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ON t- Spec(/?[£¥]]) 

DAVID E. DOBBS AND EVAN G. HOUSTON 

ABSTRACT. Let D be an integral domain, and let X be an analytic indeterminate. As 
usual, if/ is an ideal of D, set It = (J{JV = (J~l)~l I J is a nonzero finitely generated 
subideal of/}; this defines the f-operation, a particularly useful star-operation on D. We 
discuss the /-operation on #[|X|], paying particular attention to the relation between 
/- dim(tf) and /- dim(/?[[A]]). We show that if P is a /-prime of/?, then P[[X]] contains 
a /-prime which contracts to P in R, and we note that this does not quite suffice to 
show that /- dim(/?[|Xl]) > t- dim(fl) in general. If R is Noetherian, it is easy to see 
that t- dim(/?[|Xj]) > t- dim(fl), and we show that we have equality in the case of t-
dimension 1. We also observe that if V is a valuation domain, then /-dim(F[[Xj]) > 
t- dim( V), and we give examples to show that the inequality can be strict. Finally, we 
prove that if V is a finite-dimensional valuation domain with maximal ideal M, then 
MK[[A]] is a maximal /-ideal of V[[X]]. 

1. Introduction. Throughout this paper, R denotes an integral domain with quotient 
field K. We begin with a brief review of the /-operation. If / is a nonzero fractional ideal 
ofR, the inverse of I is given by I~x = {u G K \ ul ÇR}. The v-operation on R is given 
by Iv — (7 - 1) - 1 and the ^-operation by It = U{«A> = (^_ 1) - 1 | J is a nonzero finitely 
generated subideal of/}. An ideal / is called divisorial (or a v-ideal) ifl = lv;lis called 
a t-ideal ifl — lt. The v- and /-operations are examples of star-operations, and the reader 
is referred to [10] and [13] for a discussion of their properties, which we shall use freely 
(usually without reference). Of particular importance are the standard facts that every 
/-ideal is contained in a maximal /-ideal, that maximal /-ideals are prime, and that any 
prime minimal over a /-ideal is a prime /-ideal (/-prime). In particular, height 1 prime 
ideals are /-primes. 

In [11], an attempt was made to relate the /-spectrum of the polynomial ring R[X] to 
that of R. In this paper, we are interested in studying the /-spectrum of the power series 
ring i?[[X|]. One vehicle for this study may be introduced by analogy with the defini­
tion of Krull dimension; as in [11] we define /-dim(Z)), the /-dimension of an integral 
domain D, to be the supremum of the lengths of chains of prime /-ideals of D. For the 
purposes of defining /-dimension, we include {0} as a /-prime, thus a domain of Krull 
dimension 1 also has /-dimension 1. We shall be particularly interested in the relation 
between t-à\m{R) and /-dim(ft[[X|]). In Section 2, we show that if P is a /-prime of/?, 
then P[[X]] contains a /-prime which contracts to P in R, but we note that this does not 
quite suffice to show that /- dim(i?[[X|]) > /- dim(i?) in general. We are able to show that 
this inequality does hold in many cases. For example, it is easily seen to hold when R is 
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Noetherian; more generally, it holds for the SFT-rings of Arnold [1]. (Recall that a ring 
D is an SFT-ring if for every ideal / of D, there is a finitely generated ideal J Ç I and 
a fixed positive integer k with ak G J for each a G I. A good reference for this type of 
material on power series is [6].) We also note that this inequality holds for valuation do­
mains (more generally, for divided domains). We are not able to prove that the inequality 
holds in general, however. Finally, we give examples showing that the inequality can be 
strict. 

For a Noetherian domain R (which is not a field), it seems reasonable to expect that 
t- <X\m(R[[X\\) — t-&\m(R). In Section 3, we prove this equality for the case of/-dimen­
sion 1. A key element in this proof is the following result, which is interesting in its own 
right: if R is a Noetherian domain, then /-primes of 7?[[X|] which do not contract to zero 
in R must be extended from R. 

