property that not all the elements of in are zero-divisors. By
Proposition 1, the zero ideal of Q is an unmixed ideal and

Q0 = n1 rs n2 r\ ... r\ 11[

where nt- is a primary ideal belonging to a one-dimensional prime ideal. If now 5 is the full
• ring of quotients of Q and n,=5n,-, then

is a normal primary decomposition of the zero ideal of 5. Further, since ZTj + i t ^ S if i
we can find elements eu e2, ... , el such that e( = l (mod H,) and e,=0 (mod XI t) whenever
i¥=j. These elements are uniquely determined by these requirements and they have the
further properties

e 1 +e 2 + . . . +e, = l, e? = e{, and e,ê  = 0 for

If therefore we put

P = Qe1+Qe2 + ... +Qeh

then P will be an extension ring of Q as well as a finite Q-module and so we shall be able to
apply Theorem 1 to this ring. To prepare the way for the application, we write fi, = H( r\ P
and note that this makes

P0=fi1 n i i j n ... ni"i|

a normal primary decomposition of the zero ideal of P.
Consider now the homomorphism of S defined by the mapping x^-xe{. This has kernel

XXt and as Xlt r\ Q = nit the image Qet of Q under the mapping is isomorphic to Q/n,-. But
Pe,=Qe(; consequently P/n, = Q/n,-. Again, if qt belongs to Q, for l ^ j ^ i , and

then q{e{ = 0, and this shows that

n, = Qe1+ ... +Qei_1 + Qei+l+ ... +Qet (2.1)

We can now prove
PROPOSITION 3. The ring P has precisely I maximal prime ideals pv p2, ... , p, and each

of these contains one and only one of the ideals n,-. / / the p,- are numbered so that n{ C pt then n.
is the component of the zero ideal of P determined by P - p,-.

Proof. We can certainly find at least one maximal prime ideal p which contains (say)
fij and, since Pjn1 = Qjn1 is a local ring, there is only one such maximal ideal. Again, p
cannot contain any of the ideals fi2, n3, ... , ii,. For suppose, for instance, that n2 C p ; thent

by (2.1), elt e2,... , e, are all contained in p. This, however, implies that 1 e p and we have a
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contradiction. Since every maximal ideal contains at least one of n^, ft2 fi, this proves
the first assertion, and the second assertion follows at once from the first.

Now suppose that x is an element of m which is not a zero-divisor and that

Px = <\x r> q2 rs ... r> ql = q1q2 ••• qt

is a resolution of Px into primary components. By Theorem 1,

length (Qx)=S (length q,)[P/p,-: Q/m]
but, since P/n< = Q/tt1-, in the present case [P/p,-: Q/m] = 1. Further, since ft, is the component
of the zero ideal determined by P - p,-, it is contained in any prprimary ideal and therefore,
in particular, n( Q q,-. This shows that length q,= length (q,/n,). Now iiii=j, then <\j+ni = P
because p,- does not contain it,-. Consequently, if x( denotes the residue of x modulo fi,, we
see that q,-/ftf is generated by x{ in P/n,-.

But P/n, = (2/it<; accordingly q,/fi,- is the principal ideal generated by x{ in Q/nt and so
we have

length q, = length (q,/rt,)= length {(Q/n,)^}
and therefore

length (Qx)- E length {(Q/n,)ar,}.
t-=i

This result is restated in
THEOREM 2. Let x be an element of m which is not a zero-divisor and let

QO =n1 n n 2 n ... r> iti

be a normal primary decomposition of the zero ideal. If now xi denotes the residue of x modulo
n(, then

i
length (Qx) = S length {(Q/n.) xt}.

t=i

3. Further effects of the structure of the zero ideal. The rings <3/nf, which appear in the
statement of Theorem 2, are such that their zero ideals are all of them primary ideals and so,
in the Theorem which follows, we turn our attention to one-dimensional local rings which
exhibit this property.

THEOREM 3. Let Q be a one-dimensional local ring whose zero ideal is a primary ideal
belonging (say) to the prime ideal p . Let x be an element of m which is not a zero-divisor and,
finally, let x' denote the residue of x modulo p . Then

length (Qx) = length (QO) . length {(Q/p)x'}.

