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1. The functions f(t) and h(t) that occur in what follows are
supposed to be integrable (L) in every finite interval in which they
are defined; and the order of summability, which need not be an
integer, is not negative.

The following result is proved :
THEOREM 1. Suppose that

g(u) = —[ f(t) sin utdt, (1.1)
•n Jo

the integral being boundedly summable (C, r) in every finite range of u.
Then, for almost all positive x,

f g (u) sin ux du = f(x), (1-2)
'o

the integral being summable (C, r -\- I) for such x.
The case r = 0 (for a continuous / and uniform, instead of

bounded, convergence) is contained in Titchmarsh's Theory of Fourier
integrals (Oxford, 1937), p. 162; but his proof does not seem to be
adaptable to the case of general r. A variant of the corresponding
theorem for cosine integrals was stated by Macphail and Titchmarsh,
and proved by them in the cases r = 0, I.1 Their proof made use of
the fact, obtained by putting u = 0 in the cosine integral corresponding
to (1.1), that the integral of f(t) over (0, oo) was summable (G, r).
But no such result is obtainable so simply from (1.1); and we use,
instead, Theorem 3 below.

Our argument yields a result obviously more general than
Theorem 1, which we state as Theorem 2.

THEOREM 2.2 Suppose that, in each finite range 0 ^ u sS OJ, the integral
(1.1) is summable (C,k), where k = k(co), for almost all u, and that

I fYl - -LYf(t) sin ut dt <; M {u) (A > 0),
I Jo \ \ J

1 See Titchmarsh, op. cit., p. 37.
a The corresponding theorem for cosine integrals is also true, and may be proved

in the same way.
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where M (u) is integrable over (0, a>). Then (1.2) holds for almost all
positive x, the integral being summable (C, r + 1) for such x, where r is
any value of k (to).

THEOREM 3. Suppose that
'X / f \T

(1 - - f ) / (0 sin w«d«
I \ A/

,O^ M ^Q) , (1.3)

tc&ere J^ («) is integrable over (0, Q). Then, for each x,

is bounded (C, r) when j = 1 and summable (C, r) when j > 1 ; and

{" Ut±?l eivt dt (a>0) (1.5)

is summable (C, r) /or almost all y in (0, Q).

2. Let dt = i, da=\ 8"-1 eie dd (0 < a < 1)..
Jo . •

da = ca + isa = c + is.
Clearly s =(= 0.

Write also f h (t) dl = Hm f" (l - — Y h (t) dt.
r3b <o->oo h \ U> J

3. Lemma 1. If either of the integrals

h(t)dt, h(t + x)dt (x fixed)
•"ft Jft-a;

is bounded (C, r), then so is the other. If either integral is summable
(C, r), then so is the other, to the same value.

For ["(I - — Y K{t) dt = ( l - —Y f " Y l — Y * (' + *> dL

h\ <» / \ w/ Jb-x\ ID — X/

Lemma 2.1 Suppose that a > 0 and that <f> [t) satisfies the following
conditions :
(i) (£(i)->0 as <-> oo, (ii) p ^ — 1,
(iii) <^(J)+1>(0 is absolutely continuous in every finite interval (a, a>),

) ! *(iv) P

1 This theorem on integration by parts is due to G. H. Hardy in the case of integral r.
See J. Cossar, Journal London Math. Soc, 16 (1941), 56.
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f°°
Then if h (t) dt

* a

is bounded (C, r), where r <S p + 1,

1 f(

^ + 2 (t) = — (< — w)p + 1 A («) du
(p+ l)\ Ja

Corol lary. | f h (t) <f> (t) dt ^ K f V>+1

l r Ja K
where K is independent of <j>.

Lemma 3. If the first of the integrals

is bounded (C, r), then the second is summable (G, r).
This follows from Lemma 2 with </>(£) = t~y and p any integer

not less than r — 1.

Lemma 4. If the first of the integrals

I — dt, 1 5 dt

is bounded (G, r), then so is the second.

By Lemma 1,

(t + xf
is bounded (G, r). Now apply Lemma 2 with p^tr— 1,
h(t + x)/(t + x)s instead of h (t), and <f> (t) = (1 + x/tf — 1. This is
permissible since tp+1 <£<p+2>(t) = O(t~2), as may be seen by expanding
(f> (t) in powers of t'1.

Lemma 5. / / t > 0, A > 0, 0 < a < I, then

P e~aeiKede = dA'-1 + 0 (A-1*-"),
Jo

where d=d1_a (see §2), and the constant implied by the order symbol
does not exceed 2.

