Second Meeting, December 14th, 1894.

Joinn M•Cowan, Esq., M.A., D.Sc., President, in the Chair.

Parabolic Note: Co-Normal Points.

> By R. Tucker, M.A.

1. If the coordinates of a point on a parabola,

$$
y^{2}-4 a x=0
$$

he ($a m^{2}, 2 a m$), in which I call m the parameter, then the equations to the tangent and normal at the point are
and

$$
\begin{equation*}
x-m y+a m^{2}=0 \tag{i.}
\end{equation*}
$$

and to the chord through $(m),\left(m^{\prime}\right)$ is

$$
y\left(m+m^{\prime}\right)-2 x-3 a m m^{\prime}=0 \quad \ldots \quad \ldots \quad \text { (iii.). }
$$

If we write (ii.) in the form

$$
a m^{3}+(2 a-x) m-y=0 \quad \ldots \quad \text {... (iv.) }
$$

we see that from a given point (x, y) we can draw three normals to the curve with the condition

$$
\Sigma_{m}=0 .
$$

Let O be the point (x, y), and $\mathrm{P}\left(m_{1}\right), \mathrm{Q}\left(m_{2}\right), \mathrm{R}\left(m_{3}\right)$ the corresponding points on the parabola: then I call these latter co-normal points, and the circle through them a co-normal circle.
2. We have

$$
\begin{aligned}
& \mathrm{S}_{1} \equiv \Sigma m=0, \\
& \mathrm{~S}_{2} \equiv \Sigma m^{2}=-2 \Sigma m_{1} m_{2}, \\
& \mathrm{~S}_{3}=3 m_{1} m_{2} m_{3}=3 \mu, \\
& \mathrm{~S}_{4}=\mathrm{S}_{2}^{2} / 2 ;
\end{aligned}
$$

also

$$
m_{1}^{2}-m_{2} m_{3}=m_{1}^{2}+m_{1} m_{2}+m_{2}^{2}=\cdots=\mathrm{S}_{2} / 2
$$

3. In the case when P, Q, R are any three points on the curve the circle PQR is
$x^{2}+y^{2}-a x\left[\mathrm{~S}_{2}+\Sigma m_{1} m_{2}+4\right]+a y\left[\mathrm{~S}_{1} . \Sigma m_{1} m_{2}-\mu\right] / 2-a^{2} \mu \mathrm{~S}_{1}=0 \ldots$ (i.) and the tangent-circle $p q r$ is

$$
\begin{equation*}
x^{2}+y^{2}-a x\left[1+\Sigma m_{1} m_{2}\right]-a y\left[\mathrm{~S}_{1}-\mu\right]+a^{2} \Sigma m_{1} m_{2}=0 \tag{ii.}
\end{equation*}
$$

If the points are co-normal points, then these equations take the form

$$
\begin{array}{lll}
x^{2}+y^{2}-a x\left(\mathrm{~S}_{2}+8\right) / 2-a y \mu / 2=0, & \ldots & \ldots \text { (iii) } \\
x^{2}+y^{2}+a x\left(\mathrm{~S}_{2}-2\right) / 2+a y \mu-a^{2} \mathrm{~S}_{2} / 2=0 \ldots & \ldots \text { (iv.). }
\end{array}
$$

4. The co-ordinates of $p(\$ 3)$ for co-normal points, are

$$
\left(a m_{2} m_{3},-a m_{1}\right) .^{*}
$$

5. Through P, Q, R draw parallels to

> (i.) the tangents at $\mathrm{Q}, \mathrm{R}, \mathrm{P}$; (ii.) $\quad, \quad \mathrm{R}, \mathrm{P}, \mathrm{Q}$;
and let $\mathrm{P}_{p}, \mathrm{Q}_{r}, \mathbf{R}_{p} ; \mathrm{P}_{r}, \mathrm{Q}_{p}, \mathbf{R}_{q}$ be the points where the sets (i.), (ii.) respectively meet the parabola (C.P. §19). If $\mathbf{P P}_{q}, \mathrm{QQ}_{p}$ meet in R_{r}, and in like manner for the other pairs, then R_{r} is given by $a\left(m_{1}^{2}+m_{2}^{2}-m_{1} m_{2}\right),-a m_{3}$. (C.P. $\S 24$.)

