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Abstract

The goal of this paper is to go further in the analysis of the behavior of the number of
descents in a random permutation. Via two different approaches relying on a suitable
martingale decomposition or on the Irwin–Hall distribution, we prove that the num-
ber of descents satisfies a sharp large-deviation principle. A very precise concentration
inequality involving the rate function in the large-deviation principle is also provided.
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1. Introduction

Let Sn be the symmetric group of permutations on the set of integers {1, . . . , n} where
n ≥ 1. A permutation πn ∈ Sn is said to have a descent at position k ∈ {1, . . . , n − 1} if πn(k) >

πn(k + 1). Denote by Dn = Dn(πn) the random variable counting the number of descents of
a permutation πn chosen uniformly at random from Sn. We clearly have D1 = 0 and, for all
n ≥ 2,

Dn =
n−1∑
k=1

1{πn(k)>πn(k+1)}. (1.1)

A host of results are available on the asymptotic behavior of the sequence (Dn). More precisely,
we can find in [3] that, for all n ≥ 2, E[Dn] = (n − 1)/2 and Var(Dn) = (n + 1)/12. In addition,
it is possible to get a connection with the generalized Pólya urn with two colors, also known
as Friedman’s urn; see [10] and Remark 2.1. In particular, for this construction we have, by [9,
Corollary 5.2], the almost sure (a.s.) convergence

lim
n→∞

Dn

n
= 1

2
a.s. (1.2)
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On the number of descents in a random permutation 811

Following the approach of [17], see Section 3.2, it is also possible to construct a different
sequence (Dn) with the same marginal distribution using a sequence of independent random
variables sharing the same uniform distribution on [0, 1]. For this construction, we directly
obtain the same almost sure convergence (1.2), as noticed in [12, Section 7.3]. Nevertheless,
the distribution of the process (Dn) does not correspond to the one investigated in Section 2.

Four different approaches have been reported in [5] to establish the asymptotic normality

√
n

(
Dn

n
− 1

2

)
L−→N

(
0,

1

12

)
. (1.3)

We also refer the reader to the recent contribution of [11] that relies on the method of
moments, as well as to the recent proof in [15] using a rather complicated martingale approach.
Furthermore, denote by Ln the number of leaves in a random recursive tree of size n. It is well
known [19] that Ln+1 = Dn + 1. Hence, it has been proven in [4] that the sequence (Dn/n)
satisfies a large-deviation principle (LDP) with good rate function given by

I(x) = sup
t∈R
{
xt − L(t)

}
, (1.4)

where the asymptotic cumulant-generating function is of the form

L(t) = log

(
exp(t) − 1

t

)
. (1.5)

The purpose of this paper is to go further in the analysis of the behavior of the number of
descents by proving a sharp large-deviation principle (SLDP) for the sequence (Dn). We shall
also establish a sharp concentration inequality involving the rate function I given by (1.4).

To be more precise, we propose two different approaches that lead us to an SLDP and a
concentration inequality for the sequence (Dn). The first one relies on a martingale approach
while the second one uses a miraculous link between the distribution of (Dn) and the Irwin–
Hall distribution, as pointed out in [17]. On the one hand, the second method is more direct
and simpler in establishing our results. On the other hand, the first approach is much more
general and we are strongly convinced that it can be extended to other statistics on random
permutations that share the same kind of iterative structure, such as the number of alternating
runs [3, 16] or the length of the longest alternating subsequence in a random permutation [14,
18]. Moreover, we have intentionally kept these two proof strategies in the manuscript in order
to highlight that the martingale approach is as efficient and powerful as the direct method in
terms of results.

The paper is organized as follows. Section 2 is devoted to our martingale approach which
allows us to again find a direct proof of (1.2) and (1.3) and to propose new standard results for
the sequence (Dn) such as a law of iterated logarithm, a quadratic strong law, and a functional
central limit theorem. The main results of the paper are given in Section 3. We establish an
SLDP for the sequence (Dn) as well as a sharp concentration inequality involving the rate
function I. Three keystone lemmas are analyzed in Section 4. All the technical proofs are
postponed to Sections 5–8.

2. Our martingale approach

We start by describing precisely the construction of the sequence (Dn) on a unique proba-
bility space. Let us remark that this construction can be naturally linked to generalized Pólya
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urns; see Remark 2.1. We consider a sequence (Vn) of independent random variables uniformly
distributed on {1, . . . , n}. Then, we set π1 = (1) and, for each n ≥ 1, we recursively define the
permutation πn+1 as

πn+1(k) =

⎧⎪⎨
⎪⎩

πn(k) if k < Vn+1,

n + 1 if k = Vn+1,

πn(k − 1) if k > Vn+1.
(2.1)

By a direct recursive argument, it is clear that, for each n ≥ 1, πn is uniformly distributed on
Sn. Moreover, as explained in [15], it follows from (1.1) and (2.1) that, for all n ≥ 1,

P
(
Dn+1 = Dn + d |Fn

)=

⎧⎪⎪⎨
⎪⎪⎩

n − Dn

n + 1
if d = 1,

Dn + 1

n + 1
if d = 0,

with Fn = σ (D1, . . . , Dn). This means that

Dn+1 = Dn + ξn+1, (2.2)

where the conditional distribution of ξn+1 given Fn is the Bernoulli B(pn) distribution with
parameter pn = (n − Dn)/(n + 1). Since E[ξn+1 |Fn] = pn and E[ξ2

n+1 |Fn] = pn, we deduce
from (2.2) that

E[Dn+1 |Fn] =E[Dn + ξn+1 |Fn] = Dn + pn a.s., (2.3)

E
[
D2

n+1 |Fn
]=E

[(
Dn + ξn+1

)2 |Fn
]= D2

n + 2pnDn + pn a.s. (2.4)

Moreover, let (Mn) be the sequence defined for all n ≥ 1 by

Mn = n

(
Dn − n − 1

2

)
. (2.5)

We obtain from (2.3) that

E[Mn+1 |Fn] = (n + 1)

(
Dn + pn − n

2

)
= (n + 1)

(
n

n + 1
Dn − n(n − 1)

2(n + 1)

)
,

= n

(
Dn − n − 1

2

)
= Mn a.s.,

which means that (Mn) is a locally square integrable martingale. We deduce from (2.4) that its
predictable quadratic variation is given by

〈M〉n =
n−1∑
k=1

E[(Mk+1 − Mk)2 |Fk] =
n−1∑
k=1

(k − Dk)(Dk + 1) a.s. (2.6)

The martingale decomposition (2.5) allows us to again find all the asymptotic results previously
established for the sequence (Dn) such as the almost sure convergence (1.2) and the asymptotic
normality (1.3). Some improvements to these standard results are as follows. To the best of our
knowledge, the quadratic strong law and the law of iterated logarithm are new.
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On the number of descents in a random permutation 813

Proposition 2.1. We have the quadratic strong law:

lim
n→∞

1

log n

n∑
k=1

(
Dk

k
− 1

2

)2

= 1

12
a.s. (2.7)

Moreover, we also have the law of iterated logarithm:

lim sup
n→∞

(
n

2 log log n

)1/2(Dn

n
− 1

2

)
= − lim inf

n→∞

(
n

2 log log n

)1/2(Dn

n
− 1

2

)
= 1√

12
a.s.

