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EXISTENCE OF SOLUTIONS OF EXTREMAL PROBLEMS
IN H'

by TAKAHIKO NAKAZI*
(Received 14th April 1989)

An essentially bounded function on the unit circle gives a continuous linear functional on the Hardy space H'.
In this paper we study when there exists at least one function which attains its norm. We apply the results to
an interpolation problem, Hankel operators and a characterization of exposed points of the closed unit ball
of H'.
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1. Introduction

Let H? be the usual Hardy spaces on the unit circle T for p=1. If ¢ L®, we denote
by T, the functional defined on H' by

()= I f(e®)p(e®) db/2m.

Let S, be the set of functions in H' which satisfy T,(f)=||T,|| and || /||, <1. We define
p(®) to be the set of all complex numbers s for which S,_, is nonempty. If ¢ €C, then
T,_, is weak-* continuous on H' for any se € and hence S,_, is nonempty, that is,
p(d)=¢ where C denotes the space of continuous functions on the unit circle and € is
the set of all complex numbers. S, can be empty for some ¢ € L™ and hence p(¢)#¢.
Many mathematicians have studied the structure of S, when S, is nonempty (see [1],
[2, Chapter 8], [3, Chapter IV], [4], [9] and [10]). Rogosinski and Shapiro, and
Caughran gave the examples of ¢ with 0¢ p(¢) (see [2, Chapter 8]). However p(¢) has
not been studied systematically. In this paper we describe p(¢) in general and apply our
results to concrete ¢.

In Section 2, we show that p(¢)=C if ||¢ + H®||#||¢+H=>+C||. In Section 3, we
prove that p(¢) >€\E(¢) where E(¢)={f(0):|l¢— f|lo=|l¢ +H=||}. In Section 4, using
a well known theorem of Adamyan, Arov and Krein (cf. [3, Chapter IV, Theorem 5. 3])
it is shown that p(¢) = €\E(¢)° if p(¢)# €. In Section 5, E(¢) is described, in fact, it is a
closed disc. For special ¢, an explicit description is given. In Sections 6 and 7 we
consider p(¢) in case ¢ is a quotient of two inner functions. In Section 8 we give
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applications to a minimal interpolation problems, Hankel operators and a characteriza-
tion of exposed points of ball (H!), the closed unit ball of H!.

2 p(¢)=Cif ||¢p+H=|#|¢p+H=+C|

We denote the maximal ideal space of L® by X and the Gelfand transform of the
function ¢ in L® by ¢. Then L= is isometrically isomorphic to the algebra C(X) of all
continuous functions on X, that is, L=~ L®=C(X). Hence (L°°)"’~M(X) where M(X)
is the set of all complex regular Borel measures on X. For each ¢eC(X), if we assign
the number [*, ¢(e®)d6/2n to it then there exists a probability measure m on X such
that j_,,¢d0/2n de)dm for all ¢. Let M* be the set of all complex singular measures
with respect to m, then M(X)=L'(m)@®M?®. L} is canonically embedded into the bidual
(L™)* and L'~ L'(m). If we set

H =(EH®)* n M(X)
={veM(X):§ fdv=0 forall fezH"},
X
then # =(zH®)* N (L®)*=(L®/zH®)* =(H')**. By the F. and M. Riesz theorem for
H® (cf. [5, p. 186], # = N L'(m)@®H# nM*. H' is canonically embedded into the

bidual (H')** and H' = 5 ~ L'(m).
If e L™, we denote by'7, the functional defined on # by

Ty ={dv.
X

The norm of 7, is || 74]|=sup {|74(v)|: ve &} and let &#, denote the set of all ve S for
which J,(v)=||7,|, where & is a unit ball of # Set ¥4=5, " L'(m) and &5 =5~ M°,
then &5 =S,. Since # =(L*/zH®)*, &, is not empty and ||7;||—||¢+sz||—||.7;||

Lemma 1. If ¢ L™, then
max {|7,(v)j:ve ¥ "M} =||¢p + H* + ||

Proof. If ve ¥ n M*® then the v annihilates C by the F. and M. Riesz theorem for
H*® (cf. [5, p- 186]) and so sup|Z,(v)|=|l¢+H=+C|} If v,eSnM? and |F,(v,)|~
sup |7,(v)| as n— oo, there exists v €S such that |.7;(vm)|—sup | 75| and v,;—v,, in
the weak-* topology of #, where {v,,,} is a subsequence of {v,}. Since v,; annihilates C,

- annihilates C, too, and so v, € ¥ N M°.

