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Let R be a commutative integral domain and let S be its quotient field. The group GL2(R) acts on
S = S U (co) as a group of linear fractional transformations in the usual way. Let F2(R, z) be the stabilizer of
z e S in GL2(R) and let F2(R) be the subgroup generated by all F2(R, z). Among the subgroups contained in
F2(R) are U2(R), the subgroup generated by all unipotent matrices, and NE2(R), the normal subgroup
generated by all elementary matrices.

We prove a structure theorem for F2(R, z), when R is a Krull domain. A more precise version holds when
R is a Dedekind domain. For a large class of arithmetic Dedekind domains it is known that the groups
NE2{R),U2(R) and SL2(R) coincide. An example is given for which all these subgroups are distinct.

1991 Mathematics subject classification: 20H25, 13FO5.

1. Introduction

Let R be a commutative integral domain with identity and let S be its quotient field.
The group GL2(S) acts on the set S — SU {oo} as a group of linear fractional

transformations in the usual way. Let g =\ , be an element of GL2(S) and let

z e S. Then

az + b
9^Z' ~ cz + d'

unless c ^ 0 and z = — dc~l in which case g(z) — oo. In addition g(oo) = oo, when
c — 0. and g(po) = ac~l, when c ^ 0. In this paper we are concerned with those
elements of GL2(R) with an S-rational fixed point. For each z e S let

F2(R, z) = {ge GL2(R): g(z) = z}.

The subgroup generated by all F2(R, z) is denoted by F2(R). The latter contains a
number of important subgroups. Let A" be a unipotent matrix in GL2(R). Then by
definition (X - I2)

2 = O (or, equivalently, d e t X ^ l and trX = 2). The simplest
unipotent matrices are the elementary matrices I2 + aEl2, I2 + aE2l (a e R). Let U2(R)
(resp. E2(R)) denote the subgroup of GL2{R) generated by all the unipotent (resp.
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elementary) matrices and let NE2(R) be the normal subgroup generated by E2(R). Then
we have

E2(R) < NE2(R) < U2(R) < SL2(R).

Another important subgroup of F2(R) is that generated by F2(R, 0) and F2(R, oo). This
is denoted (in Cohn's notation [2, p. 367]) by GE2(R).

To obtain a reasonable structure theorem for F2(R,z) (involving, for example, R*,
the units of R) we restrict ourselves to the case where R is a Krull domain. More precise
results are established by further restricting to Dedekind domains. Special cases [8],
[10] of these results (when R is a particular Dedekind domain contained in a function
field) are already known.

For a Dedekind domain D it follows from our results that U2{D) = F2{D) if and only
if D* is trivial. How the subgroups in the above chain relate to each other depends very
much on R. For a large class of arithmetic Dedekind domains they coincide. We
provide an example (of an arithmetic Dedekind domain) for which they are all
distinct.

1. General results

We begin with a number of elementary properties which are true for any integral
domain R. We recall that S is the quotient field of R.

Lemma 1.1. GE2(R) n SL2(R) = E2(R).

Proof. This well-known result depends on the fact that diag(u, tT1) e E2(R), for all
u e R'. (See, for example, [2, (2.9), p. 370].) •

Lemma 1.2. (i) Let U e GL2(R) be unipotent. Then

U € F2(R, z),

for some z e S.

(ii) U2(R) < F2(R).

Proof. By definition

L c 1-fl

for some a, b, c e R with a2 + bc = 0. Then

U 6 F1{R, z0),
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where z0 = ac~\ when c ^ 0 and z0 = oo, when c — 0. Part (ii) follows. •

Lemma 1.3. (i) Lef g e GL2(R) and z e S. 77ien

fl<F2(K. z))fl"' = F2(R, z),

where z = g(z).

(ii) F2(R)<GL2(R).

Proof. Obvious. •

Theorem 1.4. (i) F2(R, oo) = 11* U : a,/? e R\ r e R\.

( l l ) A 2 V . J X ' WJ — I I . o I • « • i

Proof. Suppose 3 = (g,7) € GL2(R) "fixes" 00 (resp. 0). Then g2l = 0 (resp. gn = 0). Q

The following consequence is immediate.

Corollary 1.5. Let

and let M - NT. Then

(i) M S N s i?+

(ii) F2(R, 0)/M S F2(R, 00)/N ^ R' x R*.

We extend Corollary 1.5 in the next section.

2. Krull domains

To obtain a reasonable version of Theorem 1.4 for any z 6 S we assume that our
integral domain is integrally closed, which leads us to consider Krull domains.