Lemma 6. / / 0 < a ^ 1, X > 0, then

I (1 — u)"-1 cos (Au — K)du = A"" \ c cos (A — K) + ssin (A — K) — th (A, K, a) I,
Jo { J
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where c, s are the constants of § 2, and

1 - 1 cos (u + K) du (0 < a < 1),( f (« + A)—1
, K,

 a ) = \ Jo
[ — sin K

Lemma 7. If 0 < a < 1, y > 0, t > 0, then

•v . sin yt cos yt y°-x (a — 1) (a - 2)
(y - uf-1 sin ut du = c —~f- _ 5

 y
 + * _ _ _ v ±1. >

o i°- ia t t
where c, sare the constants of § 2, and

x(t)=t\ (6 + yt)a~3 sin 8d8.
Jo

We now prove Lemmas 5, 6, 7. If

y > 0, A > 0, 0 < a < 1,

then A1 »—x eat) dv = ( - ) Vs-1 eiv dv
Jo \Jo JAZ//

poo

= c + is — I (v + Ay)11"1 ei(v+Ky) dv. (3)
Jo

By the second mean-value theorem,1 the last integral does not
exceed 2 (Ay)"-1 in absolute value. This gives Lemma 5 with 1 — a
and y instead of a and t.

We notice that Lemma 6 is obvious when a = l . When
0 < a < 1, put y = 1 in (3), multiply each side by ei(/t~A), and equate
real parts: then

Xa I V"*1 cos '(Xv — A + K) dv = c cos (K — X) — 5 sin (K — X)
pOO

— \ (v + X)a-1 cos (« + K) dv.

This gives Lemma 6 for 0 < a < 1 if we put v = 1 — u on the left-
hand side.

Again, put v = y — u on the left-hand side of (3), multiply each
side by e~iXy, and equate imaginary parts: then

f" f°°
\* \ (y _ u)°-~1 sin AM dzt = c sin Ay — s cos Ay + I (v + Ay)"-1 sin u dv.

Jo Jo

If the last term is modified by integrating twice by parts, Lemma 7
is obtained with A instead of t.

1 If, in (a, 6), F is a bounded positive decreasing function and G (possibly complex)
is integrable, then there is a £ (o S £ ^ 6) such thatu:FGdx = JF(O)
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Lemma 8. / / 0 < a ^ 1 and p ^ — 1, then

(1 — %)'1+*+1 cos pudu= 2 *-4 + - ^ (1 — M)"-1 cos p« - ±-
Jo ' i=z P3 P Jo \ ^

In <Ae case # = — 1, the sum on the right-hand side is to be omitted.
The constants /j.jt /x depend on a, p, but not on p.

This may be proved by repeated integration by parts.

Lemma 9. For the function x {t) defined in Lemma 1, x (°° — ) = 0-
All derivatives of the function exist when t^> 1 and, if p ^ — 1,

r dt < co .

For each integer q (^ 0),

x<9> (t) = f ict (9 + yt)*-*-3 + C (6 + yl)a~"-2 j si r
Jo I J

where C, C" depend only on y, a, q; and so, by the second mean-
value theorem, x

fe) (*) = 0 {I"-"-2). Hence the result.

Proof of Theorem 3.

4. Let w (> 0) be such that M (w) < oo . Then from (1.3) and
Lemma 3 we infer that

exists, (4.1)f
J l

By operating on the integral in (1.3) with dv du, and using (1.3),
Jo Jo

we see that
sin wt\ 3j

is bounded (C, r). This, with (4.1) and the fact that w=\=0, shows
that

fit)J; t
dt is bounded (C, r); (4.2)

and so, by Lemma 4, the integral (1.4) is bounded (0, r) in the case
j = 1. The cases j > 1 then follow by Lemma 3.

5. To complete the proof of Theorem 3 it will be enough, in
view of Lemma 3, to show that if 0 < a < 1 the integral (1.5) is bounded
(C, r) for almost every y in (0, Q).
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Let y (0 < y < Q.) be such that

M (y) < cc , \ (y — u)"--1 M (u) du < cc .
Jo

The values of y that do not satisfy these requirements form a set of
measure zero.

(v
Operating on the integral in (1.3) with \ du (y — w)""1, and using

Jo
(1.3) and Lemma 7, we see that

{00

1

(cBinyf_ oosyf j r ^ _ ( a - l ) ( a - 2 ) 1
\ f- ta ^ t t1+a X ' I

is bounded (C, r). Write the last equation formally

" = J1 — " 2 + " 3 — "4>

where J1; . . . . , J4, are integrals corresponding to the four terms
in{ }.

The integral Jx is summable (0, r) by (1.3) and Lemma 3, since
M (y) < co ; and J3 is bounded (0, r) by (4.2). The integral </4 is
summable (G, r) by Lemma 2, with o = l, p ^ r — 1 , $ ( 0 = x ( 0 ,
h(t) = f(t)/t1+!t; the requirements of Lemma 2 being fulfilled by <j> in
virtue of Lemma 9, and by h in virtue of (4.2) and Lemma 3.