Proposition 1. Let ¢ €L*®. Then

(1) &, is nonempty;
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(2 =S +(1-9)F5:0=y<1);

(3) &,=% if and only if |p+zH=||2|¢ +H* +C||.

Proof. (1) was proved already. (2) It is clear that %, 2 {y#5+(1-y)¥5}. If ve %, we
can write v=kdm+v* for ke # n L'(m) and v*€ # n M® and then long|eL (m). For
H=H L (m@H N M° and # A L'(m)= H'. We can show that gv=|v| ae. |v| for the
extremal kernel Y of ¢. Hence yk=|k| a.e. m and §v*=|*| a.e. [+*|. Since ke # N L}(m)
and v e # ~ M®, k/||k||, belongs to &4 and v¥/||v*|| belongs to &% and ||K||, +||v*| =|]V[|=
1. Thus ve {y#5+(1—7)F5: 05y < 1}

(3) By (1), &% is empty if and only if &, = 3. This and Lemma 1 imply (3).

It is interesting to find the condition on ¢ which implies that &, =%%5. For %, =55 if
and only if & is empty, by Proposition 1. The following is the first result about p(¢).

Proposition 2. Let ¢ € L®. Then the following (1) and (2) are valid.

(1) If ||¢+zH=||2||¢ + H® + C|| then p(¢)>0.
(2 If |¢+H=||z||¢+H=™+C|| then p($)=C.

Proof. (1) is clear by (3) of Proposition 1 because ¥4=Y,. (2) For any se(,
l¢—s+zH=||2||¢ + H*| 2 ||¢ + H* + C|| and hence (1) 1mphes that se p(¢).

Proposition 2 is well known and it implies that if ¢ € H*® + C then p(¢)=C (see [1]).
3. p(¢)=>C\E(9)
Recall that p(¢) and E(¢) were defined in the Introduction.
Lemma 2. If ¢eL®, then for any fe H® and any ac €
plad+ f)=f(0)+ap(¢).

Proof. S,44,=S.4+50 and when a#0, sep(adp+ f(0) if and only if (s— f(0))/
ae p(¢). This implies the lemma.

Theorem 3. Let ¢ L. Then the following (1)<3) are valid.

(1) p(¢)=2f P db/2n+{seq:|s|>|l¢+H=|]}.
(2) p(9)>C\E(9).
(3) If E(¢) is a single point s then p(¢p)=€\{s} or p(¢)=C.

Proof. (1) If |s| 2|f ¢ d6/2n| +||¢ + H*|| then

l[6—s+zH=||=|f ¢ —sdo/2n| 2 |s|— [ ¢ d6/2n]
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zlle+H=|
and hence by (1) of Proposition 2 0 € p(¢—s). Thus
p($)2{seC:|s|>|] ¢ db/2n| +[|¢ + H™|
and hence

p(p—[Pdb)2m)2{seC:|s|>|¢+H"|]}
because [ (¢ — | ¢ d0/2n) d6/2n=0. Now Lemma 2 implies (1).
(2) If se C\E(¢) then there exists ge H® such that ||¢—s+zH°°||_—=||¢_s+zg“co and

16—+ z¢l| 2|6+ H=|

By (1) of Proposition 2, se p(¢) and hence p(¢) > €\ E(¢). (3) is clear by (2).

(2) of Theorem 3 is essential in this paper. The following theorem, which is its
corollary, is a little surprising. For if p(¢)# € then for any sep(¢), S,_, consists of one
element.

Theorem 4. If ¢ L™ and S, contains at least two functions then p(¢)=¢.