Then the area of $P_{p} Q_{q} R_{r}$

$$
= \pm \frac{a^{2}}{2}\left|\begin{array}{ccc}
1 & 1 & 1 \\
\mathrm{~S}_{2} / 2-2 m_{2} m_{3} & \mathrm{~S}_{2} / 2-2 m_{3} m_{1} & \mathrm{~S}_{2} / 2-2 m_{1} m_{2} \\
m_{1} & m_{2} & m_{3}
\end{array}\right|=\text { area of }
$$

and the equation to the circle is

$$
x^{2}+y^{2}+\left(1-4 \mathrm{~S}_{2}\right) a x / 2+4 \mu a y+3\left(\mathrm{~S}_{2}^{2}-\mathrm{S}_{2}\right) a^{2} / 4=0
$$

Again, since the coordinates of midpoint of $\mathrm{Q}_{q} \mathrm{R}_{r}$ are

$$
a\left(\mathrm{~S}_{2} / 2+m_{1}^{2}\right), a m_{1} / 2
$$

the N.P. circle of the triangle is given by

$$
x^{2}+y^{2}-\left(6 \mathrm{~S}_{2}+1\right) a x / 4-2 \mu a y+\left(4 \mathrm{~S}_{2}{ }^{2}+\mathrm{S}_{2}\right) a^{2} / 8=0 .
$$

6. If we draw $P r_{1}, Q r_{1}$ parallel to the normals at Q, P, since $\mathrm{Pr} r_{1}$ is given by

$$
y+m_{2} x=2 a m_{1}+a m_{1}^{2} m_{2}
$$

[^0]we see that r_{1} is given by
$-a\left(2+m_{1} m_{2}\right)$,

hence $\Delta p_{1} \gamma_{1} r_{1}= \pm \frac{1}{2} a^{2}\left|\begin{array}{ccc}1 & 1 & 1 \\ 2+m_{3}+\mu m_{3} & 2+m_{3} m_{1} & 2+m_{1} m_{2} \\ \mu+2 m_{1} & \mu+2 m_{2} & \mu+2 m_{3}\end{array}\right|=\triangle \mathrm{PQR}$;
and since $p_{1} q_{1}=\mathrm{PQ}$, the triangles are congruent.
The equation to $A r_{1}$ is $y=m_{y} x$,
hence $A r_{1}$ and the normal at R make equal angles with the axis.
The circle $p_{1} q_{1} r_{1}$ is given by

$$
x^{2}+y^{2}-\left(8-\mathrm{S}_{2} / 2\right) a x+5 a \mu y / 2+3 a^{2}\left(\mu^{2}-2 \mathrm{~S}_{2}+8\right) / 2=0 ;
$$

and the N.P. circle is given by

$$
x^{2}+y^{2}+\left(2-\mathrm{S}_{2} / 4\right) a x+7 a \mu y / 4-a^{2}\left(2 \mathrm{~S}_{2}-3 \mu^{2}\right) / 4=0 .
$$

7. The equations to $\mathrm{PP}_{p}, \mathrm{QQ}_{\eta}(\$ 6)$ are

$$
\begin{aligned}
& m_{1} x-m_{2} m_{3} y=a m_{1}\left(m_{1}^{2}-2 m_{2} m_{3}\right), \\
& m_{2} x-m_{3} m_{1} y=a m_{2}\left(m_{2}^{2}-2 m_{3} m_{1}\right),
\end{aligned}
$$

hence they intersect in r_{2}, on the ordinate of R, given by

$$
a m_{a^{2}}^{2}, \quad-a m_{1} m_{2} / m_{3} .
$$

Similarly for the analogous points p_{2}, q_{2}.
Hence $\quad \triangle p_{2} q_{2} r_{2}=\frac{1}{2} \triangle \mathrm{PQR}$.
The circle $p_{2} q_{2} r_{2}$ is given by

$$
\begin{equation*}
x^{2}+y^{2}-\left(\mathrm{S}_{2}+1\right) a x+\left(\mu+\mathrm{S}_{2}^{2} / 4 \mu\right) a y+a^{2}\left(4 \mathrm{~S}_{2}+\mathrm{S}_{2}^{2}\right) / 4=0 . \ldots \tag{i.}
\end{equation*}
$$