(2.8)
In particular,

lim sup
n→∞

(
n

2 log log n

)(
Dn

n
− 1

2

)2

= 1

12
a.s. (2.9)

Denote by D([0, ∞[) the Skorokhod space of right-continuous functions with left-hand lim-
its. The functional central limit theorem extends the asymptotic normality (1.3); see a similar
result in [13] using generalized Pólya urns.

Proposition 2.2. We have the distributional convergence in D([0, ∞[)(√
n

(
D
nt�

nt� − 1

2

)
, t ≥ 0

)
=⇒ (Wt, t ≥ 0), (2.10)

where (Wt) is a real-valued centered Gaussian process starting at the origin with covari-
ance given, for all 0 < s ≤ t, by E[WsWt] = s/12t2. In particular, we again find the asymptotic
normality (1.3).

The proofs are postponed to Section 8.

Remark 2.1. Relation (2.2) allows us to see the sequence (Dn) as the sequence of the number
of white balls in a two-color generalized Pólya urn [10] with the following rule: at each step,
one ball is drawn at random and then replaced with an additional ball of the opposite color.

3. Main results

3.1. Sharp large deviations and concentration

Our first result concerns the SLDP for the sequence (Dn), which nicely extends the LDP
previously established in [4]. For any positive real number x, write {x} = �x� − x.

Theorem 3.1. For any x in
] 1

2 , 1
[
, we have, on the right side,

P

(
Dn

n
≥ x

)
= exp(−nI(x) − {nx}tx)

σxtx
√

2πn
[1 + o(1)], (3.1)

where the value tx is the unique solution of L′(tx) = x and σ 2
x = L′′(tx).

Our second result is devoted to an optimal concentration inequality involving the rate
function I.

Theorem 3.2. For any x ∈ ] 1
2 , 1

[
and for all n ≥ 1, we have the concentration inequality

P

(
Dn

n
≥ x

)
≤ P(x)

exp(−nI(x) − {nx}tx)

σxtx
√

2πn
, (3.2)
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where the prefactor can be taken as

P(x) =
√

t2x + π2

t2x
+
(

1 + 1

π
+ 2

√
t2x + π2

π2 − 4

)√
π2(t2x + 4)

4
.

Remark 3.1. Let us denote by An = An(πn) the random variable counting the number of
ascents of a permutation πn ∈ Sn. Then, it is clear that Dn(πn) + An(πn) = n − 1. Moreover,
by a symmetry argument, Dn and An share the same distribution. In particular, Dn has the same
distribution as (n − 1) − Dn. Consequently, for all x ∈ ] 1

2 , 1
[
, we have

P

(
Dn + 1

n
≤ 1 − x

)
= P

(
Dn

n
≥ x

)
,

which allows us to immediately extend the previous results to the left side.

Remark 3.2. One can observe from (3.1) or (3.2) that, for all ε > 0,
∞∑

n=1

P

(∣∣∣∣Dn

n
− 1

2

∣∣∣∣> ε

)
< +∞.

That is the complete convergence of (Dn/n) to 1
2 , which directly implies the almost sure

convergence (1.2) for any construction of the sequence (Dn).

3.2. A more direct approach

An alternative approach to proving the SLDP and concentration inequalities for the
sequence (Dn) relies on a famous result from [17] which says that the distribution of Dn is noth-
ing other than that of the integer part of the sum Sn of independent and identically distributed
random variables. More precisely, let (Un) be a sequence of independent random variables
sharing the same uniform distribution on [0, 1]. Write Sn =∑n

k=1 Uk. Then we have, from
[17], that, for all k ∈ [0, n − 1],

P(Dn = k) = P(
Sn� = k) = P(k ≤ Sn < k + 1). (3.3)

This simply means that the distribution of Dn is that of the integer part of the the Irwin–Hall
distribution. The identity (3.3) is somewhat miraculous and it is really powerful in order to
carry out a sharp analysis of the sequence (Dn). Once again, we would like to emphasize
that this direct approach is only relevant for the study of (Dn), while our martingale approach
is much more general. A direct proof of Theorem 3.1 is provided in Section 6, relying on
the identity (3.3). It is also possible to use this direct approach in order to establish a sharp
concentration inequality with the same shape as (3.2); see Remark 6.1.

3.3. Further considerations on concentration inequalities

We wish to compare our concentration inequality (3.2) with some classical ones. The first
one is given by the well-known Azuma–Hoeffding inequality [2]. It follows from (2.6) that the
predictable quadratic variation 〈M〉n of the martingale (Mn) satisfies 〈M〉n ≤ sn/4 where sn =∑n

k=2 k2. In addition, its total quadratic variation reduces to [M]n =∑n−1
k=1 (Mk+1 − Mk)2 = sn.

Consequently, we deduce from an improvement of the Azuma–Hoeffding inequality given by
[2, (3.20)] that, for any x ∈ ] 1

2 , 1
[

and for all n ≥ 1,

P

(
Dn

n
≥ x

)
≤ exp

(
−2n4

sn

(
x − 1

2

)2)
. (3.4)
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We can observe that (3.2) is much sharper than (3.4) for all values of x ∈ ] 1
2 , 1

[
. Furthermore,

by using (3.3), we can also infer a concentration inequality by means of Chernoff’s inequality.
Indeed, for any x ∈ ] 1

2 , 1
[

and for all n ≥ 1,

P

(
Dn

n
≥ x

)
= P

(
n∑

k=1

Uk ≥ �nx�
)

≤ exp
(
nL(tx) − tx�nx�)

≤ exp(−nI(x) − {nx}tx), (3.5)

which is also rougher than (3.2).

4. Three keystone lemmas

Denote by mn the Laplace transform of Dn defined, for all t ∈R, by

mn(t) =E[exp(tDn)]. (4.1)

We can observe that mn(t) is finite for all t ∈R and all n ≥ 1 since Dn is finite. Let us intro-
duce the generating function defined, for all t ∈R and for all z ∈C, by F(t, z) =∑∞

n=0 mn(t)zn,
where the initial value is such that, for all t ∈R, m0(t) = 1. Notice that the radius of conver-
gence, denoted RF(t), should depend on t and is positive since |mn(t)| ≤ en|t|. Moreover, we
easily have, for all |z| < RF(0) = 1, F(0, z) = 1/(1 − z). Our first lemma is devoted to the cal-
culation of the generating function F; see also [4, p. 865], where a similar expression was given
without proof. We can observe that k0 should be replaced by 1 − k0. Let us also remark that
the recursive equation (4.4) was already given in [10, Section 4].

Lemma 4.1. For all t ∈R, RF(t) = t/(et − 1). Moreover, for all t ∈R and for all z ∈C such
that |z| < RF(t),

F(t, z) = 1 − e−t

1 − exp((et − 1)z − t)
. (4.2)

Proof. It follows from (2.2) that, for all t ∈R and for all n ≥ 1,

mn+1(t) =E[exp(tDn+1)] =E[exp(tDn)E[exp(tξn+1) |Fn]],

=E[exp(tDn)pnet + exp(tDn)(1 − pn)],

= mn(t) + (et − 1)E[pn exp(tDn)]. (4.3)

However, we already saw that pn = (n − Dn)/(n + 1), which implies that

E[pn exp(tDn)] = n

n + 1
mn(t) − 1

n + 1
m′

n(t).