The fourth (and final) section is devoted to a study of the /-spectrum of V[[X]] when 
F is a valuation domain. We have already noted that we have t- dim(K[[X)]) > t- dim( V). 
In this section we prove that the inequality can be strict. In fact, we show that if V 
is an «-dimensional valuation domain in which each prime ideal is idempotent, then 
/-dim(F[[A]]) > In - 1. We also show that /-dim(F[[X|]) = t-dim(V) if V is an n-
dimensional discrete valuation domain. 

2. General results. We begin with a result which we shall use frequently. 

PROPOSITION 2.1 (D. F. ANDERSON-KANG [5]1). Let I be a nonzero fractional ideal 
o/R. Then 

(1) (IR[[X]]rl = /"'[I*]] = (/[M])"1 and 
(2) (IR[[X]])V = IV[[X\] = (I[[X]]\. 

PROOF. We first assume that / is an integral ideal ofR. Suppose that u G (/#[[X)])~'. 
Since ul Ç R[[X\], we have u G K[[X]]. Write u = E«/^ ' . For a G / we have 
ua — uoa + u\aX+ • • • G /?[|X1]. It follows that Ujl Ç R for eachy, that is, that 
u G r 1 [[X]]. Hence (IR[[X]])~l Ç I~l[[X]]. It is easy to see that r 1 [[X]] Ç I[[X]]~l. 
Thus (IR[[X]])~[ Ç rl[[X]] Ç I[[X]]-{ Ç (IR[[X]])'\ proving the result for integral 
ideals. If I is a fractional ideal of R, then al Ç R for some nonzero element a of /?, and 
we have {(aI)R[[X]]yl = (al)~] [[X]] = ((aI)[[X\])~l. Since all a's may be cancelled, 
this gives (1). Statement (2) follows from (1). • 

COROLLARY 2.2. If M is maximal and divisorial in R, then the only divisorial prime 
ofR[[X]] which contracts to M is M[[X]]. 

PROOF. By Proposition 2.1, (MR[[X]])V = M[[X]]. Hence any divisorial ideal of 
R[[X]] which contracts to M must contain M[|X)]. On the other hand, the only prime in 
R[[X]] which properly contains A/[[X]] is M+ (X), which is not divisorial. • 

After giving a talk on a preliminary version of this paper which included Proposition 2.1, we were informed 
that D. F. Anderson and B. G. Kang had also proved this result in an unpublished manuscript. We are grateful 
to them for allowing us to include it here. 

https://doi.org/10.4153/CMB-1995-027-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1995-027-1


ON t- Spec(/?[[A]]) 189 

It is natural to ask whether P being a /-prime implies P[[X]] a /-prime. The next four 
results provide an affirmative answer in the SFT-case and a satisfactory substitute in 
general, namely that R Ç R[[X]] satisfies "lying-over" for /-primes. 

PROPOSITION 2.3. Let Pbea prime minimal over (a) in R. Shrink P[[X]] to a prime 
Q minimal over PR[[X\~\ in R[[X\\ Then Q is minimal over (a) and is therefore a t-prime. 

PROOF. Shrink Q to a prime Q\ minimal over (a) in R[[X]]. Then Qx HR Ç QHR Ç 
P[[X]] H R = P. Since a E Q\ H R we have Qx D R = P9 whence Q{ D PR[[X]] and 

PROPOSITION 2.4. # 7 w a/i wfea/ ofR, then (IR[[X]])t ç 7,[[Z]]. 

PROOF. Let J — (f\,... ,yi) be a finitely generated subideal of 7K[[X|]. Since each 
ft E ZR[[X|], there is a finitely generated subideal J\ of 7 with J Ç /^[[X]] . Hence ,/v Ç 
(J\R[[X]])V = (Ji)v[[Al] Ç It[[X]l the equality following from (2) in Proposition 2.1. 
The conclusion follows from the definition of the /-operation. • 

PROPOSITION 2.5. IfP is a t-prime ofR, then P[[X]] contains a t-prime which con­
tracts to P in R. 