The points $p_{2} q_{2} r_{2}$, lie on the rectangular hyperbola

$$
x y=-\mu a^{2} \ldots \quad \text {... ... } \ldots \text { (ii.) }
$$

which cuts (i.) again in $\quad(a,-a \mu)$.
The equation to the perpendicular from r_{2} on $p_{2} q_{2}$ is

$$
m_{3} y+m_{1} m_{2} x=a m_{1} m_{2}\left(m_{3}^{2}-1\right)
$$

hence the orthocentre of $p_{2} q_{2} r_{2}$ is ($-a, a \mu$).

This point is on (ii) and coincides with the orthocentre of $p q r$ (C.P. § 13).

The N.P. circle of $p_{2} q_{2} r_{2}$ is the co-normal circle

$$
x^{2}+y^{2}+a x\left(\mathrm{l}-\mathrm{S}_{2}\right) / 2+a y\left(\mathrm{~S}_{2}{ }^{2}-4 \mu^{2}\right) / 8 \mu=0
$$

The radical axis of this circle and of PQR is

$$
36 \mu^{2} x+\mathrm{S}_{2}^{2} y=0
$$

The tangent from the focus to (i.) is $a \mathrm{~S}_{\mathrm{g}} / 2$.
The equation to $p p_{2}$ is

$$
\mathrm{S}_{2} x-6 \mu y=2 a\left(m_{1}^{4}-m_{1} \mu+3 m_{2}^{2} m_{3}^{2}\right),
$$

hence $p p_{n}, q q_{2,}, r_{2}$ are parallel.
Also the equation to $p_{i} q_{2}$ is

$$
m_{1} m_{2} y-m_{: x} x=-a\left(m_{1}^{2}+m_{2}^{2}\right) m_{3}
$$

i.e., the line is parallel to $\mathrm{R} r$.

The points p, q, r lie on the hyperbola (ii.): hence we see otherwise that the orthocentres of $p q r, p_{2} q_{2} r_{2}$ coincide, and that the two circles cut the Latus Rectum in the same point ($a,-a \mu$), the join of which with the common orthocentre is a diameter of the hyperbola.
8. The orthocentre of $p_{1} q_{1} r_{1}(\$ 6)$ being ($2 a,-a \mu / 2$) is on the hyperbola ($\$ 7$, ii.). See C.P. §12.

From § 11 of C.P. we see that the centre of perspective of the triangles PQR, pqr, viz. $\left(a \mathrm{~S}_{2} / 6,-6 a \mu / \mathrm{S}_{2}\right)$ is also on the same curve.
9. If the sides $\mathrm{QR}, \mathrm{RP}, \mathrm{PQ}$ produced cut the diameters through $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ in L, M, N these points are given by

$$
\begin{gathered}
\mathrm{L},\left[a\left(m_{1}^{2}+m_{2} m_{3}\right), 2 a m_{1}\right], \text { etc. } ; \\
\triangle \mathrm{LMN}=2 \triangle \mathrm{PQR} .
\end{gathered}
$$

hence

The circle LMN has for its equation

$$
x^{2}+y^{2}-2 a x-2 a \mu y-a^{2}\left(\mathrm{~S}_{8}{ }^{2}+4 \mathrm{~S}_{2}\right) / 4=0 .
$$

The orthocentre of LMN is

$$
a\left(\mathrm{~S}_{2}-4\right) / 2,-2 a \mu
$$

If n is the midpoint of LM, it is given by

$$
\left(-a m_{1} m_{2},-a m_{\mathrm{s}}\right)
$$

and therefore it and the analogous points l, m, lie on the rectangular hyperbola

$$
\begin{equation*}
x y=\mu n^{2} . \ldots \tag{i.}
\end{equation*}
$$

From the above we see that $p^{\prime}, q m, r n$ are diameters of the parabola, and $l m, p q ; m n, q r ; n l, r p$; intersect on the tangent at the vertex and are isoclinals to it.