Consequently, we obtain from (4.3) that, for all t ∈R and for all n ≥ 1,

mn+1(t) =
(

1 + net

n + 1

)
mn(t) +

(
1 − et

n + 1

)
m′

n(t). (4.4)
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We can observe that (4.4) remains true for n = 0. We deduce from (4.4) that, for all
|z| < RF(t),

∂F(t, z)

∂z
=

∞∑
n=1

nmn(t)zn−1 =
∞∑

n=0

(n + 1)mn+1(t)zn

=
∞∑

n=0

(1 + net)mn(t)zn +
∞∑

n=0

(1 − et)m′
n(t)zn

= F(t, z) + etz
∂F(t, z)

∂z
+ (1 − et)

∂F(t, z)

∂t
,

where the last equality comes from the fact that |m′
n(t)| ≤ nmn(t) allows us to apply the domi-

nated convergence theorem in order to differentiate the series in t. Hence, we have shown that
the generating function F is the solution of the partial differential equation

(1 − etz)
∂F(t, z)

∂z
+ (et − 1)

∂F(t, z)

∂t
= F(t, z) (4.5)

with initial value
F(t, 0) = m0(t) = 1. (4.6)

We now proceed as in [8] in order to solve the partial differential equation (4.5) via the classical
method of characteristics; see, e.g., [20]. Following this method, we first associate with the
linear first-order partial differential equation (4.5) the ordinary differential system given by

dz

1 − etz
= dt

et − 1
= dw

w
,

where w stands for the generating function F. We assume in the following that t > 0, inasmuch
as the proof for t < 0 follows exactly the same lines. The equation binding w and t can be easily
solved, and we obtain

w = C1(1 − e−t). (4.7)

The equation binding z and t leads to the ordinary differential equation

dz

dt
= − et

et − 1
z + 1

et − 1
.

We find by the variation of constant method that

(et − 1)z − t = C2. (4.8)

According to the method of characteristics, the general solution of (4.5) is obtained by coupling
(4.7) and (4.8), namely

C1 = f (C2), (4.9)

where f is a function which can be explicitly calculated from the boundary value in (4.6). We
deduce from the conjunction of (4.7), (4.8), and (4.9) that, for all t > 0 and for all z ∈C such
that |z| < RF(t),

F(t, z) = (1 − e−t)f ((et − 1)z − t). (4.10)
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It only remains to determine the exact value of the function f by taking into account the initial
condition (4.6). We obtain from (4.10) with z = 0 and replacing −t by t that

f (t) = 1

1 − et
. (4.11)

Finally, the explicit solution (4.2) clearly follows from (4.10) and (4.11). Moreover, we can
observe that the radius of convergence comes immediately from (4.2), which completes the
proof of Lemma 4.1. �

The global expression (4.2) of the generating function F allows us to deduce a sharp
expansion of the Laplace transform mn of Dn, as follows.

Lemma 4.2. For any t �= 0,

mn(t) =
(

1 − e−t

t

)(
et − 1

t

)n

(1 + rn(t)), (4.12)

where the remainder term rn(t) goes exponentially fast to zero as

|rn(t)| ≤ |t|e
(

1 + 1

π
+ 2 + n√

t2 + 4π2

)(
1 + 4π2

t2

)−n/2

. (4.13)

Proof. Throughout the proof, we assume that t �= 0. It follows from (4.2) that F is a
meromorphic function on C with simple poles given, for all � ∈Z, by

zF
� (t) = t + 2i�π

et − 1
.

By a slight abuse of notation, we still denote by F this meromorphic extension. Hereafter, for
the sake of simplicity, we consider the function F defined, for all z ∈C, by

F(t, z) = 1

1 − e−t
F(t, z) = f (ξ (t, z)), (4.14)

where the function f was previously defined in (4.11) and the function ξ is given, for all
z ∈C, by

ξ (t, z) = (et − 1)z − t. (4.15)

By the same token, we also introduce the functions G and H defined, for all z ∈C, by

G(t, z) = g(ξ (t, z)), H(t, z) = h(ξ (t, z)), (4.16)

where g and h are given, for all z ∈C
∗, by

g(z) = −1

z
, h(z) = 1

1 − ez
+ 1

z
. (4.17)

We can immediately observe from (4.17) that H=F − G, which means that we have sub-
tracted from F its simple pole at 0 to get H. Given a function K(t, z) analytic in z on some
set {(t, z) ∈R×C, |z| ≤ RK(t)}, we denote by mK

n (t) the coefficient of its Taylor series at
point (t, 0), i.e. K(t, z) =∑∞

n=0 mK
n (t)zn. Thanks to this notation, we clearly have mF

n (t) =
mG

n (t) + mH
n (t). Moreover, we deduce from (4.14) that

mF
n (t) = 1

1 − e−t
mF

n (t). (4.18)
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The first coefficient mG
n (t) can be explicitly computed by

mG
n (t) = 1

t

(
et − 1

t

)n

. (4.19)

As a matter of fact, for all z ∈C such that |z| < RG(t) = t(et − 1)−1, it follows from (4.15) and
(4.16) that

G(t, z) = − 1

ξ (t, z)
= 1

t − (et − 1)z
= 1

t

∞∑
n=0

(
et − 1

t

)n

zn.

Consequently, as mn(t) = mF
n (t), we obtain from (4.18) that

mn(t) = (1 − e−t)(mG
n (t) + mH

n (t)) = (1 − e−t)mG
n (t)(1 + rn(t)),

which leads via (4.19) to

mn(t) =
(

1 − e−t

t

)(
et − 1

t

)n

(1 + rn(t)),

where the remainder term rn(t) is the ratio rn(t) = mH
n (t)/mG

n (t). From now on, we focus our
attention on a sharp upper bound for mH

n (t). The function h is meromorphic with simple poles
at the points 2iπZ∗. Moreover, for a given t �= 0, z is a pole of H if and only if (et − 1)z − t is
a pole of h. Hence, the poles of H are given, for all � ∈Z

∗, by

zH� (t) = t + 2i�π

et − 1
.

In addition, its radius of convergence RH(t) is nothing more than the shortest distance between
0 and one of these poles. Consequently, we obtain

RH(t) = |zH1 (t)| = t

et − 1

√
1 + 4π2

t2
.