Proof. We proceed by induction on the length s of the zero ideal of Q. If s = 1 the
theorem is obvious. We therefore suppose that s > 1 and that the theorem has been proved
in the case of one-dimensional local rings whose zero ideals are primary and of length s - 1. Let

p = n x Dit2 D ... D I I , = (O)

be a composition series of P-primary ideals ; then, by applying the inductive hypothesis to
the ring Q*=Q/ns_1 and the ideal generated by the residue x* of x, we see that

(5-1) length {(QIP)x') = length (Q*x*) = length (Qx + n,^);

consequently it will suffice to show that

length (Qx) -length (Qx + n,_j) = length {(Q/P)x'}.
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But we have the following equalities relating the lengths of certain Q-modules, namely

length (Qx) -length (Qx+ns_1)= length (~^~=^ = length

consequently it will suffice to prove that

length f - ^ - ) = length (Q'x1)

where Q' = Q/p. Choose flen^j so that 6^0; then the p-primary component of Q0 is
and therefore we can find c 4 p for which cn,^ c Q0. We then have

and, by consideration of the mapping q -> qc,

Now n s_ ip = (0); hence n,^ and all the ideals contained in it form modules with respect to
Q' = Q/p. Indeed the ideals contained in ns_x and the ^'-modules contained in ns_1 are one
and the same thing. Clearly Q9 = Q'6. Also, if qeQ, then qd = O if and only if qe p ; con-
sequently if q' eQ', then q'9 = 0 if and only if ^ '=0 . This shows that every element of Q6 has
a unique representation in the form q'd, and we see from this that to each Q-ideal b which is
contained in Q8, there corresponds a unique Q'-ideal b* such that b = b*0. In particular
cns_1 = a*9 for a certain non-zero Q'-ideal a* and then xcn3_1 = (x'a*)8. Note that a* and
x'a* are primary ideals belonging to the maximal ideal m' of Q'.

To complete the proof, let

a* = b* D b* D b * D ... D b* =x'a*

be a composition series of Q'-ideals ; then
cns_1 = b*0^b*8^ ... Dbr*^ = a;cns_1

is a composition series of ^'-modules and therefore of Q-ideals. Consequently

length (^=^-\= length (x'a*) -length a* = length (x1)

by Proposition 2. Combining our results we have

length f - ^ - V length (x1)
\xns-l/

and this establishes the theorem.
We can now combine Theorems 2 and 3 into the more comprehensive
THEOREM 4. Let Q be a one-dimensional local ring and let x be an element of m which is

not a zero-divisor. Further, let

be a normal primary decomposition of the zero ideal, where n{ is pi-primary. If now x( denotes
the residue of x modulo p,-, then

length (Qx)= E (length n . ) . length
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4. Latent multiplicities and residue degrees. With the aid of Theorems 1 and 4 we shall
now make a study of some of the properties of local domains.

PROPOSITION 4. Let Q be a complete one-dimensional local domain with quotient field F
and let Q' be the integral closure of Q in F ; then Q' is a finite Q-module. Further, Q' is a one-
dimensional regular local ring and therefore the valuation ring of a discrete rank 1 valuation.

Proof. The main difficulty, which consists in showing that Q' is a finite Q-module.f
will be overcome by an appeal to the structure theory of local rings.% First, if Q has the
same characteristic as its residue field, then Q contains a subring Qo which is a ring of formal
power series in one variable (with coefficients in a field) and over which Q is a finite module.
The only other alternative, since Q is a domain, is that Q should be of characteristic zero
while its residue field is of characteristic p?=0. In this case, Q contains a subring Qo having
the following properties :

(i) Qo is a complete local domain whose maximal ideal is generated by p,
(ii) Q and Qo are concordant and have the same residue field,

which imply that Q is a finite Q0-module. Now, in either case, Qo is the valuation ring of a
field Fo with a complete discrete rank 1 valuation and the degree [F : Fo] is finite ; conse-
quently, by a well-known result of Valuation Theory, the integral closure of Qo in F, namely
Q', is a finite Q0-module. It now follows, a fortiori, that Q' is a finite Q-module and thus the
main obstacle has been surmounted.