The equation to the circle $/ m n$ is

$$
x^{2}+y^{2}+a x\left(2-\mathrm{S}_{2}\right) / 2+a \mu y-a^{2} \mathrm{~S}_{2} / 2=0 ;
$$

and it is therefore $\leqslant 3$ (iv.) equal to the circle pqr.
The perpendiculars from l, m, n on $\mathrm{QR}, \mathrm{RP}, \mathrm{PQ}$ respectively meet in ($2 a, a \mu / 2$), which is on (i.) ; and the perpendiculars from $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ on $m n, n l, l m$ meet in $\left[a\left(\mathrm{~S}_{2}-4\right) / 2,-a \mu\right]$, i.e. O^{\prime} of C.P. § 15 .
10. If the join of P to the midpoint of $Q R$ cuts the parabola in p_{3}, the parameter of this point is $-\mathrm{S}_{2} / 3 m_{1}$, hence the corresponding tangent circle of the triangle $p_{3} q_{1} r_{3}$ is given by

$$
x^{2}+y^{2}-a x-a y \mathrm{~S}_{2}^{2}\left(9+\mathrm{eS}_{2}\right) / 54 \mu=0 .
$$

The vertices of this tangent triangle are

$$
\left(a \mathrm{~S}_{2}^{2} / 9 m_{1} m_{2}, a m_{2_{3}} \mathrm{~S}_{2} / 3 m_{1} m_{2}\right)
$$

so that its centroid is $\quad\left(0,-\mathrm{S}_{2}^{2} / 18 \mu\right)$;
and its orthocentre $\quad\left(-a, 7 a \mathrm{~S}_{2}{ }^{3} / 54 \mu\right)$.
11. Through $\mathbf{P}, \mathrm{Q}, \mathbf{R}$ draw lines parallel to $\mathrm{QR}, \mathrm{RP}, \mathrm{PQ}$ respectively, these lines meet the parabola in the co-normal points, whose paramoters are $-2 m_{1},-2 m_{3},-2 m_{3}$; and the lines cut one another in

$$
\left(-2 a m_{2} m_{3},-4 a m_{1}\right),\left(-2 a m_{3} m_{1},-4 a m_{2}\right),\left(-2 a m_{2} m_{3},-4 a m_{3}\right)
$$

Take the images of these points in the vertex, vi\% ($2 a \mathrm{~mm}_{1} \mathrm{~m}_{3}, 4 a m_{1}$), etc., and we find its circumcircle to be given by

$$
x^{2}+y^{2}-\left(8-\mathrm{S}_{2}\right) a x-a \mu y-8 \mathrm{~S}_{2} a^{2}=0
$$

the centre of which is the orthocentre of PQR (C.P. §13.)
12. The lines QR, AP cut in $p_{\prime \prime}\left(-a m_{2} m_{: /} / 2,-a m_{2} m_{: /} / m_{1}\right)$, RP, AQ in q_{u}, and PQ, AR in r_{n}; lience $p_{n} q_{n} r_{u}$, which is the central triangle of the quadrilateral $A P Q R$,

$$
=\frac{1}{2} \triangle \mathrm{PQR},
$$

The circle $p_{1} q_{n} r_{n}$ has for its equation

$$
x^{2}+y^{2}+2 a x+a y\left(\mathrm{~S}_{2}^{2} / \mu^{2}\right) / 4 \mu+a^{2} \mathrm{~S}_{2} / 2=0 .
$$

The equation to $p_{a} q_{a}$ is

$$
m_{1} m_{2} y+2 m_{2} x=+a \mu .
$$

13. If (cf. C.P. §29) we draw lines from P, Q, R through the point, $x=k a$ on the axis to cut the curve in $\mathrm{T}_{1}{ }^{\prime}, \mathrm{T}_{2}{ }^{\prime}, \mathrm{T}_{3}^{\prime}$, then as T_{1}^{\prime} is given by $\left(-k / m_{1}\right)$ the equation to the tangent-circle for $\mathrm{T}_{1}{ }^{\prime} \mathrm{T}_{2} \mathrm{~T}_{3}^{\prime}$ will differ from that to the tangent-circle for $\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{~T}_{3}$ only in the sign of k, i.e., it will be

