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The direct observation of dislocations by electron microscopy, both in and ex situ, has provided
invaluable information that has been used to develop our understandings of the nanoscale origins of
deformation [1,2]. In metallic materials, planar slip is a common deformation mechanism and has a
direct consequence on the material’s macroscale deformation behavior [3,4]. However, the causes of
localized or ‘planar’ slip are not well understood. Of the many theories that exist [5,6], a prevailing one
relies on the presence of short range order (SRO) as an inhibitor of more three-dimensional or ‘wavy’
slip [4,7]. As a dislocation moves through the matrix, the destruction of the short range order provides a
softening of that specific slip plane, allowing for additional dislocations to propagate along the same slip
plane. In some systems, it has been shown that this planar slip can cause antiphase boundaries resulting
in a lattice relaxation, and therefore strain contrast in conventional transmission electron microscopy
(TEM)[8]. However, direct quantification of this strain has not been performed.

Using scanning nanobeam election diffraction (NBED) and a fast detector, a time series of strain maps
during an in situ deformation experiment of an austenitic (304) stainless steel was acquired [9]. After the
analysis of the resulting ~100,000 diffraction patterns [10], a positive lattice dilation in the region
behind the first dislocation involved with planar slip was observed to follow the dislocation as it moved
across the field of view (Figure 1), which could correlate to the destruction of short range order.
Compared to previous experiments [8], this type of experiment provides much richer information in the
form of time-resolved quantifiable strain maps, allowing for the observation and analysis of dynamic
processes. Figure 2 shows a transmission electron micrograph of the same region after testing,
confirming the existence of planar slip, as well as showing the ability to perform traditional TEM
techniques using the exact same sample after in situ strain mapping. The quantification of the strain field
resulting from planar slip will be discussed in light of the potential implications for basic mechanisms of
dislocation plasticity in metals.
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Figure 1 a) Mean diffraction pattern from NBED scan, correctly oriented. b-c) High angle annular dark
field images at two different frames of the in situ straining video. Notice the top dislocation move from
left to right as indicated by the red arrows in all frames. d-e) Lattice dilation ((€200t €02-2)/2) obtained
from strain mapping corresponding to b) and c). Notice that behind the leading dislocation, a small
dilation exists. This is also present in the slip plane below the moving dislocation, which was not
observed to move.

Figure 2 Brightfield TEM image of planar slip
region. The dislocations are clearly planar in
nature. Notice the same precipitate (red arrow) as
seen in the HAADF and strain mapping images
(and in the strain maps as a blue circle).
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