Since Q' is a finite Q-module, it follows, in the first instance, that Q' is a complete semi-
local ring but, because Q' has no zero-divisors, we may go further and say that Q' is a local
domain. Clearly dim <2' = 1, and, since Q' is integrally closed, it follows that it must be
regular. This completes the proof.

The valuation v (say) determined by the valuation ring Q' will be said to be associated
with Q, it being understood that v is an additive valuation on F and that its value group
consists of all the positive and negative integers. If m' is the maximal ideal of Q', then
Q'/m' is the residue field of Q' and of v and, moreover, the degree [Q'/m' : Q/m] is finite.
This degree will be referred to as the latent residue degree of Q. Both the notion of an asso-
ciated valuation and of a latent residue degree will shortly be extended to local domains
which are not complete. Before we proceed to do this, however, let us note that we have,
as an immediate consequence of Theorem 1,

PROPOSITION 5. Let Qbea complete one-dimensional local domain with associated valuation
v and latent residue degree f. If noiv x is a non-zero element of Q, then length (Qx) =fv(x).

After these preliminaries, let Q be a one-dimensional local domain which we no longer

suppose to be complete. Denote by Q the completion of Q. Then not every non-unit of Q

can be a zero-divisor ; consequently the zero ideal of Q has a normal decomposition

Q0 = nl r\ Hj, r^ ... r\ 11;,

where the n< are primary ideals belonging to different one-dimensional prime ideals p 4 (say).
Let us now make the

DEFINITION. The numbers /x,= length n,-, for l ^ i < i , will be called the " latent multipli-
cities " of the one-dimensional local domain Q.

t For a proof of the corresponding result for complete local domains of arbitrary dimension, see (6),
Theorem 7, p. 118.

} The structure theroems which are quoted here will all be found in the well known paper of I. S. Cohen,
on the subject (3). For an interesting proof which avoids an appeal to the structure theory, see Krull (5).

M O.M.A.
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Note that if Q is complete there is only one latent multiplicity and this has the value unity.

Consider now the ring Q/Pi- This is a complete one-dimensional local domain and, sincef
Pi r^Q = (0), it contains Q as a subring. Indeed, Q is not only a subring of Qlp{ but it is also
everywhere dense in the ring.

Let Ft be the quotient field of QJPi and let Q\ be the integral closure of <2/P,- in F{ ;
then, by Proposition 4, Q\ is the valuation ring of a valuation v{. Moreover, Q\ and Qlp(

are, of course, concordant; consequently Q/Pi is none other than the topological closure
of Q in Q'i or, equivalently, in the complete valuated field Ft. This shows that if v{ is the
valuation induced by vt on F, then F{ is the completion of F with respect to v{ and, moreover,
we see that the value group of vt is the same as the value group of v{, namely the full additive
group of integers. It is now convenient to make the

DEFINITION. The valuations vu v2 vt induced on the quotient field F of Q will be
called the " valuations associated with Q ".

It should be observed that this agrees with the earlier terminology that was introduced
in the ease of a complete local domain, and we may also note that the valuations vlt v2, . . . , vt

are inequivalent. To see this, choose z e Q so that z e px and z 4 P 2 and then choose a sequence
(qn) of elements of Q with the property that qn -> z in Q. This sequence will then tend to zero
in Q/p! and it will tend to a non-zero limit in Q/p 2 ; consequently v1(g,1) -> oo while v2(qn)
has a finite limit. This proves that vx and v2 are inequivalent.