PROOF. We have (PR[[X]])t Ç P[[X]] by Proposition 2.4. Shrink P[[X]] to a prime 
Q minimal over (PR[[X]])t. Then Q is a /-prime and Q H 7? = P. • 

COROLLARY 2.6. 7/7? is an S¥T-ring andP is a t-prime ofR, then P[[X\\ is a t-prime 
ofR[[X]]. Hence, ifR is an SYT-ring, then t- A\m{R[[X\]) > /-dim(tf). 

PROOF. By [1, Theorem 1], P[[X]] = y/PR[[X]]. m 
We show in Section 4 that the inequality in Corollary 2.6 can be strict. 
In contrast to the situation noted for the v-operation in Proposition 2.1, the inclusion 

in Proposition 2.4 can be proper. Recall that Arnold [1, Theorem 1] demonstrated the 
existence of domains R containing prime ideals P for which there is an infinite chain of 
prime ideals between Pi?[[X|] and P[[AT]], and it is easy to arrange that P be a /-prime. 
This appears to leave a lot of room for the placement of (7^[[X|])f, and this is in fact the 
case. In Section 4 we show that (PR[[X]])t = PR[[X]] (^ Pt[[X]]) when P is the maximal 
(/-)-ideal of any rank 1 nondiscrete (and hence non-SFT) valuation domain. At the other 
extreme, one can have (PR[[X]])t = P[[X\] ^ PR[[X\] for a /-prime P, as the following 
example shows; in this example, P is actually divisorial. 

EXAMPLE 2.7. Let F be a subfield of the field k, such that k is not a finite algebraic 
extension of F. Let V = k + P be a discrete rank 1 valuation domain, where P is the 
maximal ideal of V, and set R = F + P. Write P — aV, and let b — ua for some 
element u E V \ R. It is not hard to show that P = (a,b)v, where the v-operation is 
taken with respect to R. Thus, by Proposition 2.1, (PR[[X]])t Ç (PR[[X]])V = P[[X]] = 
(a9b)v[[X\] = {(a,b)R[[X]])v Ç (PR[[X]])r, hence (PR[[X]])t = P[[X\]. On the other 
hand, the fact that k is not a finite algebraic extension of F implies that we may choose 
elements VQ, VI, . . . in k such that the /^-module E^v/ is not contained in any finitely 
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generated 7?-submodule of V\ it follows easily that for/ = avo + av\X+ • • •, we have 
feP[[X]]\PR[[X]]. 

REMARK 2.8. The SFT-hypothesis is not necessary for the final assertion of Corol­
lary 2.6. Indeed, if V is any divided domain (in the sense of [8]), e.g., any valuation do­
main, we have t- à\m(V[[X]]) > (t-)- dim(K). To see this, note that if P C Q are primes 

in V, then P[[X]] C QV[[X\] since PVP = P; now apply Proposition 2.5. • 

We close this section by illustrating that one may have t- &[m(R[[X\\) > /-dim(7?), 
when R is a one-dimensional domain. Recall that Arnold [1] showed that if F is a rank 1 
nondiscrete valuation domain with maximal ideal M, then there exists an infinite chain 
of primes between MK[[X|] and M[[X]]. 

EXAMPLE 2.9. Let V = k+Mbe a nondiscrete rank 1 valuation domain, where A: is a 
field and M is the maximal ideal of V. Let F be a proper subfield of A:, and let R — F+M. 
Then R is one dimensional. By [4, Proposition 1] (and its proof), MF[[X]] is a height 1 
prime ideal of V[[X]]. We claim that MR[[X]] = MV[[X]] and that this is also a height 1 
prime ideal of /£[[X|]. 