Proof. Since Oep(¢), by (3) of Theorem 3, it is sufficient to show that E(¢) is a
single point 0. Suppose feH® and ||¢+ f|lo=|¢+H=| We will show that if
|¢ +zH*||=||¢|| then f=0 a.e.. By hypothesis and Theorem 9 in [1], S,3zh for some
heH'. Therefore ||T,||=||T,4| and hence ||¢+zH=||=]||¢ + H|. Since S,>zh, S,, is
nonempty and hence there exists a unique ge H® such that

|26 + 28l =l +2H]| = |6 + ]|
=ll¢+zH]|=[|¢]l=z4ll

and hence g=0 a.e.. Now |z¢+2f||,,=|z¢ +2zH*|| and hence f=0 ae. If ||¢+zH=||
#||¢|| then by Theorem 8.1 in [2] there exists ¢ € L such that

[ +zH||=|¢] and y=¢+zk

for some nonzero ke H*. By Lemma 2, E(y) = E(¢) and hence from what was shown
above E(¢)={0} follows.

The following lemma due to P. Koosis (cf. [3, Chapter IV, Lemma 5.4]) will be used
several times in this paper.

Lemma 3. If ¢€L® with |p|=1 a.e. and there is ke H®, k#0, such that ||¢ — k||, <1,
then there exists an outer function ge H', ”g|| 1 =1, such that ¢ = g/|g| ae.
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Corollary 1. Let ¢ € L®. Then the following (1){4) are valid.

(1) If ¢+ H™ is an extreme point of the ball (L*/H®) then p(¢)=¢€\{0} or p(¢)=C¢.
(2) If ¢ is an inner function then p(¢)=C.

(3) If $=2x—1 and 0<dO(F)<2x then p(¢)=¢C\{0}.

(4) If ¢=|f|if for some nonzero feH" with f~'¢H' then p(¢)=C.

Proof. (1) By Exercise 17 in [3, Chapter 1V], if ¢+ H® is an extreme point then
|6+ fllo>1 for all feH=™ with f 0. Hence E(¢)={0}. (3) of Theorem 3 implies (1).
(2) If ¢ is a finite Blaschke product then by (2) of Theorem 2 p(¢)=¢. If ¢ is not so
then S, contains at least two functions (see Lemma 2 in [10]) and hence by Theorem 4
p(¢)=C. (3) follows immediately from Example in [7, p. 198]. (4) By Lemma 3 if there
exists a nonzero ge H® such that ||<;b +g||w§l then there exists a nonzero he H! and
@ =h/|h|. Therefore hf is nonnegative and hence constant because H'/> does not contain
nonconstant nonnegative functions (cf. [3, Chapter II, Exercise 13]). This contradicts the
fact that f~'¢ H' and hence E(¢)={0}. (3) of Theorem 3 implies p(¢)=¢ because S, is
nonempty.

4. p(¢) = C\E(¢)°

In Section 3 we showed that if E(¢) is a single point and p(¢) # € then p(¢)=C\E(¢).
We can ask whether or not this is true for arbitrary E(¢). However we can show that if
p(¢) #¢€ then p(¢) = €\E(¢)° where E(¢)° denotes the interior of E(¢).

For any nonzero he H!, define Q,e H® by

1+Q,,(z)_ij-e"’+z
1-0,(z2) 2rn’é'—z

|n(e™)| dt.

For any ¢ e L™, put

Ky={feH=[|6— ]l <1},

The following Lemma 4 is Exercise 18 in [3, Chapter IV] which is essentially due to
Adamyan, Arov and Krein (cf. [3, Chapter IV, Theorem 5.3]).

Lemma 4. Let ¢>=h/|h| for some nonzero he H'. h is an exposed point of the ball (H')
if and only if

h(1— 1—
K":{_(T%:WEHOD and “w||a,§l}.

Lemma 5. If ¢=h/lh| and h is an exposed point of the ball (H') then
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K 4(0)={ze €:|z— h(0)| <|h(0)]}.

The proof is clear.

Theorem 5. Let ¢peL®. If p(¢) #C then p(¢) = C\E(¢)°.

Proof. We can assume that E(¢) has a nonempty interior. Moreover we may assume
l¢+H=||=1. If se E($)° N p(¢) then by [1, p. 479] there exist fe H* with ||f||,=1 and
ke H*® such that

¢—s—zk=|f|/f.

