INDEX OF SUBJECTS

Absorption of cluster light by dust 288
Adiabatic invariants 164,235
AC-211 63
Action integrals 239,350
(see also Adiabatic invariant, Integral of motion)
Active galactic nuclei (see Galactic nuclei)
Ages of globular clusters 285
Ages of open clusters $427,442,444$, 449,450ff,461,471 (see also Lifetimes)
Age-velocity relation for disk stars 451
Alpha Persei 438
Angular-momentum transport 152, 293ff
Angular resolution 5,14,383ff,428
Anisotropy in velocity distribution 2,22,24ff, 28, 65, 78, 96, 113, 116, 120, 152,153,157,161,170ff,178,182,192 219ff,285,288ff,294,296,297ff, 301ff,386ff,395,439ff,444,502,515
AXAF 46,519

```
Binary stars
    General 109,110,189,231ff,254,275,
        381,422,433,471,502
    Binary-binary encounters 128ff,176,
        237ff,253,256,272,276,321,333,
        335ff,347,349ff,362,364,
    Binary-single-star encounters
        126ff,176,232ff,253,321,347,
        350ff,358,362ff,365ff,367ff,370
        (see also Escape...binaries,
        Binary stars...as Energy source)
    Close (Hard) binaries 126ff,13lff,
        201,238,249,253,255ff,263,264,
        279ff,321,335ff,363,374,416
        (see also Binary stars -- Spec-
        troscopic)
```

Distribution of binding energies 145,240ff,306
Disruption of 100,461
as Energy source or sink 1,15, 17,44,89,126ff,131,133ff,137, 141,144ff,151,155,157ff,161, 166,172ff,212,214,221,225, 229,23lff,25l,255ff,268, 271ff,284,305ff,321,332ff, 347ff,361ff,365ff,367ff,374, 413,416,419,428,442,474,504, 508,512
Formation by three-body encounters $128,131 \mathrm{ff}, 133,137$, 172ff,176, 203,238,244ff,347, 348ff,354,361,363,366,419, 499,504,514,515
Formation by tidal capture 9 , 47ff,52,60,133ff, 137, 152, 176, 245,347ff,354,359,361,362, 363ff, 365ff,419ff,499,504, 507,514,515
Hardening rate of $126,133,235$, 264
Observations of in globular clusters $21,83,93,99 \mathrm{ff}, 103 \mathrm{ff}$, 358,360,507 (see also X-ray sources)
Observations of in open clusters 43ff,442ff
Permanent binary 244
Primordial 100,128ff,442,515
Radial distribution in open clusters 433 (see also Mass stratification)
Spectroscopic 21,99ff,435
Wide (Soft) binaries 126,238 , 248,436,439,452,454,461 (see also X-ray sources)
Binding energy of a star cluster 2,232,305ff,332,368ff
Black holes
in Gaseous spheres 149ff,211,302
in Galactic halo 449,451,455ff, 459,462
in Star clusters 17,52,89,109, $132,137,144,149 \mathrm{ff}, 158,162$, 166ff, 171ff, 174, 179, 184ff,202, 227,373ff,413,415ff,421ff, 487ff,498,499,507,512ff
Blue stragglers 359
Boltzmann equation $162,180,217$, 301, 374ff, 502

