J. Ito Nagoya Math. J. Vol. 37 (1970), 137-144

ON REDUCIBILITY OF PROVABILITY IN THE PRIMITIVE LOGIC [LO]

JIRO ITO

Dedicated to Professor Katuzi Ono on his 60th birthday

Introduction.

In the present paper, we would like to show a theorem concerning with *reducibility of provability* in the primitive logic. This theorem seems to suggest a procedure to find the proof-note of a given proposition which is provable in the primitive logic.

The formulations of the primitive logic LO and [LO] have been introduced in Ono [1], [2], [3], and [5]. The primitive logic is the logic having only two logical constants IMPLICATION \rightarrow and UNIVERSAL QUANTI-FICATION (), and has an interesting property that any logic belonging to intuitionistic series or to classical series can be faithfully interpreted in it (Ono [3], [4]).

In the proof-note of the logic [LO], there are some propositions enclosed in pairs of brackets. Any proposition in proof-notes of [LO] is said to be CLAD or BARE according as it is enclosed or is not enclosed in a pair of brackets. The followings are the inference rules of the logic [LO]:

[F]: The step \mathfrak{A} can be deduced from the step $[\mathfrak{A}]$.

[I]: The step $[\mathfrak{B}]$ can be deduced from the steps \mathfrak{A} and $[\mathfrak{A} \to \mathfrak{B}]$.

[I*]: The step $\mathfrak{A} \to \mathfrak{B}$ can be deduced from the fact that \mathfrak{B} is deducible from $[\mathfrak{A}]$.

[U]: The step $[\mathfrak{A}(t)]$ can be deduced from the step $[(x)\mathfrak{A}(x)]$ as far as $\mathfrak{A}(u)$ contains no free variable x at all.

[U*]: The step $(x)\mathfrak{A}(x)$ can be deduced from the fact that $\mathfrak{A}(t)$ is deducible for any variable t whatever, i.e. from the fact that the step $\mathfrak{A}(t)$ is deducible from the step $\forall t:$.

Received March 31, 1969

JIRO ITO

Any proof-note is understood as a practical discription of steps of reasonings. Every step is introduced and denoted by its introductory indexword. Any index-word is a sequence of letters, such as A, b, c, \cdots assuming the usual alphabetical order between them, including the null sequence. We denote a sequence of letters by an underlined single letter such as por t, and especially null sequence by \emptyset .

Here, we must further refer to [5] on some technical terms such as ORDER (Natural, Fundamental and Basis) of steps, REFERENCE STEP and ASSUMPTION STEP. In [5], K. Ono showed a characteristic feature of the logic [LO] by proving the theorem:

Any proposition occurring in a wasteless proof-note of a proposition \mathfrak{P} is a subformula of the proposition \mathfrak{P} .

In this paper, we shall show that this theorem may be described more precisely from a view-point on reducibility of provability.

In section 1, we shall introduce some expressions on LO-formulas such as REGULAR PARSING-FORM, τ -KERNEL and σ -CONSTRUCTION with their PARSING-FACTORS and KERNEL.

In section 2, we shall prove the main theorem on reducibility of provability such as the theorem:

The provability of a given proposition \mathfrak{A} is reducible to the fact that there are finite sequences of factors $\{\mu\}$ and $\{\nu\}$ which satisfy the following conditions; 1) the τ -kernel of \mathfrak{A} by factors $\{\mu\}$ is deducible from the assumptions $\{\mu\}$, 2) $\{\mu\}$ contains a σ -construction by factors $\{\nu\}$ with that τ -kernel of \mathfrak{A} by factors $\{\mu\}$ as its kernel, and 3) any formula of $\{\nu\}$ is deducible from the assumptions $\{\mu\}$.

1. Parsing expression.

Any formula which has no logical constants other than *implication* and *universal quantification* is called an *LO-formula*.

Firstly, we would like to introduce the parsing expressions.