It will be convenient at this point to sum up some of our conclusions in
THEOREM 5. Let Q be a one-dimensional local domain with quotient field F and let

vlt v% v, be the valuations of F that are associated with Q. Then there is a 1-1 correspondence

between the valuations and the prime ideals plt p 2 , ... , p ( which belong to the zero ideal of the

completion Q of Q. If Q't is the valuation ring of vi on F and Q\ is its completion, then Q QQ\

and the topological closure of Q in Q't can be identified with Q/p,-. On this understanding Q\ is

a finite Q/prmodule and the two rings have the same quotient field.
Still keeping to the same notations, let x be a non-zero element of the maximal ideal of

Q; then _ _
length (Qx)= length (Qx)=E (length n() length {{QIPt)x},

by Theorem 4 ; consequently, using Proposition 5,

length (Qx)= E pjfi,(x) = E pM"), (4-1)
t=l i=l

where /,• is the latent residue degree associated with Q/p(. Now /,• is simply the degree of
the residue field of «,• over the residue field of Qjpt and this, in turn, is none other than the
degree of the residue field of vt over Q/m. Accordingly, we make the

DEFINITION. / / vlt v2, ... ,vt are the valuations associated with the one-dimensional local
domain Q, then the residue field of vt has a finite degree /,- over the residue field of Q. The numbers
fi will be called the " latent residue degrees " of Q.

With the aid of this definition we can now restate (4.1) as
THEOREM 6. Let Q be a one-dimensional local domain, let jxt be the latent 7nultiplicities

andfj the latent residue degrees, where 1 <i<Z. Further, let v{ ( K i ^ Z ) be the associated vahiations.

t Because no non-zero element of Q is a zero-divisor in Q.
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If now x is a non-zero element of Q, then

length (Qx) = i IIJMM-

Remark. It is worth while noting, for convenience in applications, that we do not have
to exclude the possibility that x may be a unit of Q.

5. A direct construction of the associated valuations. I t will be noticed that our construc-
tion of the associated valuations, which begins with the simplified construction available in
the case of the complete rings Q/Pt, is very indirect. It has, however, the advantage of
by-passing the main difficulty that presents itself if one attempts to proceed in a less
circuitous manner,! a nd we can now fill in the gaps in the theory without much trouble.
This will be the object of the present section, and the terminology used will be that introduced
in the part of § 4 that follows Proposition 5.

LEMMA 1. Let Q be a one-dimensional local domain and v1>v2, ... ,vl the associated

valuations on its quotient field F. Further, let A be the integral closure of Q in F. If now y is

an element of F, then y belongs to A if, and only if, v((y)^0 for l^.i^.1.

Proof. By Theorem 5, Q is contained in the valuation ring of vt; consequently, since
valuation rings are integrally closed, A is also contained in the valuation ring of v{. This
proves half the lemma. Now suppose that y = a\b, where a and b are in Q and that vt(y)^0
for 1 ^ i < i . It remains for us to show that y is integral with respect to Q.

Since v^y^O, y belongs to the valuation ring Q\ of the completion of F with respect
to vt; consequently, since Q'f is a finite Q/P,-module, y is integral with respect to Q/P,-. It
follows, therefore, that we have a relation of the form

= 0,

where ri'' e QlPt- If now <W is a representative of T® in Q, then

an.+<«)afl<-16+iWan.-262+ ... +t%bni = O (mod f>{).

We have, of course, a congruence of this kind for each value of i and, moreover,
P I ' ^ P S ^ ' - ' ^ P J consists entirely of nilpotent elements. If, therefore, we multiply together
the left hand sides of these congruences and raise the result to a high enough power we arrive
at a relation

an+tla
T>-1b + t2a

n-2b2+ ... +tnb
n=O,

where £, <• Q. Thus

... +Qbn)

... +Qbn)

... +Qbn,
which shows that

an + q1a
n-1b+q2a

n-2b2+ ... +qnb
n=Q,

where qt e Q. If now we divide through the equation by bn, the integral dependence of y = alb

on Q becomes apparent.
LEMMA 1 shows t h a t A is the intersection of the valuation rings of vlt v2, ... ,vt and, as

t The difficulty arises from the fact that the integral closure of Q in its quotient field may not be a
finite Q-module.
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is well-known, this implies that A is a principal ideal domain having only a finite number of
proper prime ideals. These facts and a few others, which are immediate consequences of
them, are set out in

THEOREM 7.f Let Q be a one-dimensional local domain and let A be its integral closure in
its quotient field F. Then A is a principal ideal domain and it has only a finite number
P L p2, ... , p, of non-trivial prime ideals. The rings of quotients Ap are the valuation rings
of the valuations that are associated with Q. Finally, the degrees [A/p(: Q/m] are all finite and
these degrees are none other than the latent residue degrees that are associated with Q.