That MR[[X]] = MV[[X]] follows easily from the fact that M = M2. Suppose that 
g is a prime of R[[X\] which is properly contained in MR[[X]]. Note that £>F[[X|] Ç 
M[[X]] Ç R[[X]]. Clearly, QV[[X]] • MV[[X]] Ç Q and, since MF[[X|] £ Q, we have 
QV[[X]] = Q. Let a G M\ Q. Since MV[[X]] has height 1 (in V[[X]]) [4], we have 
fa" G QV[[X]] = Q for some/ £ MF[[Z]]. Choose g G M[W] \ MF[[A]]. Then 
gf G /?[[A1], gf - an G 0 and gf £ 0 whence a G g, a contradiction. Thus, M#[[X|] 
has height 1 and is therefore a /-prime of /?[[X|]. On the other hand, since M is divisorial 
[7, Theorem 4.1], Proposition 2.1 assures that M[[Jf|] is divisorial and, hence, a /-prime 
properly containing M/?[[Jf|]. Hence /- d\m(R[[X\]) > 2. • 

REMARK 2.10. Examples 2.7 and 2.9 can be generalized to pseudo-valuation do­
mains (PVD's). Let R be a PVD whose canonical valuation overring V is one dimen­
sional, and let P denote the common maximal ideal ofR and V. With reference to Exam­
ple 2.7, if V is discrete and R is noncoherent {i.e., V is not finitely generated over R [12, 
Theorem 1.6]), then (PR[[X]])t = P[[X\] ^ PR[[X]]. For Example 2.9, assume that V is 
nondiscrete; then (/-) dim(R) = 1, but /- d\m{R[[X\\) > 2. • 

3. The Noetherian case. In this section, we will study the /-primes of/?[[.¥]] when 
R is a Noetherian domain. Recall that a prime ideal F in a Noetherian domain is a /-prime 
& P is divisorial <$ P is an associated prime of a principal ideal [15, Theorem 36]. To 
help put matters in perspective, let us first review what is known about /-primes in the 
polynomial ring R[X]. Let g be a nonzero prime of R[X] with QHP = P. The following 
facts are well known, (a) If P =̂  0, then g is a /-prime of R[X] & P is a /-prime ofR 
and Q = P[X\. (b) If P = 0, then g is a /-prime since ht ( 0 = 1 . 

We shall show that the strict analogue of (a) holds in JR[[X|]. Thus, we will show that if 
g is a prime in /?[[X|] with QHR — P ^ 0, then g is a /-prime & P is a /-prime oîR and 
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Q — PÏÏXW- The analogue of (b) is much more challenging. The problem is that, unlike 
the situation in the polynomial ring R[X], in R[[X\] there may well be primes Q of height 
greater than 1 for which Q D R = 0. Specifically, [ 16, Remark 2, p. 118] shows that it is 
possible to have an «-dimensional Noetherian domain R in which there are prime ideals 
Q of height n with QDR = 0. (It seems to be unknown whether such a prime must exist 
in every «-dimensional Noetherian domain.) Thus we pose the following question. 

QUESTION 3.1. IfR is a Noetherian domain and g is a /-prime of R[[X]] with QHR = 
0, then must we have h t ( 0 = 1? 

Although we cannot answer this question, we will show that ht (Q) < max{ht (P) \ P 
is a /-prime of R}. 

LEMMA 3.2. If I is a t-ideal ofR[[X\], then IHRis either 0 or a t-ideal ofR. 

PROOF. Let Jbe a finitely generated nonzero subideal of IHR. Then Jv Ç JV^[[X|] Ç 
Jv[[X\] = (JR[[X\])V Ç /, the equality following from Proposition 2.1. Hence Jv Ç inR, 
as desired. • 

For an element k G A [̂[X|] we denote by c{k) the ^-submodule of K generated by the 
coefficients oîk. 

PROPOSITION 3.3. If Ris a Noetherian domain and Q is a t-prime ofR[[X\] with 
P=QnR^0,then (P is a t-prime ofR and) Q = P[[X]]. 