(1.1) Regular parsing-form

We introduce a PARSING-FORM with its FACTOR and KERNEL as follows;

An expression $\langle \lambda \rangle \mathfrak{A}$ which is called a *parsing-form* by a π -factor λ with *kernel* \mathfrak{A} , is defined by

1) if λ is a formula \mathbb{C} , $\langle \mathbb{C} \rangle \mathfrak{A} \equiv^{1} \mathbb{C} \to \mathfrak{A}$:

1) $P \equiv Q$ means "P is defined by Q".

- 2) if λ is a variable x, $\langle x \rangle \mathfrak{A} \equiv (x)\mathfrak{A}(x)$:
- 3) otherwise, $\langle \lambda \rangle \mathfrak{A}$ is undefined.

Especially, if λ is empty or denoted by λ_0 , $\langle \rangle \mathfrak{A}$ or $\langle \lambda_0 \rangle \mathfrak{A} \equiv \mathfrak{A}$ is called a parsing-form by the *empty-factor* or λ_0 with kernel \mathfrak{A} .

For any $i(i \ge 1)$, a parsing-form with kernel \mathfrak{A} by π -factors $\{\lambda_0, \dots, \lambda_i\}$,

 $\langle \lambda_0, \lambda_1, \cdots, \lambda_i \rangle \mathfrak{A} \equiv \langle \lambda_i \rangle (\langle \lambda_0, \cdots, \lambda_{i-1} \rangle \mathfrak{A})$ recursively, where λ_0 is empty and each of $\lambda_i (i \ge 1)$ is a formula or a variable, respectively. In the case that λ_i is a formula each of λ_i is called a π -formula, otherwise a π -variable.

From the definition of parsing-forms we have the following lemmas.

LEMMA 1. Any parsing-form which has an LO-formula as its kernel is also an LO-formula.

LEMMA 2. Any LO-formula is expressible in a parsing-form by π -factors.

Accordingly, corresponding to any LO-formula \mathfrak{P} , there is one and only one parsing-form which has an *elementary* formula as its kernel. This expression is called a *regular parsing-form* of \mathfrak{P} .

(1. 2) τ -Kernel.

Let \mathfrak{A} be a formula whose regular parsing-form is $\langle \lambda_0, \dots, \lambda_n \rangle E$. The expression $\tau \langle \mu \rangle \mathfrak{A}$ which is called a τ -kernel of \mathfrak{A} by a τ -factor μ , is defined as follows:

- 1) If μ is a formula \mathfrak{G} , and λ_n is \mathfrak{G} , $\tau \langle \mathfrak{G} \rangle (\langle \mathfrak{G} \rangle \mathfrak{B}) \equiv \mathfrak{B}$,
- 2) If μ is a free variable t and λ_n is a variable x, $\tau \langle t \rangle \langle \langle x \rangle \mathfrak{B}(x) \rangle \equiv \mathfrak{B}(t)$,
- 3) otherwise, $\tau \langle \mu \rangle \mathfrak{A}$ is undefined,

where \mathfrak{B} or $\mathfrak{B}(x)$ denotes $\langle \lambda_0, \dots, \lambda_{n-1} \rangle E$. The τ -factor μ is called a τ -formula or a τ -variable according as μ is a formula or a variable, respectively.

Especially, if μ is empty or denoted by μ_0 , $\tau \langle \rangle \mathfrak{A}$ or $\tau \langle \mu_0 \rangle \mathfrak{A} \equiv \mathfrak{A}$, is called a τ -kernel of \mathfrak{A} by the empty-factor or μ_0 .

For any $i(i \ge 1)$, a τ -kernel of \mathfrak{A} by τ -factors $\{\mu_0, \dots, \mu_i\}$

$$\tau \langle \mu_0, \mu_1, \cdots, \mu_i \rangle \mathfrak{A} \equiv \tau \langle \mu_i \rangle \langle \tau \langle \mu_0, \cdots, \mu_{i-1} \rangle \mathfrak{A} \rangle$$

recursively, where μ_0 is empty and each of $\mu_j (i \ge j \ge 1)$ is a τ -formula or a τ -variable according as λ_{n-j-1} is a formula or a variable, respectively.