Furthermore, it follows from Cauchy’s inequality that, for any 0 < ρ(t) < RH(t),

|mH
n (t)| ≤ ‖H(t, ·)‖∞,C(0,ρ(t))

ρ(t)n
, (4.20)

where the norm in the numerator is

‖H(t, .)‖∞,C(0,ρ(t)) = sup{|H(t, z)|, |z| = ρ(t)}.
Since ξ (t, C(0, ρ(t))) coincides with the circle C( − t, |et − 1|ρ(t)), we deduce from the iden-
tity H(t, z) = h(ξ (t, z)) that ‖H(t, ·)‖∞,C(0,ρ(t)) = ‖h‖∞,C(−t,|et−1|ρ(t)). Hereafter, we introduce
a radial parameter

ρ(t, α) = t

et − 1

√
1 + 4απ2

t2
, (4.21)

where α is a real number in the interval ]−t2/4π2, 1[. We also define the distance between the
circle C(−t, |et − 1|ρ(t, α)) and the set of the poles of h,

δ(t, α) = d(C(−t, |et − 1|ρ(t, α)), 2iπZ∗).
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We clearly have from the Pythagorean theorem that δ(t, α) = √
t2 + 4π2 − √

t2 + 4απ2. In
addition, we can easily check that

δ(t, α) = 4π2(1 − α)√
t2 + 4π2 + √

t2 + 4απ2
,

which ensures that
2π2(1 − α)√

t2 + 4π2
< δ(t, α) <

4π2(1 − α)√
t2 + 4π2

. (4.22)

It follows from the maximum principle that ‖h‖∞,C(−t,|et−1|ρ(t,α)) ≤ ‖h‖∞,∂D(L,�,δ(t,α)) where,
for L > 0 and � > 0 large enough, D(L, �, δ(t, α)) =B(L, �) ∩Ah(δ(t, α))c is the domain
given by the intersection of the box B(L, �) = {z ∈C, |Re(z)| < L, |Im(z)| < �} and the
complementary set of

Ah(δ(t, α)) = {z ∈C, d(z, 2iπZ∗) ≤ δ(t, α) with |Im(z)| ≥ π}.
On the one hand we have, for all y ∈R, |eL+iy − 1| ≥ eL − 1 and |L + iy| ≥ L, implying that,
for all y ∈R,

|h(L + iy)| ≤ 1

eL − 1
+ 1

L
.

By the same token, we also have, for all y ∈R, |e−L+iy − 1| ≥ 1 − e−L and | − L + iy| ≥ L,
leading, for all y ∈R, to

|h(−L + iy)| ≤ 1

1 − e−L
+ 1

L
.

On the other hand, we can choose � of the form � = (2k + 1)π for a value k ∈N
∗ large

enough. Then, for all x ∈R, exp(x + (2k + 1)iπ ) = − exp(x) and |x + (2k + 1)iπ | ≥ (2k + 1)π ,
implying that, for all x ∈R,

|h(x + (2k + 1)iπ )| ≤ 1 + 1

(2k + 1)π
. (4.23)

By letting L and � go to infinity, we obtain

‖h‖∞,C(−t,(et−1)ρ(t,α)) ≤ max
(
1, ‖h‖∞,∂D(δ(t,α))

)
,

where D(δ(t, α)) is the domain D(δ(t, α)) =Ah(δ(t, α))c. We clearly have from (4.17) that, for
all z ∈ ∂D(δ(t, α)) with |Im(z)| > π ,

|h(z)| ≤ |f (z)| + 1

|z| ≤ |f (z)| + 1

π
. (4.24)

Moreover, it follows from tedious but straightforward calculations that

inf
z∈C,|z|=δ(t,α)

|1 − ez| = 1 − e−δ(t,α),

which ensures that

|f (z)| ≤ 1

1 − e−δ(t,α)
. (4.25)
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In addition, we obtain from (4.23) that, for all z ∈ ∂D(δ(t, α)) with |Im(z)| = π ,

|h(z)| ≤ 1 + 1

π
. (4.26)

Hence, we find from (4.24), (4.25), and (4.26) that

‖h‖∞,∂D(δ(t,α)) ≤ 1

1 − e−δ(t,α)
+ 1

π
.

We were not able to find an explicit maximum for the previous upper bound. However, it is not
hard to see that

1

1 − e−δ(t,α)
≤ 1 + 1

δ(t, α)
,

which gives us

‖h‖∞,∂D(δ(t,α)) ≤ 1 + 1

π
+ 1

δ(t, α)
. (4.27)

Consequently, we deduce from (4.20), (4.21), (4.22), and (4.27) that, for all t �= 0 and for
all n ≥ 1,

|mH
n (t)| ≤

(
et − 1

t

)n

ϕn(t, α), (4.28)

where

ϕn(t, α) =
(

1 + 1

π
+

√
t2 + 4π2

2π2(1 − α)

)(
1 + 4απ2

t2

)−n/2

. (4.29)

For the sake of simplicity, let  be the function defined, for all α ∈]−t2/4π2, 1[, by

(α) =
(

1

1 − α

)(
1 + 4απ2

t2

)−n/2

.

We can easily see that  is a convex function reaching its minimum for the value

α = 1 −
(

1 + t2

4π2

)(
1 + n

2

)−1

.

Some numerical experiments show that this explicit value seems to be not far from being the
optimal value that minimizes ϕn(t, α). By plugging α into (4.29), we obtain from (4.28) that,
for all t �= 0 and for all n ≥ 1,

|mH
n (t)| ≤

(
et − 1

t

)n(
1 + 1

π
+ 2 + n√

t2 + 4π2

)(
1 + 2

n

)n/2(
1 + 4π2

t2

)−n/2

≤ e

(
et − 1

t

)n(
1 + 1

π
+ 2 + n√

t2 + 4π2

)(
1 + 4π2

t2

)−n/2

. (4.30)

Finally, (4.13) follows from (4.19) together with (4.30), which completes the proof of
Lemma 4.2. �

https://doi.org/10.1017/jpr.2023.86 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.86


On the number of descents in a random permutation 821

We now focus our attention on a complex estimate of the Laplace transform mn of Dn since
mn clearly extends to an analytic function on C. More precisely, our goal is to compute an
estimate of mn(t + iv) for t �= 0 and for v ∈R such that |v| < π . Note that mn is 2iπ periodic.

Lemma 4.3. For any t �= 0 and for all v ∈R such that |v| < π ,

mn(t + iv) =
(

1 − e−(t+iv)

t + iv

)(
et+iv − 1

t + iv

)n

(1 + rn(t + iv)), (4.31)

where the remainder term rn(t + iv) is exponentially negligible and satisfies

|rn(t + iv)| ≤
√

t2 + v2

(
1 + 1

π
+

√
t2 + 4π2

π (π − |v|)
)(

t2 + v2

t2 + π2

)n/2

. (4.32)

Moreover, for any t �= 0 and for all v ∈R such that |v| ≤ π , we also have the alternative upper
bound

|mn(t + iv)| ≤ |1 − e−(t+iv)|
(

et − 1

t

)n

×
(

1√
t2 + v2

exp

(
−n

t2L′′(t)
t2 + π2

v2

2

)

+
(

1 + 1

π
+ 2

√
t2 + π2

π2 − 4

)
exp

(
−n

4t2L′′(t)
π2(t2 + 4)

v2

2

))
, (4.33)

where the second derivative of the asymptotic cumulant-generating function L is the positive
function given by

L′′(t) = (et − 1)2 − t2et

(t(et − 1))2
.

Proof. We still assume in the following that t �= 0. We also extend F(t, z) in the complex
plane with respect to the first variable, F(t + iv, z) =∑∞

n=0 mn(t + iv)zn, where the initial value
is such that m0(t + iv) = 1. Since |mn(t + iv)| ≤ mn(t), the radius of convergence in z of F(t +
iv, ·) is at least the one for v = 0. Moreover, the poles of F(t + iv, ·) are given, for all � ∈Z, by

zF
� (t + iv) = (t + iv) + 2i�π

e(t+iv) − 1
.