Since J, Jlt J3, J4 are bounded (G, r), so also is J2, and thus,
since s=t=° (§2),

is bounded (G, r). So also is the similar integral with sin yt instead
of cos yt (as we have seen in proving that J1 is summable (C, r)).
Hence the same is true of

and therefore, by Lemma 4, the integral (1.5) is bounded (C, r).
This completes the proof of Theorem 3, in view of the Opening
remark of this section.

Proof of Theorem 2.
6. The theorem is known to be true for a function / that is

absolutely integrable over (0, oo), and so for an / that vanishes
outside a finite interval. It will therefore be sufficient to prove that,
if b is any positive number, (1.2) is true in (0, 6) when / vanishes in
(0, b).
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We may write r = k (Q) = a + p
where 0 < a ^ 1
and p is an integer not less than — 1.

Then, when 0 ̂  x < b,

771 ( 1 ) g (u) s i n ux du = 2 I f (t) dt\ 1 ) sin ux sin ut du
J0\ «/ k(»)h J0\ W/

= h ~ h,
f(t) dt co I (1 — u)r+1 cos ww(i — a;) du

b J0

J» ri

F{t)dtco\ (1 - M)'+J'+1 COS W<M du,
a J0

by Lemma 1, F (t) being f(t + x), a — b — x, so that a > 0; and / 2 is
a similar expression with f(t — a) instead of /(< + x).

I t will be shown that I1->0 as co -> co ; and it may be shown
similarly that / 2 -> 0.

7. By Theorem 3,
r IS dt exists (;>1), (7.1)

r a '

and £ may be chosen so that

gg (*) = p f r f (< ~ u)9'1 F {U]fU du = O (P-i) ( g ^ r + l . i ^ a ) . (7.2)

8. By Lemma 8, Ix will tend to zero if I3 and /« tend to zero,
where2

-u) cos r t t - 2
I t is plain from (7.1) that / 3 -> 0. By Lemma 6, /4-> 0 if

a ) d< =

a -pP^T-

9. If a = 1, it is clear by Lemma 6 that Is is independent of OJ,
and so, by (7.1), (8) is true.

1 The convergence of the expressions denoted by i j and- 22 will become apparent
later. The same remark applies to several of the expressions In that follow.

s I f j p = - 1 , I , = 0.
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If 0 < a < l , the hypotheses of Lemma 2 are satisfied by

h(t) = F(t)/t°-+P+z, (f>(t) = tl) (wt, ^ , a). As regards h, this follows

from (7.1). As regards <f> we have (see Lemma 6) for q ^ 0

^> (0 = Qj-YJJ (« + wO""1 cos f u + ^

= Cw," [ (M
Jo

+ oiO""*"1 cos ( u + ^T
\ 2

^ ( O — ' - 1 = 2Ca>a-11°--«-^

by the second mean-value theorem, where G depends only on a and
q; so that <j> fulfils the requirements of Lemma 2. By the corollary
to that lemma,

•'o

and so (8) is established.

10. Write 0 = — + p + 2; then, with the notation of (7.2),
2

J" F (t\ && e.iat f°°

by Lemma 2, with h, <f> chosen in the obvious way. Performing the
(p + 2)-fold differentiation, we see that

/« (w + f) = o

where I7 = \ Hv+- (t) t~^eiat dt.
* a

To complete the proof of Theorem 2 we have to show that

By (7.2) and the Riemann-Lebesgue theorem, I7 = o (1), and this
completes the proof when a = 1.

When 0 < a < 1,

r (1 - a) 7, = f t-'eo«dt f (t - u ) -

= f Ha+p+1(u)du f t-e(t - u)-ae™1 dt. (10)

The first of these repeated integrals is obtained from the theory of
fractional integration, and the inversion is justified by absolute con-
vergence. In fact, if the integrand of the first repeated integral is
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replaced by its modulus, we obtain by (7.2) an integral that does not
exceed

t-^dt\ (t— u)-aCua+Pdu<^C\ t'"12-1 dt\ (1 — v)-« v°-+i> dv < oo .
Ja Ja J« Jo

On writing t + u for t in the inner integral in the last member of
(10) and then integrating by parts, we obtain

j3 f {t + u)-e-xdtTfl—**"<•+«>dfl,
Jo Jo

which by Lemma 5 is equal to

j8 j (t + u)-^-1 j cZw"-1 eiM + 0 (UJ-1 t-«) I d/.
Jo I J

Hence

By (7.2) and the Riemann-Lebesgue theorem, the first term on the
right-hand side is o {caa~1); and the second term does not exceed a
constant multiple of

I t then follows that I7 = o (OJ11"1), and the proof of Theorem 2 is
complete.

[Added in proof.]
Theorem 2 is similar to a result published1, while this paper was

in the press, by J. L. B. Cooper (who considers only integral orders
of summability). The two theorems overlap, but neither contains
the other.

i See Proc. London Math. Soc. (2), 48 (1944), 292-309.
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