Cataclysmic variables 103 ff , 248, $356,360,514$ (see also X-ray sources)
Central angular velocity $25 \mathrm{ff}, 28$
Central density 9,115,139,143ff, 150, 192, 208, 214, 222ff, 254, 268, 270, 278ff, 332, 350ff, 365ff, 401 (see also Cusps)
Central potential 24,28,122ff,192, 356 (see also Escape velocity)
Central relaxation times $33 \mathrm{ff}, 139$, 154, 155ff, 267, 347ff,415ff,511
Central singularity (see Cusps)
Central velocity dispersion 19,23, $24 \mathrm{ff}, 28,113,118 \mathrm{ff}, 141,142,146$, $147,155,192 \mathrm{ff}, 270,378$
Chang-Cooper differencing scheme 170
Chemical gradients in globular clusters 33ff, 499
Chemical inhomogeneities in globular clusters $34 \mathrm{ff}, 40,42,105$
Close two-body encounters 120 ff , 161,179ff,187,251,253,263,290, 462,471,514, (see also Escape of stars -- by Close...encounters)
CN stars 33ff, 107
Collapse time 267,269,333 (see also Core collapse -- rate of)
Collisionless systems 217,324,373, $379,407 \mathrm{ff}$ (see also Vlasov equation)
Color gradients in globular clusters $33 \mathrm{ff}, 42,98$
Color-magnitude diagrams 6,34,8lff, 285
Coma Berenices 438
Compact objects 132,133 (see also Black holes, White dwarfs, Neu-
tron stars)
Concentration parameter 85,144, 218,290,293
Conductive flux 115 ff (see also Flux of energy)
Core 43, 89ff, 137, 150, 155, 190ff, 211, 307, 331ff, 362, 367ff, 370, 421ff,468
Definition of 143 (see also Central..., Core collapse, Core radius, Cusp)
Core collapse lff, 12ff,17,43, $113 \mathrm{ff}, 120,123 \mathrm{ff}, 128 \mathrm{ff}, 134,137$ $139,142,147,150,151,152,153$, 154, 155, 156, 161, 166ff, 183ff, 207,212,251,253ff,261ff,267ff, 272, 278ff, 284, 294, 366, 368, $391 \mathrm{ff}, 401,415 \mathrm{ff}, 421,443,468$, 474, 499ff,506ff,517
rate of $120,125,129 \mathrm{ff}, 178,183$, 190ff,195,197,200 (see also Collapse time, Evaporative models, Gravothermal instability, Stability)
Core radius $24 \mathrm{ff}, 28,89 \mathrm{ff}, 98,115$, $143 \mathrm{ff}, 157,17 \mathrm{lff}, 255,268,270,307$
Crossing time 455
Cross sections $231 \mathrm{ff}, 335 \mathrm{ff}$
Crowding 483ff
Cusps in central surface brightness or density lff,17,60,61, $89 \mathrm{ff}, 132,140,150,166,169,184$, $219,230,255,360,377,378,383 f f$, 413,416,487ff

Dark Matter
in Globular clusters 169,507 , 508,518ff (see also Black holes, Neutron stars, White Dwarfs)
in Open clusters 437 ff
in Galactic halo 451,508
Deflection time $25,28,289$ (see also Relaxation time)
Density contrast $111 \mathrm{ff}, 121,191,209$, 218,222,266
Density profiles $1 \mathrm{ff}, 9,12 \mathrm{ff}, 42$, $89 \mathrm{ff}, 117,120,139,140 \mathrm{ff}, 142,145 \mathrm{ff}$, $147 \mathrm{ff}, 149,150,153,155 \mathrm{ff}, 157$, $167 \mathrm{ff}, 173 \mathrm{ff}, 178,192,212,267,271$, 272, 381, 382ff,400,404ff,416,421,

498,504 (see also Surface Photometry)
Diffusion coefficients 164,264,289ff, 314ff
Disruption of globular clusters 44, 56ff, 110, 155, 368ff,392,423ff,461, 499,506ff
Disruption of open clusters 449, 452ff 461
Disruption of stars by a black hole (see Tidal disruption...
Dissipative effects 152 (see also Binary stars -- Formation by tidal capture, Binary stars -- as Energy...sink)
Distant (Weak) two-body encounters 179,187,313,381,462 (see also Relaxation)
Distances of globular clusters 19,22, 26
Distribution function 2, 19,22ff,27, $111,113,122,140,154,178,179,180$, 182ff, 196, 259,313,317,323ff,327ff, $379,382,427,435 \mathrm{ff}, 440 \mathrm{ff}, 506,510 \mathrm{ff}$ (see also Anisotropy, Lowered maxwellian, Wilson model)
Distribution of globular clusters in galaxy, $90,309 \mathrm{ff}$ (see also Orbits of globular clusters)
30 Doradus 467 ff
Draco dwarf spheroidal galaxy 345
Dynamical evolution
of Open clusters $449 \mathrm{ff}, 463 \mathrm{ff}$
of Globular clusters (see Precollapse evolution, Post-collapse evolution)
Dynamical models
of globular clusters $2 \mathrm{ff}, 19 \mathrm{ff}, 65 \mathrm{ff}$, 97, 202ff, 327ff
of open clusters $429 \mathrm{ff}, 437 \mathrm{ff}$
Dwarf spheroidal galaxies 21,77ff, $345 f f$