PROOF. That P is a /-prime of R follows from Lemma 3.2. Choose a ^ 0 in P. Since 
<*Q~l Q R[[X\l w e have Q~l Ç K[[X]]. Le t / = E M 7 G Q and k = E ^ ' <G Q~\ 
Then bouo £ R. Also, boU\ + b\Uo G R, from which it follows that b\u\ G R. In general, 
we have bn§un-\ G R for each n. However, since ak G ^[[^]], c(k) is a (necessarily 
finitely generated) fractional ideal ofR. Hence 3 a positive integer m with b™ k G /?[|X|]. 
Therefore, since Q~x is a finitely generated fractional ideal of/?[[Z]], we have br

0Q
_1 Ç 

R[[X]] for some r. Thus br
0 G Qv H R = Q H R = P, and we have that bQ G P. It follows 

that b\X+b2X
2+' • • G Q. We claim thatX ^ Q. This follows from the easily demonstrated 

fact that (a,X)v = R[[X]] and the fact that g is a /-prime. Hence b\ + b2X+ • • • G Q. 
As above we can show that b\ G P. Continuing in this manner, we eventually get / G 
P[[X]]. Hence Q Ç P[[X]]. Since # is Noetherian, P[[X]] = P/?[[A]] Ç Q, and we have 

Q = pimi 
As Proposition 3.3. shows, the /-primes of /?[[X|] which have nonzero intersection 

with R are easily described. We now turn to what (little) we know about the much harder 
problem of/-primes which intersect R in 0. 

For an ideal / of /?[[A^], we shall use I' to denote the ideal of R generated by the 
constant terms of the elements of/. 

LEMMA 3.4. Let Rbea (not necessarily Noetherian) domain, and let Q ^ (X) be a 
prime ofR[[X]] with QHR = 0. IfQt ± R[[X]\ then {Q')t ± R. 

PROOF. The hypothesis implies thatX ^ Q. (If X G g, choose g = £ btX e Q\(X). 
Then bo ̂  0. However, bo = g — £/>o btX G Q, and since Q D R = 0, we have bo = 0, 
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a contradiction.) Suppose that (Q')t = R. Then I] — R for some (nonzero) finitely 
generated subideal / of Q'. For each (nonzero) element a in a given finite generating 
set for /, we may choose/ G Q with/(0) = a; let J be the ideal generated by these 
elements/. We shall show that J"1 = R[[X\]. Let u eJ~l. We claim that u G K[[X\]. 
To see this, choose g G J with g(0) ^ 0. Then g is a unit in A [̂[X]]. Since ug G ^[|X|], 
u G g_1^[[A^] Ç AT[[X|], as claimed. Write u = unX" + • • •, and le t /be an element in 
the finite generating set chosen above for J. Since uf G /?[[-¥]], we have w,/(0) G R. It 
follows that u„ G I~l = R. Write uf = unX"f+ (u - unX

ny. Then (u - unX
ny G R[[X]]9 

and the argument just given shows that un+\ G R. Continuing this process, we see that 
u G /?[[X|]. Thus J~x — /?[[AT]], and so the definition of the /-operation leads to Qt = 
/£|Pf|], the desired contradiction. • 

PROPOSITION 3.5. If R is a Noetherian domain which is not afield, and if Q is a 
t-prime ofR[[X]] with QHR = 0, then ht(g) <k= max{ht(P) | P is a t-prime ofR}. 

PROOF. If Q = (X), then ht(g) = 1 < k. Suppose Q ^ (X). By Lemma 3.4, 
{Q')t i- R, whence Q' lies in some /-prime P ofR. Now Q Ç Q+(X) = Q'+(X) Ç P+(X). 
Since htP < k9 we have ht (P + (X)) < k + 1 [14, Lemma 2.4(i)], from which it follows 
(since X £ Q—see the proof of Lemma 3.4) that ht Q < k, as desired. • 

QUESTION 3.6. Let R be a Noetherian domain. Recall that Corollary 2.6 shows that 
t- à\m(R[[Xft) > t- dim(R). Must equality hold? 

REMARK 3.7. (a) If the answer to Question 3.1 is yes, then it is not difficult to see 
(using Proposition 3.3) that the answer to Question 3.6 is also yes. 

(b) Since the /-height of a prime can be less than its height, Proposition 3.5 is not 
strong enough to answer Question 3.6 affirmatively except in the special case we mention 
next. • 

COROLLARY 3.8. IfR is Noetherian domain of t-dimension 1, then so is R\\X]\. 