(1. 3) σ -construction.

An expression $\sigma(\nu) \mathfrak{A}$ which is called a σ -construction with kernel \mathfrak{A} by a σ -factor ν , is defined as follows;

- 1) If ν is a formula \mathfrak{C} , $\sigma \langle \mathfrak{C} \rangle \mathfrak{A} \equiv \langle \mathfrak{C} \rangle \mathfrak{A}$.
- 2) If ν is a variable t, $\sigma \langle t \rangle \mathfrak{A}(t) \equiv \langle x \rangle \mathfrak{A}(x)$

where $\mathfrak{A}(x)$ denotes the derived formula from $\mathfrak{A}(t)$ replacing t in its position by x which has no occurrence in $\mathfrak{A}(t)$. The σ -factor ν is called σ -formula or σ -variable according as ν is a formula or a variable, respectively.

Especially, if ν is empty or denoted by ν_0 , $\sigma \langle \rangle \mathfrak{A}$ or $\sigma \langle \nu_0 \rangle \mathfrak{A} \equiv \mathfrak{A}$ is called a σ -construction with kernel \mathfrak{A} by the empty-factor or ν_0 . For any $i \ (i \geq 1)$, a σ -construction with kernel \mathfrak{A} by σ -factors $\{\nu_0, \dots, \nu_i\}$,

 $\sigma \langle \nu_0, \nu_1, \cdots, \nu_i \rangle \mathfrak{A} \equiv \sigma \langle \nu_i \rangle (\sigma \langle \nu_0, \cdots, \nu_{i-1} \rangle \mathfrak{A})$

recursively, where ν_0 is empty and each of $\nu_j (j \ge 1)$ is a σ -formula or a σ -variable.

(1. 4) Modulation of inference rules.

Using our expressions the inference rules of the logic [LO] are modulated as follows;

[F]: The step \mathfrak{A} can be deduced from the step $[\mathfrak{A}]$.

[I]: The step $[\mathfrak{B}]$ can be deduced from the steps \mathfrak{A} and $[\sigma \langle \mathfrak{A} \rangle \mathfrak{B}]$.

[I*]: The step $\langle \mathfrak{A} \rangle \mathfrak{B}$ can be deduced from the fact that $\tau \langle \mathfrak{A} \rangle (\langle \mathfrak{A} \rangle \mathfrak{B})$ is deducible from $[\mathfrak{A}]$.

[U]: The step $[\mathfrak{A}(t)]$ can be deduced from the step $[\sigma \langle t \rangle \mathfrak{A}(t)]$.

[U*]: The step $\langle x \rangle \mathfrak{A}(x)$ can be deduced from the fact that $\tau \langle t \rangle (\langle x \rangle \mathfrak{A}(x))$ is deducible for any variable t whatever, i.e., from the fact that the step $\tau \langle t \rangle (\langle x \rangle \mathfrak{A}(x))$ is deducible from the step $[t]^{2}$

Let Γ be an ordered set of clad formulas or variables which belong to assumption steps of a step \underline{s} , arranged its index-word in the fundamental order. Then, the step $\underline{s}: \underline{s}$ \mathfrak{A} or $[\mathfrak{A}]$ is said to be *deducible* from the *assumption* Γ . We would like to denote this by $\Gamma \vdash \mathfrak{A}$ or $\Gamma \vdash [\mathfrak{A}]$, respectively. Especially, if \underline{s} is \emptyset , the formula of \underline{s} is bare and Γ is empty. We denote this by $\vdash \mathfrak{A}$.

140

²⁾ We will use clad variable [t] instead of $\forall t$:, because in a proof-note, denominating quantifier $\forall t$: as well as clad formula [\mathfrak{A}] has an assumptional character.