Consequently, for all v ∈R such that |v| < π ,

RF(t + iv) = |t + iv|
|et+iv − 1| .

As in the proof of Lemma 4.2, we can split F(t + iv, z) into two terms,

F(t + iv, z) = (1 − e−(t+iv))(G(t + iv, z) +H(t + iv, z)),

where we recall from (4.16) that, for all z ∈C and for all v ∈R such that |v| < π ,

G(t + iv, z) = g(ξ (t + iv, z)), H(t + iv, z) = h(ξ (t + iv, z)),

where g and h are given, for all z ∈C
∗, by

g(z) = −1

z
, h(z) = 1

1 − ez
+ 1

z
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and the function ξ is such that ξ (t + iv, z) = (et+iv − 1)z − (t + iv). By holomorphic extension,
we deduce from (4.19) that

mG
n (t + iv) = 1

t + iv

(
et+iv − 1

t + iv

)n

.

Moreover, the poles of H(t + iv) are given, for all � ∈Z
∗, by

zH� (t + iv) = t + i(v + 2�π )

et+iv − 1
.

Hence, we obtain that, for all v ∈R such that |v| < π ,

RH(t + iv) =
√

t2 + (2π − |v|)2

|et+iv − 1| >

√
t2 + v2

|et+iv − 1| = RF(t + iv).

It follows once again from Cauchy’s inequality that, for any 0 < ρ(t + iv) < RH(t + iv),

|mH
n (t + iv)| ≤ ‖H(t + iv, ·)‖∞,C(0,ρ(t+iv))

ρ(t + iv)n
, (4.34)

where the norm in the numerator is

‖H(t + iv, ·)‖∞,C(0,ρ(t+iv)) = sup{|H(t + iv, z)|, |z| = ρ(t + iv)}.
Since the image of the circle C(0, ρ(t + iv)) by the application ξ (t + iv, ·) coincides with the
circle C(−(t + iv), |et+iv − 1|ρ(t + iv)), we obtain from H(t + iv, z) = h(ξ (t + iv, z)) that

‖H(t + iv, ·)‖∞,C(−t,ρ(t+iv)) = ‖h‖∞,C(−(t+iv),|et+iv−1|ρ(t+iv)).

Hereafter, since |v| < π , we can take the radius

ρ(t + iv) =
√

t2 + π2

|et+iv − 1| . (4.35)

Moreover, as in the proof of Lemma 4.2, denote by δ(t + iv) the distance between the circle
C(−(t + iv), |et+iv − 1|ρ(t + iv))) and the set of poles of h,

δ(t + iv) = d(C(−(t + iv), |et+iv − 1|ρ(t + iv)), 2iπZ∗).

It follows from (4.35) and the Pythagorean theorem that

δ(t + iv) =
√

t2 + (2π − |v|)2 −
√

t2 + π2.

We can observe that

δ(t + iv) = (3π − |v|)(π − |v|)√
t2 + (2π − |v|)2 + √

t2 + π2
,

which leads to
π (π − |v|)√

t2 + 4π2
< δ(t + iv) < π − |v|. (4.36)
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Using (4.34) together with (4.27) and (4.36), we obtain

|mH
n (t + iv)| ≤

(
1 + 1

π
+ 1

δ(t + iv)

)
1

ρ(t + iv)n
≤
(

1 + 1

π
+

√
t2 + 4π2

π (π − |v|)
)

1

ρ(t + iv)n
.

Hence, we find that mn(t + iv) = (1 − e−(t+iv))mG
n (t + iv)(1 + rn(t + iv)), where the remainder

term rn(t) is the ratio

rn(t + iv) = mH
n (t + iv)

mG
n (t + iv)

that satisfies

|rn(t + iv)| ≤
√

t2 + v2

(
1 + 1

π
+

√
t2 + 4π2

π (π − |v|)
)(

t2 + v2

t2 + π2

)n/2

. (4.37)

Hereafter, we go further in the analyses of mn(t + iv) by providing a different upper bound for
mH

n (t + iv). Our motivation is that the factor 1/(π − |v|) in (4.37) becomes very large when |v|
is close to π . Our strategy is not to obtain the best exponent by taking the largest radius, close
to the radius of convergence. Instead, we consider a smaller radius in order to stay away from
the poles, but not too small in order to still have an exponential term with respect to mF

n (t). Let
β be the function defined, for all |v| < π , by

β(v) = 2(1 − cos(v))

v2
.

It is clear that β is an even function, increasing on [−π, 0] and decreasing on [0, π ] with a
maximum value β(0) = 1, and such that β(π ) = 4/π2. We replace the radius previously given
by (4.35) by the new radius

ρ(t + iv) =
√

t2 + β(v)v2

|et+iv − 1| .

We can observe that we only replaced π2 by β(v)v2 = 2(1 − cos(v)). As before, denote by
δ(t + iv) the distance between the circle C(−(t + iv), |et+iv − 1|ρ(t + iv)) and the set of the
poles of h,

δ(t + iv) =
√

t2 + (2π − |v|)2 −
√

t2 + β(v)v2.

As in the proof of (4.36), we obtain

π2 − 4

2
√

t2 + π2
< δ(t + iv) < 2π −

(
1 + 2

π

)
|v|,

which ensures that

|mH
n (t + iv)| ≤

(
1 + 1

π
+ 1

δ(t + iv)

)
1

ρ(t + iv)n
,

≤
(

1 + 1

π
+ 2

√
t2 + π2

π2 − 4

)( |et+iv − 1|2
t2 + β(v)v2

)n/2

.
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It follows from straightforward calculation that

|et+iv − 1|2
t2 + β(v)v2

= (et − 1)2 + 2et(1 − cos(v))

t2 + β(v)v2
= (et − 1)2 + etβ(v)v2

t2 + β(v)v2

= (et − 1)2

t2

(
t2

t2 + β(v)v2
+ t2etβ(v)v2

(et − 1)2(t2 + β(v)v2)

)

= (et − 1)2

t2

(
1 −

(
(et − 1)2 − t2et

(et − 1)2

)
β(v)v2

t2 + β(v)v2

)
.

Moreover, we also have from (1.5) that, for all t �= 0,

L′′(t) = (et − 1)2 − t2et

(t(et − 1))2
. (4.38)

In addition, by using that for |v| ≤ π we have

β(v)v2

t2 + β(v)v2
≥ 4v2

π2(t2 + 4)
,

we deduce from the elementary inequality 1 − x ≤ exp(−x) that

|mH
n (t + iv)| ≤

(
1 + 1

π
+ 2

√
t2 + π2

π2 − 4

)(
et − 1

t

)n

exp

(
−n

4t2L′′(t)
π2(t2 + 4)

v2

2

)
. (4.39)

We also recall that

mG
n (t + iv) = 1

t + iv

(
et+iv − 1

t + iv

)n

.