$$
x^{2}+y^{2}-a x-a y\left(k . \mathrm{S}_{2}+2 k^{3}\right) / 2 \mu=0 .
$$

14. If through p, q, r we draw the corresponding diameters, the vertices of these diameters are co-normal points, viz.,

$$
\left(a m_{1}^{2} / 4,-a m_{1}\right), \text { etc., }
$$

and the co-normal circle through the vertices is

$$
x^{2}+y^{2}-a x\left(\mathrm{~S}_{2}+3 \cdot\right) / 8+a y \mu / 16=0 .
$$

15. Parallels through p to QR and through q parallel to RP intersect on the diameter through r.
16. Parallels through \mathbf{P} to $A Q, A R$, meet the parabola in points whose parameters are

$$
\left(m_{2}-m_{1}\right),\left(m_{\mathrm{a}}-m_{1}\right),
$$

hence we get two sets of co-normal points.

The equations to the co-normal circles are
where

$$
\begin{gathered}
x^{2}+y^{2}-a x\left(3 \mathrm{~S}_{2}+8\right) / 2 \mp a y k / 2=0 \\
\quad k \equiv m_{2}-m_{1} \cdot m_{;}-m_{1} \cdot m_{1}-m_{2}
\end{gathered}
$$

17. The median of PQR which passes through P cuts the parabola in the point whose parameter is $\left(-S_{2} / 3 m_{1}\right)$, hence the corresponding tangent-circle has for its equation

$$
x^{2}+y^{2}-a x-a y \mathrm{~S}_{2}^{2}\left(9+2 \mathrm{~S}_{2}\right) / 54 \mu=0 .
$$

18. If in $\$ 12 q_{n}, r_{n}$ are outside the curve, then the midpoints of QR, AP, $q_{n} v_{n}$ are given by
$a\left(m_{2}{ }^{2}+m_{3}^{2}\right) / 2,-a m_{1} ; a m_{1}^{2} / 2, a m_{1} ; a m_{1}^{2} / 4,-a m_{1}\left(m_{2}^{2}+m_{3}^{2}\right) / 2 m_{2} m_{3} ;$ hence the central axis of $A P Q R$ is

$$
-2 m_{2} m_{\mathrm{i}} y+4 m_{1} \mathrm{x}=m_{1} \mathrm{~S}_{2} a
$$

19. The poles of the co-normal chords are

$$
-a\left(m_{1}^{2}+2\right),-2 a / m_{1} ;-a\left(m_{2}^{2}+2\right),-2 a / m_{2} ;-a\left(m_{2}^{2}+2\right),-2 a / m_{3} .
$$

These poles lie upon the line

$$
\begin{equation*}
\mu y-2 x=a\left(\mathrm{~S}_{2}+4\right) . \tag{cf.C.P.§17.}
\end{equation*}
$$

The diameters through the poles meet the curve in

$$
a / m_{1}^{2},-2 a / m_{1} ; \text { etc. } ;
$$

hence the circle through the vertices of these diameters is

$$
x^{2}+y^{2}-a x\left(\mathrm{~S}_{2}^{2}+4 \mu^{2}\right) / \mu^{2}+a!/ / 2 \mu+a^{2} \mathrm{~S}_{2} / 2 \mu^{2}=0 ;
$$

and the corresponding tangent-circle is

$$
x^{2}+y^{2}-a x-a y\left(\mathrm{~S}_{2}+2\right) / 2 \mu=0 .
$$

The sides of this last triangle are

$$
m_{1} y-2 m_{2} m_{3} x=2 a, \text { etc. }
$$

\therefore the perpendiculars are

$$
m_{1}^{2} x+2 \mu y=a\left(1-4 m_{2} m_{3}\right), \text { etc. }
$$

whence the orthocentre is

$$
\left[-4 a, a\left(1+2 \mathrm{~S}_{2}\right) / 2 \mu\right] .
$$

[^0]: * The first four articles in the text are taken from my paper, entitled Some Properties of Co-normal Points on a Parabola (Proceedings of London Mathematical Society, vol. xxi., pp. 442-451. Subsequent references are to the sections of this paper, C.P.