PROOF. Of course, /?[[X1] inherits the Noetherian property from R [17, Theorem 4, 
p. 138]. Let £>be a (nonzero) /-prime ofR[[X\]. IfQHR ^ 0, then by Lemma 3.2, QHR 
is a /-prime of R, whence ht (Q n R) = 1. By Proposition 3.3, Q = (QnR)[[X]]; hence 
ht Q = 1 [14, Lemma 2.4(i)]. If Q D R = 0, then since /- dim(R) = 1 implies that every 
/-prime ofR has height 1, we have ht Q = 1 by Proposition 3.5. • 

REMARK 3.9. Although we have been able to weaken the "Noetherian" hypothesis 
in Proposition 3.3 to the hypothesis "Mori," we do not know whether Proposition 3.5 
and Corollary 3.8 can also be generalized to Mori domains. • 

4. Valuation domains. Throughout this section, V denotes a valuation domain with 
quotient fields. We have already observed (Remark 2.8) that/-dim(F[[X|]) > /-dim(F). 
Although we show in Proposition 4.5 that this inequality can be strict when (/-) dim( V) > 
1, we have not been able to settle the question when V is one dimensional. Lemma 4.3 
shows, however, that // the inequality is strict in the one-dimensional case, then the fault 
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must lie with /-primes of V[[X]] which contract to zero in V. We shall use the following 
idea of Arnold and Brewer [4]. Let F be a rank 1 valuation domain, and let v be a valuation 
on K associated with V, where (we may assume that) the value group is a subgroup of 
the additive group of real numbers. For / = Eû / l ' G F[[X|], put v*(/) = inf{v(a/)}; 
then v* is a valuation on ^[|X|]. 

We begin our analysis with the discrete case. 

PROPOSITION 4.1. Let nbea positive integer, and let V be an n-dimensional discrete 
valuation domain. Then t-d\m(V[[X]\) — (t-)d\m(V) = n. 

PROOF. By [9, Theorem 2.7], dim(F[[A]]) = n + 1. Since the maximal ideal M + 
(X) of V[[X]] is not a /-ideal, we have h t ( 0 < n for each /-prime Q of F[[X|]; hence 
/- dim(K[[X]]) < n. On the other hand, by [2, Proposition 3.1], Fis an SFT-ring, whence 
/- dim(F[[X]]) > n by Corollary 2.6. • 

Proposition 4.1 can be generalized to PVD's: if R is an «-dimensional PVD which 
is an SFT-ring (i.e., its canonical valuation overring is discrete), then /-dim(i?[|X|]) = 
(t-)dim(R) = n. 

We now show that it is possible to have t- dim(7?[[X]]) > t- dim(7?) even when R is an 
SFT-ring. 

EXAMPLE 4.2. Let V be a two-dimensional discrete valuation domain, and let R = 
V[[Y]] be the power series ring over V. By Proposition 4.1, /-dim(7?) = 2. In fact, if 
M D P 2 0 are the (/-)primes of V, then M[[Y]] and P[[Y]] are /-primes of R. By [3], 
dim(7?[|X|]) = 5, whence by [1, Theorem 1], R is an SFT-ring. Hence by Corollary 2.6, 
M[[7,X|] and P[[F,X|] are /-primes ofR[[X\\. However, by the remark at the end of [3], 
ht (P[[Y,X]]) = 2. Thus P[[Y,X]] contains a height 1 (/-)prime Q. The chain AJ[[Y,X]] 2 
P[[Y,X}] 2Q20 then shows that /- dim(R[[X]]) > 3. • 

LEMMA 4.3. Let Vbea rank 1 nondiscrete valuation domain with maximal idealM. 
Then MV[[X\\ is a maximal t-ideal ofV[[X\\ (In particular, M\\X\\ is not a t-ideal.) 