Any proposition \mathfrak{P} is said to be *provable* in [LO] if and only if the step \mathfrak{P} is deducible in [LO].

2. Reducibility of provability.

(2. 1) Lemmas.

Now, we are going to prove the following lemmas preparatory to the main theorem.

LEMMA 3. $\vdash \langle \lambda \rangle \mathfrak{A}$ if and only if $[\mu] \vdash \tau \langle \mu \rangle (\langle \lambda \rangle \mathfrak{A})$, where μ is a τ -variable which has no occurrence in $\langle \lambda \rangle \mathfrak{A}$ or a τ -formula according as λ is a variable or a formula, respectively.

Proof. Firstly we assume $\vdash \langle \lambda \rangle \mathfrak{A}$. In this proof-note, the assumption step of the step \emptyset is empty, therefore the inference rule for the step \emptyset is $[U^*]$ or $[I^*]$. Accordingly, there are steps A) $[\mu]$ and ϵ) $\tau \langle \mu \rangle (\langle \lambda \rangle \mathfrak{A})$ in this proof-note, where μ is a τ -variable which has no occurrence in $\langle \lambda \rangle \mathfrak{A}$ or a τ -formula according as λ is a variable or a formula. Thus we have $[\mu] \vdash \tau \langle \mu \rangle (\langle \lambda \rangle \mathfrak{A})$. Conversely, we assume $[\mu] \vdash \tau \langle \mu \rangle (\langle \lambda \rangle \mathfrak{A})$ with the μ -condition. Adding to this proof-note the step $\emptyset \rangle \langle \lambda \rangle \mathfrak{A}$, we have $\vdash \langle \lambda \rangle \mathfrak{A}$ by $[U^*]$ or $[I^*]$ according as λ is a variable or a formula, respectively.

In the following lemmas, let $\langle \lambda_0, \dots, \lambda_n \rangle E$ be the regular parsingform of \mathfrak{A} .

LEMMA 4. For any k $(n \ge k \ge 1)$, if $[\mu_1], \dots, [\mu_k] \vdash \tau \langle \mu_0, \dots, \mu_k \rangle \mathfrak{A}$, then $\vdash \mathfrak{A}$, where the μ -condition: $\mu_i (k \ge i \ge 1)$ is a τ -variable which has no occurrence in any $\tau \langle \mu_0, \dots, \mu_{j-1} \rangle \mathfrak{A}$ $(i \ge j \ge 1)$ or a τ -formula according as λ_{n-i+1} is a variable or a formula, respectively, holds.

Proof. For k = 1, the case is the last part of lemma 3.

Now, we assume this lemma for any number less than k, and prove it for k by induction. In this proof-note, there are the step \underline{s}) $\tau \langle \mu_0, \cdots, \mu_k \rangle \mathfrak{A}$ and its assumption step $\underline{u}A$) $[\mu_k]$ with the μ -condition. Therefore, adding the step \underline{u}) $\tau \langle \mu_0, \cdots, \mu_{k-1} \rangle \mathfrak{A}$ to this proof-note, we have $[\mu_1], \cdots, [\mu_{k-1}] \vdash \tau \langle \mu_0, \cdots, \mu_{k-1} \rangle \mathfrak{A}$ which leads up to $\vdash \mathfrak{A}$ by assumption of induction.

LEMMA 5. $\vdash \mathfrak{A}$ if and only if there is a sequence of factors $\{\mu_0, \dots, \mu_k\}$ $(n \ge k \ge 1)$ such as

$$[\tau \langle \mu_0, \cdots, \mu_k \rangle \mathfrak{A}] \in \{ [\mu_1], \cdots, [\mu_k] \}$$

or
$$[\mu_1], \cdots, [\mu_k] \vdash [\tau \langle \mu_0, \cdots, \mu_k \rangle \mathfrak{A}]$$

where the μ -condition holds.