We also have from straightforward calculation that

|et+iv − 1|2
|t + iv|2 = (et − 1)2 + 2et(1 − cos(v))

t2 + v2
= (et − 1)2 + etβ(v)v2

t2 + v2

= (et − 1)2

t2

(
t2

t2 + v2
+ t2etβ(v)v2

(et − 1)2(t2 + v2)

)
(4.40)

= (et − 1)2

t2

(
1 −

(
(et − 1)2 − t2etβ(v)

(et − 1)2

)
v2

t2 + v2

)

= (et − 1)2

t2

(
1 −

(
(et − 1)2 − t2et

(et − 1)2

)
v2

t2 + v2
− t2et

(et − 1)2

(1 − β(v))v2

t2 + v2

)

≤ (et − 1)2

t2

(
1 −

(
(et − 1)2 − t2et

(et − 1)2

)
v2

t2 + π2

)
, (4.41)

since β(v) ≤ 1. Hence, we obtain from (4.38) that

|mG
n (t + iv)| ≤ 1√

t2 + v2

(
et − 1

t

)n

exp

(
−n

t2L′′(t)
t2 + π2

v2

2

)
. (4.42)

Finally, we already saw that mn(t + iv) = (1 − e−(t+iv))(mG
n (t + iv) + mH

n (t + iv)).
Consequently, (4.39) together with (4.42) clearly lead to (4.33), which achieves the
proof of Lemma 4.3. �
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5. Proof of the sharp large-deviation principle

Let us start with an elementary lemma concerning the asymptotic cumulant-generating
function L defined by (1.5).

Lemma 5.1. The function L : R→R is twice differentiable and strictly convex, and its first
derivative L′ : R→ ]0, 1[ is a bijection. In particular, for each x ∈ ]0, 1[, there exists a unique
value tx ∈R such that

I(x) = xtx − L(tx), (5.1)

where I is the Fenchel–Legendre transform of L. The value tx is also characterized by the
relation L′(tx) = x where, for all t �= 0,

L′(t) = et(t − 1) + 1

t(et − 1)
. (5.2)

Moreover, for all x ∈ ] 1
2 , 1

[
, tx > 0, while for all x ∈ ]0, 1

2

[
, tx < 0. In addition, for all t ∈R,

L′′(t) > 0 as the second derivative of L is given, for all t �= 0, by

L′′(t) = (et − 1)2 − t2et

(t(et − 1))2
. (5.3)

Finally, the function L can be extended to a function L : C \ 2iπZ∗ →C satisfying, for all v ∈R

such that |v| ≤ π , Re(L(t + iv)) ≤ L(t) − C(t)v2/2, where

C(t) = t2

t2 + π2
L′′(t).

Proof. We saw in the previous section that the calculation of the first two derivatives (5.2)
and (5.3) of L follows from straightforward calculation. Let us remark that limt→0 L′(t) = 1

2
and limt→0 L′′(t) = 1

12 , which means that L can be extended as a C2 function on R. The above
computation also gives limt→−∞ L′(t) = 0 and limt→+∞ L′(t) = 1.

We now focus our attention on the complex extension of L. We deduce from (4.41) and (5.3)
together with the elementary inequality ln (1 − x) ≤ −x that, for all t �= 0 and |v| ≤ π ,

Re(L(t + iv)) = ln

( |et+iv − 1|
|t + iv|

)
≤ L(t) + 1

2
ln

(
1 − t2L′′(t) v2

t2 + π2

)
≤ L(t) − C(t)

v2

2
,

which completes the proof of Lemma 5.1. �

We continue with an elementary lemma which can be seen as a slight extension of the usual
Laplace method.

Lemma 5.2. Let us consider two real numbers a < 0 < b, and two functions f : [a, b] →C and
ϕ : [a, b] →C such that, for all λ large enough,

∫ b
a e−λRe ϕ(u)|f (u)| du < +∞. Assume that f is

a continuous function in 0, f (0) �= 0, ϕ is a C2 function in 0, ϕ′(0) = 0, ϕ′′(0) is a real positive
number, and there exists a constant C > 0 such that Re ϕ(u) ≥ Re ϕ(0) + Cu2. Then,

lim
λ→∞

√
λeλϕ(0)

∫ b

a
e−λϕ(u)f (u) du = √

2π
f (0)√
ϕ′′(0)

.
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Proof. First of all, we can assume without loss of generality that ϕ(0) = 0. We can observe
that, for all λ large enough,

∫ b

a
e−λϕ(u)f (0) du = f (0)√

λ

∫ b
√

λ

a
√

λ

exp

(
−λϕ

(
u√
λ

))
du. (5.4)

However, it follows from the assumptions on the function ϕ that

lim
λ→+∞ λϕ

(
u√
λ

)
= ϕ′′(0)

u2

2
,

together with ∣∣∣∣ exp

(
−λϕ

(
u√
λ

))∣∣∣∣≤ exp(−Cu2).

Consequently, according to the dominated convergence theorem, we obtain

lim
λ→+∞

∫ b
√

λ

a
√

λ

exp

(
−λϕ

(
u√
λ

))
du =

∫ +∞

−∞
exp

(
−ϕ′′(0)

u2

2

)
du =

√
2π√

ϕ′′(0)
. (5.5)

Furthermore, by using the usual Laplace method, we find that∣∣∣∣
∫ b

a
e−λϕ(u)(f (u) − f (0)) du

∣∣∣∣≤
∫ b

a
e−λRe ϕ(u)|f (u) − f (0)| du = o(λ−1/2). (5.6)

Finally, (5.4), (5.5), and (5.6) allow us to conclude the proof of Lemma 5.2. �

Proof of Theorem 3.1. We now proceed to the proof of Theorem 3.1. Our goal is to estimate,
for all x ∈ ] 1

2 , 1
[
, the probability

P

(
Dn

n
≥ x

)
=

n−1∑
k=�nx�

P(Dn = k).

To do so, we extend the Laplace transform mn of Dn, defined in (4.1), into an analytic function
on the complex plane. For all t, v ∈R,

mn(t + iv) =E
[
e(t+iv)Dn

]= n−1∑
k=0

e(t+iv)k
P(Dn = k).

Therefore, for all t, v ∈R and for all k ≥ 0,

P(Dn = k) = e−tk 1

2π

∫ π

−π

mn(t + iv)e−ikv dv. (5.7)

We can observe that (5.7) is also true for k ≥ n, allowing us to recover that P(Dn = k) = 0.
Consequently, since |mn(t + iv)| ≤ etn, it follows from Fubini’s theorem that, for all t > 0,

P

(
Dn

n
≥ x

)
= 1

2π

∫ π

−π

mn(t + iv)
+∞∑

k=�nx�
e−k(t+iv) dv. (5.8)
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In the following we choose t = tx. In particular, tx > 0 since x > 1
2 . Then, we deduce from (5.8)

that

P

(
Dn

n
≥ x

)
= 1

2π

∫ π

−π

mn(tx + iv)
exp(−tx�nx� − i�nx�v)

1 − e−(tx+iv)
dv = In, (5.9)

where the integral In can be separated into two parts, In = Jn + Kn, with

Jn = 1

2π

∫
|v|<π−εn

mn(tx + iv)
exp(−tx�nx� − i�nx�v)

1 − e−(tx+iv)
dv,

Kn = 1

2π

∫
π−εn<|v|<π

mn(tx + iv)
exp(−tx�nx� − i�nx�v)

1 − e−(tx+iv)
dv,

where εn = n−3/4. On the one hand, we obtain from (4.12) that

|Kn| ≤ 1

2π

∫
π−εn<|v|<π

|mn(tx)|exp(−tx�nx�)

|1 − e−tx | dv,

≤ 2εn

2π tx
exp(−tx(�nx� − nx)) exp(−nI(x))(1 + |rn(tx)|),

≤ εn

π tx
exp(−nI(x))(1 + |rn(tx)|)

by using (4.12), (5.1), and the fact that tx > 0. Consequently, (4.13) together with the definition
of εn ensure that

Kn = o

(
exp(−nI(x))√

n

)
. (5.10)

It only remains to evaluate the integral Jn. We deduce from (4.31) and (5.1) that

Jn = 1

2π
exp(−tx{nx} − nI(x))

∫
|v|<π−εn

exp(−nϕ(v))gn(v) dv, (5.11)

where the functions ϕ and g are given, for all |v| < π , by

ϕ(v) = −(L(tx + iv) − L(tx) − ixv), gn(v) = exp(−i{nx}v)

tx + iv
(1 + rn(tx + iv)).