6. Analytically unramified rings. The generality of Theorems 6 and 7 is, to some extent,
indicated by the fact that we have not had to assume that the integral closure A of Q in F
is a finite Q-module. It is true that this condition is satisfied in certain important special
cases! but, from the point of view of a general theory, to impose it would be to make an
undesirable restriction. We can see just what this restriction would entail from

THEOREM 8. Let Q be a one-dimensional local domain and let A be the integral closure of
Q in its quotient field F. Then the following assertions are equivalent:

(i) A is a finite Q-module,
(ii) Q is a subspace of A if the latter is regarded as a semi-local ring,

(iii) The zero ideal of the completion Q of Q is an intersection of prime ideals,
(iv) The latent multiplicities of Q are all unity.
We recall that a local domain having the property (iii) is said to be analytically unramified.
Proof. Assume that (i) is satisfied. Then the conductor f from Q to A is non-zero and

therefore either f = Q—in which case A — Q and (ii) is obvious—or else, as we shall suppose,
f is m-primary. Let pj, p2, . . . , p( be the maximal ideals of A ; then m Q pxp2 ... Pi and the
p,- all belong to f when it is regarded as a /1-ideal. We can therefore find t so that

and this shows that Q is a subspace of A. Thus (i) implies (ii).

Suppose now that Q is a subspace of A ; then Q is contained in the completion A of A.

But A is a direct sum of integral domains ; consequently the only nilpotent element in A,

and therefore also in Q, is the zero element. This means, however, that the zero ideal of Q is

an intersection of prime ideals. Thus (ii) implies (iii) and (iii), of course, is equivalent to (iv).
To complete the proof, we assume that

where the p , are one-dimensional prime ideals, and deduce that A is a finite Q-module.|| Let
5 be the full ring of quotients of Q ; then, as in § 2, we can find elements elt e2, ... , e, such
that e,= l (mod SP,) and et = 0 (mod SP,-) if i&j. These elements are orthogonal idem-
potents, e1+e2+ ... +e, = l and

5pi^5e1+ ... +5ei_1+Sei+l+ ... +Se,.

Accordingly S/Sp,- can be identified with Se,- and Q/p,- with Qe{. But S/SP< is the quotient

t For a simple direct proof that every ring between Q and A is Noetherian, see Chevalley (2), p. 32.
This result is due originally to Akizuki (1).

{ For example, it is always satisfied if Q is the local ring of a point on a curve.
|| For a generalization of this to local domains of any dimensions, see Nagata (7), Lemma 13, p. 16.
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field of Qjpi', consequently, by Proposition 4, the integral closure of Qe( in Se< is a finite
Qe,-module, say

(Qe{)Ji) + (Qei)w?+ ... +(&,)w«) (6.1)

Here, for convenience of notation, we have arranged (as we clearly may) that the number n
of elements in the module base is independent of i.

Now let P be the integral closure of Q in 5 and let n e P; then n-e,- is integral with respect
to Qe( and so belongs to the module (6.1). But ir = ne1+ne2+ ... +wet; consequently n
belongs to

E Qetwf (6.2)
i,j

and therefore P is contained in (6.2). Choose ceQ so that c is not a zero-divisor and Pc QQ;

then, for a suitable integer h, mA Q Qc and therefore

Pin* QPcQQ.

Here, of course, m is the maximal ideal of Q. Next choose c e Q so that c ̂  0 and c = c (mod
mA); then Pc Q Pc+Pmh £ Qm Finally, let X = ajb be an element of A, where a and 6 are in
Q ; then, as an element of S, A is integral with respect to Q and so XeP. From Pc Q Q we
now obtain aceQb rsQ = Qb and so A e Qc-1. Thus A is a submodule of a finite Q-module and
therefore, because Q is Noetherian, A is itself a finite Q-module.
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