Eccentricities of globular cluster orbits $309 \mathrm{ff}, 343$
Elliptical galaxies $490 f f$
Ellipticities of star clusters (see Flattening of star clusters)
Encounters between stars 109,161,192 (see also Binary stars, Close twobody encounters, Distant two-body
encounters, Relaxation)
Energy flux (see Conductive flux, Flux of energy)
Energy sources in star clusters 140, 144, 146, 148ff, 152, 153, 157ff,166,219,221,223,229ff, 261,361ff,367ff,382,391,512ff (see also Binary stars, Black holes, Mass loss, Stochastic energy sources, Tidal heating)
Entropy 111,113,209ff,220,223ff, 302,325,341, 502
Equilibria of stellar and gaseous systems l11ff,210,212, 219ff,240,301,313,382
Equipartition of energy 23,27, 121ff, 123, 152, 189, 193ff,197ff, 205,221,279,317ff,421,428ff, 441,442ff,447
Escape energy 423 ff (see also
Escape velocity)
Escape of stars from clusters General 189,220,282,503
by Close two-body encounters 60, 121, 179, 182, 184ff, 368, 369ff,462
by Distant two-body encounters $110,162,182,291,369 \mathrm{ff}, 511$
by Interaction with binaries 60,100,129,141ff,158,241, 256ff,333,347,349ff,354, 366ff, 370 (see also Tidal stripping)
Escape velocity from cluster 2, 61,113,182,317,511 (see also Escape energy)
Evaporation of stars 39lff
Evaporative models cluster evolution 2,113,116,118,125,139, 144ff,149ff,292ff,499 (see also Escape of stars)
Exchange reaction 235,238
Field star 394 ff
Flattening of star clusters 23 , 39,77ff, $85 \mathrm{ff}, 96,285 \mathrm{ff}, 327 \mathrm{ff}$, 434,438,474ff
Fluid models (see Gaseous models, Moment equations, Thermal conductivity)
Flux of energy $140,143,150,157$,

301 (see also Conductive flux,
Thermal conductivity)
Fokker Planck Equation $110,113,118 \mathrm{ff}$,
$132,139,140,142,148 \mathrm{ff}, 150,152,154$,
161,179,180,183ff,192,195ff,217,
$219,229,251,261 f f, 275,283,305$,
313, 324ff, 341, 358, 373ff, 389ff,
416,506,514,517
Integration by finite difference methods $161,163 \mathrm{ff}$ (see also ChangCooper differencing)
Integration by Monte-Carlo methods 373 ff
One-dimensional E-space form of 165ff, 170
Formation of globular clusters 35, 40ff, 105ff, 346, 500, 501, 503ff, 507, 509,517ff
Formation of open clusters 428,463ff, 500,503ff
Functional integral 313ff
Galactic halo (see Halo of the galaxy)
Galactic nuclei 171,373ff,403ff,419ff, 512,515,518
Gaseous models $110,123,132,139,141 \mathrm{ff}$, 146ff, 151ff, 166, 169, 192,207ff,219ff, $231 \mathrm{ff}, 275,301 \mathrm{ff}, 502,506,517$ (see also Moment equations, Thermal conductivity)
General-relativistic instability of star clusters $323 \mathrm{ff}, 407 \mathrm{ff}$
General relativity $323 \mathrm{ff}, 373 \mathrm{ff}$ (see also General-relativistic instability, Gravitational radiation)
Giant molecular clouds 43,56ff,61, 449,451,454ff,461,471,508 (see also Interstellar clouds)
Gravitational radiation $133,248 \mathrm{ff}$, 323,353,359,419ff
Gravothermal instability 2,109,111, $123,133,170,190,191,196,207 \mathrm{ff}$, 219ff, 229ff,302,361,379,401,511
Gravothermal oscillations (see Oscillations)

Half-mass relaxation time 137,174, 401,468,511 (see also Relaxation time)
Half-mass radius $286,290,347,351 \mathrm{ff}$
Halo of the galaxy 43,44ff,309,449,

451,455ff
Halo of star cluster $116,190 \mathrm{ff}$, $211,278,303,434,518$
Heat conduction (see Thermal conductivity)
Heating (see Energy sources)
Hertzsprung-Russel diagrams (see Color-magnitude diagrams)
Hierarchical multiple-star systems 53ff,233,237,257,271ff, 335ff
HII regions 467 ff
Homologous evolution (see Selfsimilar evolution)
Horizontal branch 33
Hyades 433,437,442ff,447,448
Hybrid programs 110,132,150, 153,219,261ff,233,331ff,362, 363,417,502