Let K be a Krull domain with quotient field L. By definition [1, Definition 3, Chapter
VII, §1.3] there exists a family {v; : k e Q} of discrete valuations on L with the fol-
lowing properties:

(o K=n vx,
>.ea

where V, is the valuation ring of v, (A e Q);
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(ii) for each non-zero x e L,

[k : v,(x) ± 0}

is a. finite subset of Q.
By an observation made on p. 482 of [1] we may further assume that each Vx is the

localization of K at one of its minimal, non-zero prime ideals. The corresponding v, is
called essential. (See [1, Corollary 1, Chapter VII, §1.4] and [1, Theorem 3, Chapter
VII, §1.6].)

Examples of Krull domains include [1, Chapter VII, §1.3] principal ideal domains,
unique factorization domains and Dedekind domains.

Theorem 2.1. Let s e L*. An element g e F2(K, s) if and only if and only if

9=[ c p-sc\'

where a, 0 € K*, c, d e K, c e K s~' and d = (/? - a)s — cs2.

Proof. Let g e F2(K, s). We put

[a bl [0 - l l , , [a' b'~\
g = [ c d\ g ° = [ l - s \ End ***• =[c' d'\

Then

a! — d + cs, b' = —c, c' = —b + (d — a)s + cs2 and d' = a - cs.

Now go(s) = co and so ffo^o'C00)- Hence c = 0. It follows that a, d' are the eigenvalues
of g. Since K is integrally closed [1, Theorem 2(a), Chapter VII, §1.3], we have a,
d' e K. But det g = a'd' e K* and so a', d' e K*. Put a =p,d' = a. D

There remains the question of determining which units of K occur in the entries of
a matrix of F2(K, s), as above.

We say that a pair (a, ft) e K* x K* is involved in F2(K, s) if and only if there exist
c, d € K, with c e Ks'1 such that

d = (P-tx)s-cs2.

Let q be any non-zero K-ideal and let

q~' = (K : q) = {x e L : xq < K}.

By definition qq~" < K. The ideal q is called invertible if and only if qq~' = K. (See [1,
Proposition 10, Chapter II, §5.6].)
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Corollary 2.2. Let s = u/v, where u,v e K and u, v ^ 0, and let s = uK + vK. The
pair (a, /?) e K' x K* is involved in F2(K, s) if and only if

a = P(modss~l).

Proof. Suppose that (a, /?) is involved in F2(K, s). Let y = /? - a. Then there exist
c,d,eeK such that

CM = eu and CM2 = ywu — dv1.

Hence y = xu + yv, where x = cv~l and y = du~l. Clearly xv, yu e K. In addition
xu = e e K and yy = y — e e K. It follows that y e ss"1.

Conversely suppose that y = P — cc e ss~\ Then there exist a, b e s~' such that

y — au — bv.

By Theorem 2.1

-bu l e F ( K s ) n
av p-a

Among the normal subgroups of F2(K, s) the most important are

(i) The centre of GL2(K),

Z = {<x/2 : a 6 K*},

and

(ii) ^ (K . s^ l l " 1 "^ ~^c]:ceKnKs-lnKs-2\.

U2(K, s) consists of all the unipotent matrices in F2(K, s). It is clear that

U2(K,s)^H+,

where H = K n Ks~' n Ks~2.

The following is an immediate consequence of Theorem 2.1.

Corollary 2.3. With the above notation, let

C(s) = { a e K' :<x= 1 (modss"1)} ,

and let

M = ZU2(K,s).
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Then

F2(K, s)/M s C(s).

For many Krull domains of course (e.g. Dedekind domains) we always have
ss~l — K. Examples for which ss'1 / K are however easy to find. Let K — F(x, y), the
polynomial ring in x, y over any field F. Then, when u = x and v — y,

s F.

3. Dedekind domains

It is clear that a more precise version of Theorem 2.1 holds for those Krull domains
in which every 2-generated (and hence every finitely generated) non-zero ideal is
invertible. (An integral domain with the latter property is called a Priifer domain [3,
Chapter IV].) By [3, (43.16) Theorem] such a Krull domain is Dedekind. (Gilmer's
proof of this result makes use of the fact that the valuations in the defining family for
the Krull domain can be assumed to be essential.)

Throughout this section D denotes a Dedekind domain and E is its quotient field.
Theorem 2.1 and Corollary 2.2 extend to the following.

Theorem 3.1. For each s e E*,

F2(D,s)=l\a+
c
SC ptSc\ : a ' i J e D ' ' ceDC\Ds-\ d e D, d = (fi - a)s - cs2\.

c

Corollary 3.2.
F2{D, s)/U2(D, s)^D' x D'.