Thanks to Lemma 5.1, we have ϕ(0) = 0, ϕ′(0) = 0, and ϕ′′(0) = σ 2
x , which is a positive real

number. In addition, there exists a constant C > 0 such that Re ϕ(v) ≥ Cv2. Therefore, via the
extended Laplace method given by Lemma 5.2, we obtain

lim
n→∞

√
n
∫ π

−π

exp(−nϕ(v))
1

tx + iv
dv =

√
2π

σxtx
. (5.12)

It follows from (4.32) that there exist positive constants ax, bx, cx such that, for all |v| ≤ π − εn,

|rn(tx + iv)| ≤ ax

εn

(
1 − bxεn

)n/2

≤ ax

εn
exp

(
−bxnεn

2

)
≤ cx exp

(
−bx

4
n1/4

)
,

which ensures that

| exp(−i{nx}v)(1 + rn(tx + iv)) − 1| ≤ cx exp

(
−bx

4
n1/4

)
+ |v|.
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Then, we obtain ∣∣∣∣
∫ π

−π

exp(−nϕ(v))

(
gn(v)1|v|<π−εn − 1

tx + iv

)
dv

∣∣∣∣≤ �n,

where

�n =
∫ π

−π

exp(−nRe ϕ(v))
1

|tx + iv|
(

cx exp

(
−bx

4
n1/4

)
+ 2|v|

)
dv

since 1|v|≥π−εn ≤ |v|. By the standard Laplace method, limn→∞
√

n�n = 0. Consequently, we
deduce from (5.11) and (5.12) that

lim
n→∞

√
n exp(tx{nx} + nI(x))Jn = 1

σxtx
√

2π
. (5.13)

Finally, (5.9) together with (5.10) and (5.13) clearly lead to (3.1). �

6. An alternative proof

Alternative proof of Theorem 3.1. We already saw from (3.3) that the distribution Dn is
nothing other than that of the integer part of the Irwin–Hall distribution, which is the sum
Sn = U1 + · · · + Un of independent and identically distributed random variables sharing the
same uniform distribution on [0, 1]. It follows from some direct calculation that, for any
x ∈ ] 1

2 , 1
[
,

P

(
Dn

n
≥ x

)
= P(Sn ≥ �nx�) =En

[
exp(−txSn + nL(tx))1{Sn/n≥x+εn}

]
= exp(−nI(x))En

[
e−ntx(Sn/n−x)1{Sn/n≥x+εn}

]
, (6.1)

where En is the expectation under the new probability Pn given by

dPn

dP
= exp(txSn − nL(tx)) (6.2)

and εn = {nx}/n. Let

Vn =
√

n

σx

(
Sn

n
− x

)
,

and denote by fn and n the probability density function and the characteristic function of Vn

under the new probability Pn, respectively. Let us remark that, under Pn, we know that (Vn)
converges in distribution to the standard Gaussian measure. Using the Parseval identity, we
have

En
[
e−ntx(Sn/n−x)1{Sn/n≥x+εn}

]= ∫
R

e−σxtx
√

nv1{v≥(
√

nεn)/σx}fn(v) dv

= 1

2π

∫
R

e−(σxtx
√

n+iv)(
√

nεn/σx)

σxtx
√

n + iv
n(v) dv

= e−tx{nx}

2πσx
√

n

∫
R

e−i({nx}v)/(σx
√

n)

tx + iv/(σx
√

n)
n(v) dv. (6.3)
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Recalling that L is also the logarithm of the Laplace transform of the uniform distribution in
[0, 1], we obtain from (6.2) that

n(v) =E

[
exp

(
ivSn

σx
√

n
− i

√
nxv

σx
+ txSn − nL(tx)

)]

= exp

(
n

(
L

(
tx + iv

σx
√

n

)
− L(tx) − ixv√

nσx

))
.

Let A be a positive constant chosen later. We can split the integral in (6.3) into two parts: we
call Jn the integral on [−Aσx

√
n, +Aσx

√
n] and Kn the integral on the complementary set. On

the one hand, as (4.41) also holds when replacing π2 by v2, which is smaller than A2σ 2
x n, and

since L′′(tx) = σ 2
x , we get, for all v ∈R,

∣∣∣∣e−i({nx}v)/(σx
√

n)

tx + iv/(σx
√

n)
n(v)1{|v|≤Aσx

√
n}
∣∣∣∣≤ 1

tx

(
1 − t2xσ

2
x

t2x + A2

v2

σ 2
x n

)n/2

≤ 1

tx
exp

(
− t2x

t2x + A2

v2

2

)
. (6.4)

Then, we deduce from Lebesgue’s dominated convergence theorem that

lim
n→+∞ Jn =

∫
R

1

tx
exp

(
−L′′(tx)

σ 2
x

v2

2

)
dv =

√
2π

tx
. (6.5)

On the other hand, concerning Kn, since now v is large in the integral we use (4.40) to get

∣∣∣∣e−i({nx}v)/(σx
√

n)

tx + iv/(σx
√

n)
n(v)

∣∣∣∣≤ 1

tx

(
t2x + 4t2x etx/(etx − 1)2

t2x + v2/(σ 2
x n)

)n/2

,

leading to

Kn ≤ 2

tx

(
t2x + 4t2x

etx

(etx − 1)2

)n/2

σx
√

n
∫ +∞

A

1

(t2x + v2)n/2
dv. (6.6)

Moreover, for all n > 2,∫ +∞

A

1

(t2x + v2)n/2
dv ≤

∫ +∞

A

v

A

1

(t2x + v2)n/2
dv = 1

(n − 2)A

1

(t2x + A2)n/2−1
. (6.7)

By taking A2 = t2x + 8t2x etx/(etx − 1)2, we obtain from (6.6) and (6.7) that

lim
n→+∞ Kn = 0 (6.8)

exponentially fast. Finally, (6.1) together with (6.3), (6.5), and (6.8) allow us to conclude the
alternative proof of Theorem 3.1. �
Remark 6.1. We can use the previous computations to also get a new concentration inequality.
More precisely, by using the upper bound (6.4) to get an upper bound for Jn instead of a limit,
we are able to prove that

P

(
Dn

n
≥ x

)
≤ Qn(x)

exp(−nI(x) − {nx}tx)

σxtx
√

2πn
, (6.9)
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where the prefactor can be taken as

Qn(x) =
√

2 + 8etx

(etx − 1)2
+ 4σxtx√

2π

√
1 + 8etx

(etx − 1)2

√
n

2n/2(n − 2)
.