PROOF. AS noted in Example 2.9, MF[[X|] is a height 1 (and therefore a /-) prime 
ideal of V[[X]]. Pick a nonzero element c e M and an element/ <E V[[X]] \ MV[[X]]. 
We claim that (c,/)v = K[|X|]. Since any ideal properly containing MF[|X|] necessarily 
contains such elements, the proof will be complete as soon as we establish the claim. To 
verify the claim, it suffices to show that (c,f)~l — V[[X\~\. Let u E (c,f)~l. Then we 
may write u — g/c with g G K[[X]]. Since uf G F[[X|], we obtain an equation gf = ch, 
with h G ^[[^]]. Let the valuations v and v* be as above. Applying v* to the equation 
gf — ch and using the fact that v*(f) = 0 yields v*(g) > v(c). Thus v(b) > v(c) for each 
coefficient b oig, whence u — g/c G K[[^]]. Thus (c,f)~l = F[|X|], as we wished to 
show. • 

Recall that a nonzero prime ideal M of a valuation domain is branched if and only 
if M is not the union of the prime ideals properly contained in M. We can next give a 
generalization of Lemma 4.3. 
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THEOREM 4.4. If V is a valuation domain with branched maximal ideal M, then 
MV[[X\] is a maximal t-ideal ofV[[X]\ 

PROOF. If M is principal, then the result is trivial. We may therefore assume that 
M = M2. Since M is branched, [10, Theorem 17.3(d)] supplies a prime ideal P of V for 
which dim(V/P) = 1. It is easy to see that W — V/P is a rank 1 nondiscrete valuation 
domain, and it is easy to use this to show that MF[[X|] is a prime ideal of V[[X]] with 
MV[[X]] ^ M[[X]]. Pick ceM\P and/ e V[[X]] \ MV[[X]]. It is enough to show that 
(c,f)~l = V[[X]]. For an element k G H M ] , denote its canonical image in i^[[X]] by k. 
As in the proof of Lemma 4.3, if u — g/c G (c,/)_ 1 , then we have an equation gf — ch 
for some h G ^[[A]]. This leads to the equation gf = ch in fPftX]]. By Lemma 4.3, 
g G c^[[X]], and we may write g — ck + g\ for some k G V[[X]] and g\ G ^[[A]]. 
However, since P = cP9 we have P[[X]] Ç cF[[X|], whence g G cK[[A]]; hence u — 
g/c G V[[X\]. It follows that (c,f)~l = V[[X]]. m 

PROPOSITION 4.5. Let V be an n-dimensional domain, such that each prime ideal of 
V is idempotent. Then /-dim(F[|X]]) > In — 1. 

PROOF. Let 0 Ç P{ Ç • • • C Pn be the primes of V. To see that PtV[[X\] is prime, 
pass to the ring (F/ZVi)[[*]] ~ V[[X]]/P^{ [[X]] and note that PiV[[X]]/P^^X]] is 
prime by the one-dimensional case [4]. This produces the chain of primes 0 Ç 
PiVim] Ç Pi[[X]] Ç P2V[[X]] Ç P2[[X\] Ç ••• Ç Pn-xV[[X\] Ç P„-i[[X]] Ç 
PnV[[X]] in V[[X]]. Since eachP, is idempotent, the containmentsPtV[[X]] Ç P/+i[[X]] 
are proper; hence the above chain in V[[X]] has length In — 1. It remains to show that 
each member of the chain is a ^-prime. It is well known that each nonmaximal prime of 
a valuation domain is divisorial. Hence, by assertion (2) in Proposition 2.1, P/[[X|] is di-
visorial (and therefore a /-prime) for each i < n. Finally, for each /, /^ [ [Xl] is minimal 
over any element of P/ \ Pi-\ and is therefore a /-prime. • 

REMARK 4.6. In the notation of Proposition 4.5, P/iF[|X|] is a maximal /-ideal of 
F[[X|]. This fact might lead one to suspect that the inequality in Proposition 4.5 is an 
equality. However, as in the Noetherian case, we have not been able to rule out the ex­
istence of uppers to zero which simultaneously are /-primes and have large (i.e., greater 
than In — 1) height. Indeed, it is conceivable that the /-dimensional of V[[X]] may be 
infinite, even if dim(^) = 1. 
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