Corollary 3.3.
F2(D) = U2(D) if and only if D" = {1}.

Let C be a (suitable) projective curve over a field k and let P be one of its closed
points. Let C = C(C, P, k) be the coordinate ring of the affine curve obtained by
removing P from C. Then C is a Dedekind domain [12, p. 96] contained in the function
field, F, of C. As a Krull domain C is defined by the family of all discrete valuations
on F, trivial on k, other than that corresponding to P. The simplest case is the
polynomial ring C = k[t].

Theorem 3.1 is known [8, Lemma 1.8] and [10, Lemma 2(ii)] for the case D — C.
The orbits of E modulo GL2(D) (or SL2(DJ) can be identified with the elements of

the ideal class group of D. As a consequence any pair of elements of E in the same
GL2(I>)-orbit are also in the same SL2(£))-orbit. This appears to be well-known. Serre,
for example, [11, p. 507] states this result (without proof) in a rather different form.
We provide such a proof.
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By [1, Proposition 12, Chapter II, §5.7] the ideal class group of D can be identified
with its Picard group, Pic(D). We recall the following definition of Pic(D).

Non-zero D-ideals q,, q2 are equivalent, if and only if

for some non-zero x,y e D. This is an equivalence relation and the equivalence classes
form an abelian group under multiplication in the usual way, with the identity as the
class consisting of the principal ideals. This group is isomorphic to Pic(D).

Let t e E. Then t = uv~\ for some u,veD, with v ^ 0. We denote by I(t) the image
in Pic(D) of the D-ideal

uD + vD.

We define /(oo) to be the identity of Pic(D). It is clear that we have a well-defined
map

4>: E -+ Pic(D),

given by

Theorem 3.3. (i) (f> is surjective.

(ii) For all tut2e E,

</)(£,) = <p(t2) Ot2 = g(tt), for some g e SL2(D)

Proof. Part (i) follows from the classical result that every D-ideal has at most two
generators.

For part (ii) it is obvious that, if t2 = g(t{) where g e GL2(D), then <£(£,) =
Suppose then that

We consider first the care where t, or t2 is 0 or oo. Since <j)(0) = $(oo) we may assume
that t, = oo and that t2 = uv~\ where u, v e D and u,v^0.

Since uD + vD is a principal ideal, 3 x, y e D such that
(i) xD + yD = D,

(ii) xu + yv — 0.
Let g0 be any element of SL2(D) with second row (x, y). Then

9o(h) = oo-

We assume from now on that t, — u,/t>, and t2 = u2/v2, where u,, vlt u2, v2 e D a r e all
non-zero. N o w by the definition of Pic(D)

a{uxD + v,D) = b(u2D + v2D),
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for some non-zero a,bsD. We may assume therefore that a = b — 1.
Let

I = u}D + v,D = u2D + v2D.

Since //"' = D, there exist u-, yj e /"' such that

=[?:::] «-•
Let

Then g,(t,) = oo (i = 1,2) and so

gll0i(t,) = t2.

But g?gx e SL2(D). D

Corollary 3.4. There exist one-one correspondences

E/SL2{D) o- E/GL2(D) o- Pic(£>).

Proof. Immediate from Theorem 3.3. •

We represent the elements of Pic(D) by representatives of the orbits of E, modulo
SL2(D),

oo and sx (A e A),

where s; 6 £*.

Corollary 3.5. For all z e E,3g e SL2(D) such that

gF2(D, z)g~l = F2(D, z'\

for some unique z* e {oo} U {s; : X e A}

Proof. The existence of z* follows from Theorem 3.3 and Lemma 1.3(i). For
uniqueness we have to show that, for all z,, z2 e E,

F2(D, z,) = F2(D, z2) =• z, = z2.

Choose ^ e SL2(D) such that g(zl),g(z2) ^ oo. By Lemma 1.3(i) we may assume that
z[t z2^ oo. Then z, = u/u, for some u,veD,v^0.
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It is easily verified that

[ + uv —u2[ 1 +
v2

Then firo(z2) = z2 which implies that z^—z2. •

A special case of Corol lary 3.5 is the following.

Corollary 3.6. Let D be a principal ideal domain.

(i) For all z e £, there exists g e SL2(D) such that

gF2{D, z)g~] = F2(D, oo).

(ii) N£2(D) = U2(D)

Proof. Part (i) follows from Corollary 3.5 since Pic(D) = {oo}.
Part (ii) follows from part (i) and Lemma 1.2(i). •

4. Examples

4.1. G£2-rings

Let R be a G£2-ring. Then by definition

GL2{R) = GE2(R)(=F2(R)).