Impulsive approximation 235,451
Initial mass function 43,60, $71 \mathrm{ff}, 74,422,447,467,507$
Integral of motion General 23
Non-classical 293,327ff,343 (see also Action integral)
Interstellar clouds
Effects on dynamics of open clusters 449ff,471ff
as Open-cluster progenitors 463ff (see also Giant molecular clouds)
Isothermal $8,10,15,17,49,111$, $113,115,118,121,123,140,143$, $144,148,150,154 \mathrm{ff}, 158,191$, 196, 207, 210, 212, 219ff,222, 223,229,255,267,272,325,333, 350ff, 356, $382,389,421,440$, 504,510ff

Jeans length 464
Jeans mass 459,501
Jeans; theorem 381
King models 22ff,65ff,74,77,89, $97 \mathrm{ff}, 122,174,346,399,468$
Kustaanheimo-Stiefel regularization (see Regularization)

Lagrangian points 343,345 (see
also Tidal radius)
Large Magellanic Cloud 85,205,285ff, 346
Lifetimes of open clusters 456ff, 471 ff (see also Ages of open clusters)
Linear series method $112 \mathrm{ff}, 123,218$
Loss cone 303,386ff,416ff
Lowered-Maxwe11ian 139, 154ff,429ff, 443
Luminosity function
of Population II 483 ff
of stars in globular clusters 34, 81ff,422
of stars in open clusters 447
of globular clusters $489 \mathrm{ff}, 498$
of X-ray sources in globulars 46ff, 60,514,519

M2 (see NGC 7089)
M3 (see NGC 5272)
M5 (see NGC 5904)
Mll (see NGC 6705)
M13 (see NGC 6205)
M15 (see NGC 7078)
M22 (see NGC 6656)
M30 (see NGC 7099)
M35 (see NGC 2168)
Mら3 (see NGC 5024)
M67 (see NGC 2682)
M92 (see NGC 6341)
Mass function (see Mass spectrum, Initial mass function)
Masses of globular clusters 28
Mass-to-light ratios of star clusters) $28,69 \mathrm{ff}, 85,93$
Mass loss $100,148,189,471 \mathrm{ff}$
as Energy source $141 \mathrm{ff}, 158,205$, 284, 361, 368ff,420,512ff
by Escape of stars (see Escape of stars)
by Stellar Evolution $44 \mathrm{ff}, 125,153$, $175,244,248,361,362,363,368 f f$, 427,447,449,499,515,519
by Physical Collisions $245,358,420$
Mass segregation (see Mass stratification)
Mass spectrum
General 25,165,196ff,365,427,439, 441

Dynamical effects of $69 \mathrm{ff}, 121$, 129, 131, 152, 153, 161, 170, 189ff, 248, 251, 294, 335, 337ff, 417,448ff,449,463ff,471ff, 501,502,507ff (see also Binary stars, Mass loss, Mass stratification, Multicomponent systems)
Observations of $155,167,268$, $427 \mathrm{ff}, 477$
Modification by cluster evolution (see Mass loss, Escape of stars, Tidal stripping)
Mass stratification $2,14,17,110$, 121ff, 123ff, 129, 133, 169, 192ff, 202, 256,278ff, $317 \mathrm{ff}, 365,429 \mathrm{ff}$, 433,447,499,505
Master equation $180 \mathrm{ff}, 183$
Mean free path $112,113,115,506$, 508
Median radius (see Half-mass radius)
Membership of stars in clusters 420ff,433ff,477ff
Metallicity of globular clusters 85,90
Moment equations $115,123,132,162$, 217,251,301
Monte-Carlo simulations of cluster evolution $110,113 \mathrm{ff}, 118 \mathrm{ff}$, 123ff, 139, 147, 148, 150, 162, 196, 251, 283, 319, 361ff, 373ff,393ff, 416,432,502
Moving groups 459,506
Multicomponent models 69ff, 121ff, 123ff, 131, 140, 161, 165, 167ff, 189ff, 278ff, $317 \mathrm{ff}, 365 \mathrm{ff}, 515$, (see also Dynamical models, Mass spectrum)