If k is.a nonzero function or s#0 then by Lemma 3, ! belongs to H'. If k=0 a.e. and
s=0 then ¢ =|f|/f. If f ~' ¢ H", this contradicts the hypothesis by (4) of Corollary 1 and
hence f~' belongs to H'. Then f~'/||f~!|| is an exposed point of ball (H!) (see [9,
Proposition 5]) and hence by Lemma 5

E(J%)={ze¢:|z-f-1<o>|§|f-1<o>|}

because ||¢ + H®||=1. But

E<L§J>=E(¢—s)=E(¢>—s

and hence E(|f|/f) contains O as an interior because se E(¢)°. This contradiction implies

that E(¢)° n p(¢)=90.

5. Description of E(¢)

In the previous sections, we showed that

C\E(¢) < p(¢) = C\E(9)°.

Therefore it will be useful to describe E(¢). These are corollaries of a powerful result of
Adamyan, Arov and Krein (cf. [3, Chapter IV, Theorem 5.3]).
Let ¢eL® and p¢ H®. If E(¢) is not a single point there exists a unique outer
function F e H' with F/|Fle¢/a+H=, ||F||;=1 and
- 1}

¢

Ref % df/2n=sup {Re] (% - k) do/2n: . k

where a=||¢ + H*|| (see [3, Chapter IV, Theorem 5.3]).
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Proposition 6. Let ¢ L® with ¢¢ H® and a=||¢+H°°||. If E(¢) is not a single point
then for the F defined above

E(@)=a{ze€:|z—zo| <|FO)|}

where

zo=| §d0/27t —f l% do/2n + F(0).

In particular E(¢) is a closed disc.

Proof. Since ||¢/a+H®||=1, E(¢/a)=K4,(0). By Theorem 5.3 in [3, Chapter IV],
_J, ¢ F F(A-0Qp)(1—w) o <
K,,,,,,—{f-a = el 51}

Hence

E(¢/a)= {f¢ d0/2n—f|—f;|d6/2n+F(O)(1 —w0):weH>,||w||, < 1}.

a
This implies the proposition.

We will concentrate on unimodular functions, that is, ¢ € L*® and |¢|=1 a.e.. Then we
can describe E(¢) more exactly than Proposition 6.

Lemma 6. Let ¢=f, /| f | for some nonzero f e H'. Then

w),

K¢={g(1—Q)( :weH®,|w||o<1 and geS,;}.

1—
1-Q,w
Proof. By Lemma 5.5 in [3, Chapter IV],

g(1-0,)(1—w) © < _
K¢2{ T—Q,w :weH®,||w]|,<1 and geS¢}.

For the reverse inclusion, if ||¢ — k||, <1, set a=arg ¢k and ¢ =e*~*; then Yke H' and
¢=g/lg] and g=yk/||yK|,

(see [3, Chapter IV, Lemma 5.4]). This implies ge S5 and by the proof of Theorem 3.3
in [3, Chapter 1V],
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L _81=0)(1—w)
1-Qw

for some we H®,

Propbsition 7. Let ¢eL® and |¢|=1 ae.

(1) If ¢ is not of the form ¢ = f/|f| for some nonzero feH", then E(¢)={0}.
(2) If ¢=f/|f]| for some nonzero feH" with ||f||,=1, then

E(¢)={ze €:|z—g(0)| <[g(0)], g S5}

If ||¢+H®||=1 then

E(¢)={ze:|z—g(0)|<|2(0)|, g€ S5}
and hence E(¢) is not a single point.

Proof. (1) From Lemma 3, E(¢)= {0} obviously follows. (2) Evaluate K, in Lemma
6 at z=0; then it contains E(¢) and if ||¢+H>||=1 then it coincides with E(¢). This
implies (2).

6. p(¢) for special symbols ¢

Let g be an inner function and k be in H®. In this section for a special ¢ € L* such
that ¢ =gk we will study p(¢).

Proposition 8. Let q be an inner function and ke H®. If ¢=gk, ||T,||=a>0 and
O€ p(¢) then there exists an inner function q, such that gk—agq, is in zH®. Then agq, is
an extremal kernel, that is, ||xGqo +zH®||=o. In particular, p(gk) =ap(gk).