By Lemma 1.1 it follows that

SL2(R) = E2(R)

and hence that

£2(R) = NE2(R) = U2(R) = SL2(R) n F2(R).

Examples of G£2-rings include all Euclidean domains, e.g. Z, the ring of rational
integers, k[t], where k is a field, and Z[i], where i2 = — 1. Euclidean domains are, of
course, principal ideal domains. There are however many G£2-rings which are not
principal ideal domains.

Let Ko be a global field (i.e. a finite, separable extension of Q, the set of rational
numbers, or k(t), where k is finite field) and let S be & finite set (of equivalence classes)
of valuations of Ko, which includes all the archimedean valuations. Let

As = {x e Ko : v(x) > 0, for all v £ S]
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Then As is a Dedekind domain [11, p. 189], called the ring of S-integers of Ko. (The
valuations of Ko not in S are a defining family for As.) From a theorem of Dirichlet it
is known that A*s is finite if and only if card (S) = 1. The latter condition is only
satisfied in three cases (two of which are As = Z and As — C(C, P, k), where k is finite).
Liehl [5], using previous results of Vaserstein [15], has proved that when A's is infinite,
As is a G£2-ring. Examples of As with infinite A*s, which are not principal ideal
domains, can be found, for example, among the rings of integers of real quadratic
extensions of <Q>.

4.2. The Bianchi groups

The purpose of this example is to record the existence of a class of Dedekind
domains D, for which U2(D) ^ NE2(D) precisely when D is not a principal ideal
domain. (See Corollary 3.6.)

The Bianchi groups are the groups SL2(Od) (or PSL2(Od)), where Od is the ring of
integers of the imaginary quadratic number fielded Q(V — d), \vith d a positive, square-
free integer.

It follows from a result of Serre [11, Corollaire 3, p. 516], as shown by Grunewald,
Mennicke and Vaserstein [4, p. 189], that

U2{Od) jk NE2(Od),

when Od is not a principal ideal domain. It is well-known [13] that Od is a principal
ideal domain if and only if d - 1, 2, 3, 7, 11, 19, 43, 67 and 163.

It is also known [7] that

SL2(Od) jt U2(Od),

for all but finitely many d.

4.3. An example of Serre

We conclude with an example of a Dedekind domain D for which the groups
E2(D), NE2(D), U2(D) and SL2(D) are all distinct.

A structure theorem of Serre [12, Theorem 10, p. 119] for the group GL2(C) provides
a source of many examples of this type. We describe a particular case.

Let k0 = GF(2) and let

We put

A= 1-^:0 efco[t],seZ,s>O,deg<5f<4s|.

https://doi.org/10.1017/S0013091500023403 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500023403


GROUPS GENERATED BY ELEMENTS WITH FIXED POINTS 29

In the above notation we can write

A = C(C0, Po, *,,).

where Co is the projective line over k0 and Po is its point corresponding to the
(irreducible) polynomial / . It follows that A is an arithmetic Dedekind domain. It is
clear that

A' = K = {1),

and hence that

GL2{A) = SL2(A), U2(A) = F2(A).

It is known (see, for example, [8, Theorem 3.4(ii)]) that

Pic(^) =* Z/4Z.

(i) E2{A) 7̂  NE2(A). Since A is not a principal ideal domain it follows from a result
of Suslin [14] that

E2(A)itSL2(A).

(ii) NE2(A) 7̂  U2(A). The author [9, Theorem 3.3(ii)] has proved the existence of an
epimorphism

r : U2(A)/NE2(A) -+ V+ * V+ * V\

where V+ is the additive group of a (countably) infinite dimensional vector space V
over fe0.

(iii) U2(A) / SL2(A). The group SL2(A) acts on a tree X (whose vertices are the
equivalence classes of lattices of the vector space (fe0)

2.) (See [12, Chapter II].) Serre
[12, 2.4.2(c), p. 113] has determined the structure of the quotient graph SL2(A)\X. It is
known (see, for example, [8, Theorems 1.11, 1.12]) that every unipotent matrix in
SL2(A) is conjugate to an element which fixes one of the vertices of X. From the
fundamental theorem of the theory of groups acting on trees [12, Theorem 13, p. 55] it
follows that there exists on epimorphism from SL2(A) to the fundamental group of
the graph SL2(A)\X, whose kernel contains U2(A). Hence there exists an epi-
morphism

a : SL2(A)/U2(A) ^ F2,

where F2 is the free group of rank 2.
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