Proof. Firstly by assuming $\vdash \mathfrak{A}$, we have $[\mu_1] \vdash \tau \langle \mu_0, \mu_1 \rangle \mathfrak{A}$ by lemma 3. If the inference for the step \underline{s}) $\tau \langle \mu_0, \dots, \mu_{m-1} \rangle \mathfrak{A}$ is not [F], it must be $[I^*]$ or $[U^*]$ and then there are steps $\underline{s}A$) $[\mu_m]$ and \underline{s}_{ℓ} , $\tau \langle \mu_0, \dots, \mu_m \rangle \mathfrak{A}$ in this proof-note, where the μ -condition holds. However, m can not exceed n so that there is k ($k \leq n$) such as the inference for the step \underline{p}) $\tau \langle \mu_0, \dots, \mu_k \rangle \mathfrak{A}$ is [F]. And therefore, $[\tau \langle \mu_0, \dots, \mu_k \rangle \mathfrak{A}]$ belongs to the set of assumption steps of the step \underline{p} or is deducible from the assumption steps of the step \underline{p} .

Conversely, by assuming the condition, from the step s) $[\tau \langle \mu_0, \dots, \mu_k \rangle \mathfrak{A}]$ we have the step \underline{p}) $\tau \langle \mu_0, \dots, \mu_k \rangle \mathfrak{A}$ by $[\mathbf{F}]$, and the assumption steps of the step \underline{s} is also those of the step \underline{p} so that we have $\vdash \mathfrak{A}$ by lemma 4.

LEMMA 6. $\Gamma \vdash [\mathfrak{B}]$ if and only if there is a sequence of factor $\{\nu_0, \dots, \nu_m\}$ such as

1) $[\sigma \langle \nu_0, \cdots, \nu_m \rangle \mathfrak{B}] \in \Gamma$

and 2) for any σ -formula ν_j $(1 \leq j \leq m)$ $\Gamma \vdash \nu_j$.

Proof. Firstly we assume $\Gamma \vdash [\mathfrak{B}]$, and let the final step of this proofnote which is arranged in the fundamental order of its index-words be \underline{s} (i.e., \underline{s})[\mathfrak{B}]). We may prove the conclusion by induction referring to the step \underline{s} .

If the step \underline{s} is the first step, the step \underline{s} is the assumption step of itself and the σ -construction with kernel \mathfrak{B} by the empty factor i.e., $\sigma \langle \rangle \mathfrak{B}$. In this case, m = 0 and the condition 2) is omitted.

Otherwise, we assume the assertion for any step r which takes precedence of s in the fundamental order.

The formula of the step \underline{s} is clad so that the step \underline{s} is either an assumption step of itself (case 1), or a step deduced from a step \underline{u} by [U] (case 2), or from steps \underline{u} and \underline{v} by [I] (case 3).

In the case 1, the assertion holds evidently.

In the case 2, the step \underline{u} is a clad formula and is a σ -construction with kernel \mathfrak{B} by a σ -variable i.e., \underline{u}) $[\sigma\langle\nu\rangle\mathfrak{B}]$. And the step \underline{u} takes precedence of \underline{s} in the fundamental order so that there is an assumption step \underline{p} of \underline{u} which is a σ -construction with kernel $\sigma\langle\nu\rangle\mathfrak{B}$, by our assumption of induction. The step p is an assumption step of \underline{s} , and a σ -construction with kernel $\sigma \langle \nu \rangle \mathfrak{B}$ is also a σ -construction with kernel \mathfrak{B} . Thus the assertion holds in the step \underline{s} .

In the case 3, one of the steps \underline{u} and \underline{v} is a clad formula and the other is a bare formula by [I], and both of them take precedences of \underline{s} in the fundamental order.

We would like to suppose the step \underline{u} is clad, then there is an assumption step of \underline{s} whose formula is σ -construction with kernel \mathfrak{B} as we had it in the case 1, where ν is a σ -formula in this case. And then, the step \underline{v} is the same bare formula as ν and is deduced from its assumption steps. The assumption steps of \underline{v} are the assumption steps of \underline{s} too. Thus the assertion also holds in this case.