N-body simulations $110,129,132$, $137,139,141,150,151,153,189$, 202,214,219,229,237,251ff,261ff, 275ff, 297ff,305ff,321, 331, 339, 344, 345, 415ff,423ff,433,440, 442,449ff,456ff,463ff,471ff,502
Neutron stars 44,46ff,52,60,132, 137,155,169,255,319,359,407ff, 422,499,507,514,518
NGC 104 (47 Tucanae) 3,7,20,33ff, 36ff, 46,49ff,69ff,81ff,93ff,101,

287,288,296,422,498,519
NGC 188438
NGC 362287
NGC 1851 7,50
NGC 1904 (M79) 75
NGC 2168 (M35) 432ff,443
NGC 2244461
NGC 2264461
NGC 2506 435ff
NGC 2682 (M67) 432ff,435ff,439,447
NGC 3532438
NGC 3603 467ff
NGC 5024 (M53) 63
NGC 5139 (Omega Centauri) 33ff,36ff, 45ff, 93ff, 287, 288, 296, 344, 346,422, 519
NGC 5272 (M3) 4,6,2lff,63,69ff,99ff, 103ff,288,358,422,501
NGC 5824 6ff
NGC 5904 (M5) 22,63,104
iNGC 6093 7ff
NGC 6205 (Ml3) 19ff,22ff,63,65,288, 328,346
NGC 6273 (M19) 287,283
NGC 628475
NGC 6341 (M92) 19,22ff,63,288,328
NGC 634274
NGC 6397 63,74
NGC 64407
iNGC 64417
NGC 6494439
NGC 6624 6ff,10ff,17,51,54,74,155, 170,226,359
NGC 6642 74ff
NGC 6656 (M22) 46,287,519
NGC 6681 6ff,10,74
NGC 6705 (M11) 429ff,435ff,439,441 447
NGC 6712218
NGC 671774
NGC 6752105
NGC 7078 (M15) $1,4,6,9,10 f f, 15,22$, $60,63,74,155,422$
NGC 7089 (M2) 63
NGC 7099 (M30) 6ff,10ff,17,63,74
Orbit average (see Phase-space average)
Orbits of globular clusters $44 \mathrm{ff}, 309 \mathrm{ff}$ (see also Eccentricities)
Omega Cen (see NGC 5139)

Open clusters 1,85,275,427ff, 449ff,463ff,471ff,510 (see also Ages, Dynamical evolution, Lifetimes)
Ophiuchus cloud 464
Oscillations in core radius 132,137,146, 150, 152, 157, 207, 212ff,273,333,504,517

Phase-space average 154,163, 179,181ff,187,195ff
Physical collisions of stars 134, 185, 245, $354,358,359,364$, 374,403,420,499 (see also Binary stars...Formation by tidal capture)
Pleiades 262,433ff,437,438, 439,441,442ff,447,477ff,517
Plummer model $146,147,182,192$, 198,221,277,343,401,451,455, 463,472
Post-collapse dynamical evolution 12ff,57ff.61,73ff, 89, 139ff,145ff,152,153,161,166, 171ff,189,201ff,203,207,212, 218,219ff, 230,253ff,261,273, $280,331 \mathrm{ff}, 347 \mathrm{ff}, 362 \mathrm{ff}, 366 \mathrm{ff}$, 380,415ff,506ff,5llff,517
Praesepe 437,438,439,441,442
Pre-collapse dynamical evolution 109ff,189ff,221,261,350, 365ff,517
Proper motions of Globular-cluster stars 19ff,65ff,288
of Open-cluster stars 428, 428ff,439,447,448,477ff, 517

Quasars 404ff
Radial action 164 (see also Adiabatic invariants)
Radial velocities of globular-cluster stars 19ff,35,38,69ff,93ff,99ff, 288
of open-cluster stars 428, 435ff
Red giant stars 33
Reddening of cluster light (see

Absorption)