We can observe that (6.9) is similar to (3.2). Note that the constants in (3.2) as well as in (6.9)
are not sharp. It is in fact possible to improve them by more precise cuttings in the integrals.

7. Proof of the concentration inequalities

We now proceed to prove the concentration inequalities. Recalling that x ∈ ] 1
2 , 1

[
, which

implies that tx > 0, we obtain from the equality in (5.8) that

P

(
Dn

n
≥ x

)
= 1

2π

∫ π

−π

mn(tx + iv)
+∞∑

k=�nx�
e−k(tx+iv) dv

= 1

2π

∫ π

−π

mn(tx + iv)
exp(−tx�nx� − i�nx�v)

1 − e−(tx+iv)
dv

≤ exp(−�nx�tx)

2π

∫ π

−π

|mn(tx + iv)|
|1 − e−(tx+iv)| dv.

Consequently, we deduce from the alternative upper bound in (4.33) that

P

(
Dn

n
≥ x

)
≤ 1

2π
exp(−n(xtx − L(tx)) − {nx}tx)(A(x) + B(x)), (7.1)

where

A(x) =
∫ π

−π

1√
t2x + v2

exp

(
−n

t2x L′′(tx)

t2x + π2

v2

2

)
dv,

B(x) =
(

1 + 1

π
+ 2

√
t2x + π2

π2 − 4

) ∫ π

−π

exp

(
−n

4t2x L′′(tx)

π2(t2x + 4)

v2

2

)
dv.

Hereafter, we recall from (1.4) that I(x) = xtx − L(tx) and we write σ 2
x = L′′(tx). It follows from

standard Gaussian calculation that

A(x) ≤ 2π

σxtx
√

2πn

√
t2x + π2

t2x
,

B(x) ≤
(

1 + 1

π
+ 2

√
t2x + π2

π2 − 4

)
π2
√

t2x + 4

σxtx
√

2πn
.

(7.2)

Finally, we find from (7.1) together with (7.2) that

P

(
Dn

n
≥ x

)
≤ P(x)

exp(−nI(x) − {nx}tx)

σxtx
√

2πn
,

where

P(x) =
√

t2x + π2

t2x
+
(

1 + 1

π
+ 2

√
t2x + π2

π2 − 4

)√
π2(t2x + 4)

4
,

which is exactly what we wanted to prove.
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8. Proofs of the standard results

We now focus our attention on the more standard results concerning the sequence (Dn)
such as the quadratic strong law, the law of iterated logarithm, and the functional central limit
theorem.

Proof of Proposition 2.1. First of all, we can observe from (2.2) and (2.5) that the martingale
(Mn) can be rewritten in the additive form Mn =∑n−1

k=1 (k + 1)(ξk+1 − pk). It follows from the
almost sure convergence (1.2) together with (2.6) and the classical Toeplitz lemma that the
predictable quadratic variation 〈M〉n of (Mn) satisfies

lim
n→∞

〈M〉n

n3
= 1

12
a.s. (8.1)

Denote by fn the explosion coefficient associated with (Mn),

fn = 〈M〉n+1 − 〈M〉n

〈M〉n+1
= (n − Dn)(Dn + 1)

〈M〉n+1
.

We obtain from (1.2) and (8.1) that limn→∞ nfn = 3 a.s., which implies that fn converges to zero
almost surely as n goes to infinity. In addition, we clearly have for all n ≥ 1, |ξn+1 − pn| ≤ 1.
Consequently, we deduce from the quadratic strong law for martingales given, e.g., by [1,
Theorem 3] that

lim
n→∞

1

log〈M〉n

n∑
k=1

fk
M2

k

〈M〉k
= 1 a.s.,

which ensures that

lim
n→∞

1

log n

n∑
k=1

M2
k

k4
= 1

12
a.s. (8.2)

However, it follows from (2.5) that

M2
n

n4
=
(

Dn

n
− 1

2

)2

+ 1

n

(
Dn

n
− 1

2

)
+ 1

4n2
. (8.3)

Therefore, we obtain once again from (1.2) together with (8.2) and (8.3) that

lim
n→∞

1

log n

n∑
k=1

(
Dk

k
− 1

2

)2

= 1

12
a.s.,

which is exactly the quadratic strong law (2.7). It only remains to prove the law of iterated log-
arithm given by (2.8). It immediately follows from the law of iterated logarithm for martingales
given, e.g., by [6, Corollary 6.4.25] that

lim sup
n→∞

(
1

2〈M〉n log log〈M〉n

)1/2

Mn = − lim inf
n→∞

(
1

2〈M〉n log log〈M〉n

)1/2

Mn = 1 a.s.,
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which leads via (8.1) to

lim sup
n→∞

(
1

2n3 log log n

)1/2

Mn = − lim inf
n→∞

(
1

2n3 log log n

)1/2

Mn = 1√
12

a.s. (8.4)

Finally, we find from (2.5) and (8.4) that

lim sup
n→∞

(
n

2 log log n

)1/2(Dn

n
− 1

2

)
= − lim inf

n→∞

(
n

2 log log n

)1/2(Dn

n
− 1

2

)
= 1√

12
a.s.,

which completes the proof of Proposition 2.1. �

Proof of Proposition 2.2. We now proceed to prove the functional central limit theorem
given by the distributional convergence (2.10). On the one hand, it follows from (8.1) that, for
all t ≥ 0,

lim
n→∞

1

n3
〈M〉
nt� = t3

12
a.s. (8.5)

On the other hand, it is quite straightforward to check that (Mn) satisfies Lindeberg’s condition
given, for all t ≥ 0 and for any ε > 0, by

1

n3


nt�∑
k=2

E
[
�M2

k 1{|�Mk|>ε
√

n3} |Fk−1
] P−→ 0, (8.6)

where �Mn = Mn − Mn−1 = n(ξn − pn−1). As a matter of fact, we have, for all t ≥ 0 and for
any ε > 0,

1

n3


nt�∑
k=2

E
[
�M2

k 1{|�Mk|>ε
√

n3} |Fk−1
]≤ 1

n6ε2


nt�∑
k=2

E
[
�M4

k |Fk−1
]
.

However, we already saw that, for all n ≥ 2, |�Mn| ≤ n. Consequently, for all t ≥ 0 and for any
ε > 0,

1

n3


nt�∑
k=2

E
[
�M2

k 1{|�Mk|>ε
√

n3} |Fk−1
]≤ 1

n6ε2


nt�∑
k=2

k4 ≤ t5

nε2
,

which immediately implies (8.6). Therefore, we deduce from (8.5) and (8.6) together with the
functional central limit theorem for martingales given, e.g., in [7, Theorem 2.5] that(

M
nt�√
n3

, t ≥ 0

)
=⇒ (Bt, t ≥ 0), (8.7)

where (Bt, t ≥ 0) is a real-valued centered Gaussian process starting at the origin with covari-
ance given, for all 0 < s ≤ t, by E[BsBt] = s3/12. Finally, (2.5) and (8.7) lead to (2.10) where
Wt = Bt/t2, which is exactly what we wanted to prove. �
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