Proof. If feS, then f€S,, and ||T,,||=1. Hence there exists a function ge H® such
that gk/a+zg=|f|/f. Let qo=k/x+zqg; then g, is an inner function and agg,= gk + zag.
This implies the proposition.

For each function f in H!, sing f denotes the set of the unit circle on which f
cannot be analytically extended. Let ¢ and g, be inner functions. g, is called the
maximum multiplier of a nonzero function h in H2OgqzH? if gohe H*©qzH? and
q,he H*©qzH? for some inner function g, implies that g,4, € H®. Since gh is in H?, g,
can be obtained as the inner part of gh.

Theorem 9. Let q and q, be inner functions, and suppose ¢ =qq,.

(1) Oep(¢) and ¢ is an extremal kernel if and only if there exists a nonzero function f
in H*©zqH? such that §,f is in H>.
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(2) If qo is not the maximum multiplier of a nonzero function f in H>©zqH? but
dof e H?, then p(¢)=¢.

(3) If 0ep(¢) and ¢ is an extremal function then sing q> sing q,.

(4) If (sing q) " {T\sing qo} is nonempty then p(¢)=C\{0} or p(¢)=C.

(5) Let (sing q) n(sing qo) be empty. If q, is a finite Blaschke product then p(¢$)=¢
and if qq is not so then p(¢)=¢C\{0}.

Proof. (1) If feH?©qzH? and f=gqoh for some he H® then qg.he H®. Hence
qdolh|*€ H' and this implies that Oe p(¢) and ¢ is an extremal kernel. Conversely if
Oep(¢) and ¢ is an extremal kernel then there exists an outer function h such that
Zqqoh=zh. Hence goh is orthogonal to zgH?2. f =q,h is a desired function.

(2) If gof eH? but g, is not the maximum multiplier then there exists an inner
function g, such that §,§,fe€H?2 By (1) dqoq, is the extremal kernel and S
nonempty. Hence S, has at least two functions. For §,2¢,S,,
always an outer function. By Theorem 4 p(¢)=C.

(3) By (1) there exists a nonzero function fe H>OgqzH? and f =gq.h for some he H>.
It is known that sing f —sing ¢. By Lemma 4 in [7] sing g, csing g.

(4) If there exists a nonzero function ke H® such that ||¢ — k||, <1, by Lemma 3 there
exists a nonzero function feH' such that ggo=|f|/f. Hence (3) implies that sing
qo>sing ¢, and this contradiction implies that k=0 a.e. and so E(¢)={0}. By (3) of
Theorem 3, p(¢$) =€\{0} or p(¢)=¢.

(5) If q is a finite Blaschke product then by (2) of Theorem 2 p(¢)=¢€. Suppose q is
not a finite Blaschke product. If g, is a finite Blaschke product then §;3zg0h for some
heH' by Theorem 9 in [1] and hence S, contains at least two functions. Thus by
Theorem 4 p(¢)=¢€. If g, is not a finite Blaschke product then by the hypothesis
E(¢)={0} and O¢p(¢). E($)={0} by the same reason as in (4), and 0¢ p(¢) follows
from (3) because ¢ is an extremal kernel by the proof of (4). Thus by (3) of Theorem 3,
p($)=C\{0}.

By (3)H5) of Theorem 9 we are interested in the case sing g =sing g,.

qqo4q1

daoq: DECause Sy contalns

Corollary 2. Put g=[]}-, q; where q; is a non-constant inner function for each j. If

p-af] 450

jq.l
where |aj|<1 Jor each j and m<n, then O€ p(¢) and ¢ is an extremal kernel. If m<n then
p(P)=¢.
Proof.

n ;—a;)e H*OzqH?
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because

éﬁ(q,-—aj)= I1 qjﬁ(l—a,-qj).

j=1 j=m+1  j=1

TG -api—aa) " x [ @-a)

belongs to H? and hence by (1) of Theorem 9, O€ p(¢) and ¢ is an extremal kernel. Put

wo= [l 5

Jq.l

then, by what was shown just now, 0e p(¢,) and ¢ is an extremal kernel. If m<n then

&=(1"j=m+14;)90 and hence S, contains {y(q,+,—a)(1—aq,.,)f} where y is a
positive constant, feS,, and a is any complex number with |a|<1. By Theorem 4

p(d)=C.