Regularization of two-body interactions 237ff,253,275ff,331,471ff
Relaxation 152,179,213,232,289ff, 294, 302, 339ff, 345, 381,459 (see also Relaxation time)
Relaxation time 9,36,85,113,115ff, 125,131,141, 162, 185, 187,192,196, 205,226, 230, 290,339ff,345,365,374, 381,383,428,432,506 (see also Central relaxation times, Deflection time)
Rotation of star clusters $24,25,35$, 39ff,42,69ff,86,93ff,152,161,285, 288ff, $327 \mathrm{ff}, 344,438,515$
RR Lyrae stars 33
Scaling 153, 230
Scattering kernel 180ff
Self-similar evolution l15ff,ll8ff, 132,140ff,142ff,144,145ff,149, 151,152,153,156,166,208,212,219, 267,269ff, 272, 391,401
Shock heating (see Tidal heating)
Similarity solutions (see Selfsimilar evolution)
Singularities in cluster evolution 142,148,156 (see also Cusps)
Small Magellanic Cloud 85
Small-number statistics
in Dynamics of star clusters 261ff,275,305ff,427,450
in Observations of clusters 428
in Surface photometry of globular clusters $4 \mathrm{ff}, 73,97 \mathrm{ff}, 286$
Space Telescope 13,17,49,245,248, 481ff, 503,505,518
Specific heat $111,209 \mathrm{ff}, 220,239$
Square-well potential 162,182,241
Stability of star clusters
"Thermodynamic" 109,111ff,121ff, 191,301ff
Collisionless 297ff (see also General-relativistic instability, Gravothermal instability)
Star counts 10ff,72,77ff,98,286,343, 377,432,505
Star formation 444,447
Efficiency of 463 ff
Statistical equilibrium 109
Statistics of globular clusters 139,

155ff (see also Luminosity function of globular clusters)
Stochastic energy sources 152 , 280 (see also Energy sources)
Supernovae in globular clusters 105ff,358
Surface density of globular clusters (see Density profiles, Star counts, Surface photometry, Cusps)
Surface photometry of globular clusters 1ff,5ff,23,24,29,63, 69ff,73ff,89ff,154,286ff, 421ff,468 (see also Density profiles)

Tensor virial theorem 288ff, 292
Test star 394 ff
Thermal conductivity $112,115,132$, 141ff,152,208,212,217,225,232, 301
Tidal capture (see Binary stars ...Formation by tidal capture)
Tidal disruption of stars near a black hole 171,302,378ff, 381ff,386ff,390ff,396ff
Tidal field of the galaxy (dynamical effects on clusters) $2,58,78,98,110,141,152,203$, 235, 28̂ó, 343ff, 392, 428, 433,434, 440,449,453ff,459,471ff,502 (see also Tidal heating, Tidal radius, Tidal stripping)
Tidal heating $91,110,125,153$, 225,345,361, 362, $363,368,369$, 423,428,440,471,501,503,515
Tidal radius $24,28,77 f f, 85,98$, 110,154,343ff,345ff,351,401, 456,490ff, 503 (see also Lagrangian points, Tidal stripping)
Tidal shocks (see Tidal heating, Tidal stripping)
Tidal stripping $110,153,227,344$, 423ff,502ff,508,515 (see also Escape of stars)
Tidal truncation (see Tidal field, Tidal radius, Tidal stripping)
Triple systems (see Hierarchical systems)

47 Tucanae (see NGC 104)
Turning point $112,123,218$
Two-component systems (see Multicomponent systems)

U-band 90ff
V/ $\quad 42,95 f f, 290 f f, 296$
Velocity dispersion $21 \mathrm{ff}, 25,29$, 35,38ff,42,65ff,69ff,93,95ff, 140,152,167,202,217ff,232, 301ff,317ff,352,377,382,386, $413,422,439 \mathrm{ff}, 479,507,519$ (see also Central velocity dispersion)
Velocity distribution function (see Distribution function)
Virial theorem 439
Viscosity (see Angular momentum transport)
Visual extinction of clusters (see Absorption)
Violent relaxation 213
Vlasov equation $324,373 \mathrm{ff}, 407 \mathrm{ff}$
(see also Collisionless systems)
von Zeipe1 164 99ff
von Zeipel 318101
von Zeipel 490101
von Zeipel 764101
von Zeipel 803101
von Zeipel 807101
von Zeipel 858101
von Zeipel 911101
von Zeipel 1053101
von Zeipel 1397101
von Zeipel 1449101
Watershed 126
White dwarfs $24,44,46 \mathrm{ff}, 60,69,132$, $169,319,358,409,484 \mathrm{ff}, 507,514$
Wilson model $122 \mathrm{ff}, 317 \mathrm{ff}$
W Ursa Majoris stars 356

```
X-ray sources 9,13,17,43ff,63,91,
    103,133,356,359,377,425,503,518
    (see also Luminosity function of
    X-ray sources)
```