Conversely, we have $\Gamma \vdash [\mathfrak{B}]$, by assuming the fact that there is a sequence of factor $\{\nu_0, \dots, \nu_m\}$ such as the conditions 1) and 2) hold for any formula \mathfrak{B} , by induction as follows;

If m = 0, the assertion is trivial.

We assume the assertion holds for any i (i < m).

If ν_m is a free variable, we can deduce the step \underline{s}) $[\sigma \langle \nu_0, \cdots, \nu_{m-1} \rangle \mathfrak{B}]$ from the step \underline{u}) $[\sigma \langle \nu_0, \cdots, \nu_{m-1}, \nu_m \rangle \mathfrak{B}]$ of Γ by [U].

If ν_m is a formula, according to the condition 2), we have a step \underline{v}) ν_m which is deduced from its assumption steps Γ , and the step \underline{u}) $[\sigma \langle \nu_0, \cdots, \nu_{m-1}, \nu_m \rangle \mathfrak{B}]$ of Γ by the condition 1). Then we can deduce the step \underline{s}) $[\sigma \langle \nu_0, \cdots, \nu_{m-1} \rangle \mathfrak{B}]$ from the steps \underline{u} and \underline{v} by [I]. In the both cases of ν_m , the steps of Γ are also the assumption steps of \underline{s} .

Thus we have the conclusion.

(2. 2) Theorem.

From the preceding Lemmas 5 and 6 we have the main theorem and its corollaries.

THEOREM. Let \mathfrak{A} be any LO-formula which has its regular parsing form by π -factors $\{\lambda_0, \dots, \lambda_n\}$. In the primitive logic [LO], the provability of a given proposition \mathfrak{A} is reducible to the fact that there are τ -factors $\{\mu_0, \dots, \mu_k\}$ ($k \leq n$) and σ -factors $\{\nu_0, \dots, \nu_m\}$ which satisfy the following conditions;

1) The τ -kernel of \mathfrak{A} by τ -factors $\{\mu_0, \dots, \mu_k\}$ which satisfies the μ -condition of lemma 4, is deducible from the assumptions $\{[\mu_1], \dots, [\mu_k]\},$

2) $\{[\mu_1], \dots, [\mu_k]\}$ contains a σ -construction by σ -factors $\{\nu_0, \dots, \nu_m\}$ with that τ -kernel of \mathfrak{A} by τ -factors $\{\mu_0, \dots, \mu_k\}$ as its kernel,

jiro ito

3) Any σ -formula ν_j such as $1 \leq j \leq m$, is deducible from the assumptions $\{[\mu_1], \dots, [\mu_k]\}$.

COROLLARY 1. If there is no σ -construction of τ -kernel of \mathfrak{A} in the set of τ -factors of \mathfrak{A} , \mathfrak{A} is unprovable.

COROLLARY 2. Without assumption, any elementary proposition is unprovable.

This theorem seems to suggest a procedure to find a proof-note of a given proposition which is provable in the primitive logic [LO]. But we would like to mention about it in our later paper ([1]-part 3).

Finally, I would like to thank Professor Katuzi Ono for his guidance and his helpful suggestions.

References

- K. Ono, [1] On a practical way of describing formal deductions, Nagoya Math. J., 21 (1962), 115-121.
- [2] A certain kind of formal theories, Nagoya Math. J., 25 (1965), 59-86.
- [3] On universal character of the primitive logic, Nagoya Math. J., 27 (1966), 331-353.
- [4] Reduction of logics to the primitive logic, J. Math. Soc. Jap., Vol. 19, No. 3 (1967), 384-398.
- [5] A study on formal deductions in the primitive logic, Nagoya Math. J., 31 (1968), 1-14.
- J. Ito, [1] Studies on mechanical deductions part 1, Jour. Toyota Technical College, Vol. 1 (1968), 41-49.

Toyota Technical College