Corollary 3. Let q and q, be nonconstant inner functions with qq,e H®. Suppose
{z;}}=1 is a sequence in the unit disc such that q,(z;)=a for some complex number a with
la| < 1. Here n may be infinite or finite. If

—ZZ

o-af bl =2

j=1

then O€ p(¢) and ¢ is an extremal kernel. If q is not a scalar multiple of q, then p(¢)=C.

Proof. There exists an inner function g, such that

4=9 _, oy bl 2=a
1—agq, j=1 z; 1-2;z

By Corollary 2 there exists a function f in H! such that

and so
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Thus O€p(¢) and ¢ is an extremal kernel. As in the proof of Corollary 2 we show
p(d)=C if g is not a scalar multiple of q,.

Corollary 4. Let q be an inner function, ¢o(2)=Y -0 #;Z’ and ¢ = po(q).

(1) If n=1 then p(¢)=C.

(2) If n=1, ao#0 and «,#0 then S, ={(1—az)*/||(1—az)?||,} for a nonzero a with
|a|<1. However S, does not coincide with {(1~-aq)*/|[(1—ag)*||,} if q(0)#0 or q(0)#
l/a+(a—1/a)a.

(3) For anyn

p($)2 Zj:o %;4(0) + {se C:|s|>||¢+H=+C|]}.

(4) For any n, if ¢(0)=0 then p(¢)=C.

Proof. (1) follows from (2) of Corollary 1. (2) It is known that, if «,#0 and «, #0,
then a, = —aa and

Seo+arz=Sazz—a1 -2y = {a —52)2/”(1 _62)2”1}-

(to+2,9) —of 1 ——eqH"
1—-aq
but if
g—a
0)#0, - H®>.
q(0)#0,a0q + o, al—a'q¢z
Hence

Sao+alq7ésaé(q—a/1 —aq)9(1 ‘0‘1)2/”(1 —5‘1)2“1-

(3) follows from (1) of Theorem 3. (4) By (2) of Theorem 2, S, is nonempty. Since there
is ke zH® such that ¢o=7z"*'k, by Proposition 8 there exists a finite Blaschke product b
of degree at least n+ 1 such that y,=az"*!b is the extremal kernel of ¢,. Put =y ,(q)
and ¢=¢y(q); then ¥ is the extremal kernel of ¢ because ¢(0)=0. By Corollary 2,

0€p(9).

7. Interpolation Blaschke product

Let {z,} be a sequence of distinct points in the open unit disc. Put

Zn—2Zm
1-z,2,|

pn= 11

m;m#n
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Let b be a Blaschke product with zeros {z,}. We call b an interpolation Blaschke
product when infp,>0, that is, {z,} is a uniformly separated sequence.

Proposition 10. Let b be a Blaschke product with zeros {z,} which is the union of a
finite number of uniformly separated sequences and let ke H®. Suppose ¢=>bk and
P, 'k(z,)—0 as n—>c0. Then p(¢)=¢.

Proof. By Lemma 3 in [11], bke H® +C and hence by (2) of Theorem 2, p(¢)=¢.

Theorem 11. Let b be an interpolation Blaschke product with zeros {z;} and b, a
Blaschke product with zeros {a;}. Put ¢=>bb,. Then Oc p(¢) and ¢ is an extremal kernel
if and only if an infinite matrix {1/1—2Z,a;};_ | has a nontrivial kernel in /.

Proof. Since {z;} is a uniformly separated sequence, {1/1—z;z}>, is an uncon-
ditional basis in H?’©bzH? (sece [6]). If an infinite matrix {1/1-za;}-, has a
nontrivial kernel, then for some {c;} € £>

Put f(z)=)2,c(1/1—zz); then feH?*©bzH? because {1/1—zz}2, is an uncon-
ditional basis in H*©bzH? Now f(a;)=0 for j=1,2,.... Hence byfeH?2 By (1) of
Theorem 9, Ocp(¢) and ¢ is an extremal kernel. Conversely if Oep(¢) and ¢ is an
extremal kernel then by (1) of Theorem 9, there exists f € H2©bzH? such that b, f e H>.
Since {1/1—2;z}2, is an unconditional basis in H2©bzH?,

and {c;}e/> Then

This proves the theorem.

8. Applications

Let {z,} be a Blaschke sequence and let a bounded sequence {w,} be given. If we can
find an f in H® such that f(z,)=w, we may assume that ||f||,, is minimal. Such an f
need not be unique, but K. Gyma gave a sufficient condition for uniqueness. Let {z,} be
a uniformly separated sequence in the unit disc and assume w,—0. Then there exist a
unique f in H* of minimal norm such that f(z,)=w, for all n [12, Theorem 2]. The
author [11] gave a sufficient condition for uniqueness in the case of the union of a finite
number of uniformly separated sequence {z,}, that contains the result of K. Oyma. The
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following theorem gives a solution on this problem in the case of a Blaschke sequence

{z.}-

Theorem 12. Let {z,, n=0,1,2,...} be a Blaschke sequence with z,=0 and
{s,w;,w,,...} a bounded sequence. Let b be a Blaschke product with zeros {z,,z,,...}.
Suppose there exists a function f in H® such that f(0)=0 and f(z;)=w; for j=1,2,... If
p(bf)> —sb(0)~! then there exists a unique g in H® of minimal norm such that g(0)=s
and g(z;)=w; for j=1,2,.... This function is a complex constant times an inner function
and has analytic continuation across T\{z,}.

Proof. If p(bf)> —sb(0)~' then Sj,..)-: is nonempty and hence there exists a
unique function ke H® such that ||bf +sb(0)~'+zH®||=||bf +sb(0) ' +zk||,. This
implies that there is a unique function k such that ||f+sb(0)™'b+zbH®|=|f+
sb(O)“b+zbk||w. Let g= f +sb(0) ™ 'b + zbk; then g(0)=s and g(z;)= f(z;) for j=1,2,...,
and it is of minimal norm.

In the theorem above, if p(bf)=¢ then {s,w,w,,...} for any s has always a unique
minimal interpolating function. Proposition 10 shows that if b is a Blaschke product
whose zeros is the union of a finite number of uniformly separated sequence {z,} and if
p. ' f(z,)—0 then p(bf)=¢.

Let P be the orthogonal projection from L? onto H? and ¢ a fixed function in L.
The Hankel operator with symbol ¢ is the operator H, from H? to (H?)* is defined by
H,f =(1—P)(¢f), fe H®. Now we will study when H, has an accessible norm, that is,
|Hy||* is an eigenvalue of H3H,. Put y(¢)={se €: H,_,; has an accessible norm}.

Theorem 13. For any ¢eL>,
1) =p(z¢).

Proof. For any fezH', ifeH' and [f(¢—s2)d0/2n=zf(z¢—s)db/2n. Since
[H - scll =1 Teg sl (8) = p(2).

Several characterizations of exposed points of the ball (H') are known (cf. [10,
Theorem 3], [4, Theorem 8]). Now we will give two more characterizations of such
functions. Recall that K,={ke H*:||¢ — k||, <1} for ¢ € L (see Section 5).

Proposition 14. Let ¢ = f/|f| for some nonzero feH" with ||f||,=1. Then f is an
exposed point of the ball (H') if and only if the interior of K 4(0) does not contain 0.

Proof. Lemma 5 implies the part of “only if”. Conversely, if f is not an exposed
point then by Lemma 6

K (0)={z:|z—g(0)|<|g(0)] g€ Sg}.

By Theorem 5.2 in [3, Chapter IV], {g(0):g€S;} contains a disc centred at the origin
and the interior of K4(0) contains 0.
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Theorem 15. Let ¢ = f/|f| for some nonzero feH" with ||f]||,=1. Suppose ||¢ +H=||
=1 and p(¢)#C€. [ is an exposed point of the ball (H') if and only if the boundary of
p(@) contains 0.

Proof. Since ||¢ +H®||=1, by (2) of Proposition 7

E($)={ze:|z—g(0)| <[g(0)|, € S5}-

Hence E(¢) is not a single point, and by Theorems 3 and 5,

C\E(¢) = p(¢) = C\E(¢)°
because p(¢)# €. The result of the theorem now follows.
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