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A Big Picard Theorem for Holomorphic
Maps into Complex Projective Space

Yasheng Ye and Min Ru

Abstract. We prove a big Picard type extension theorem for holomorphic maps f : X−A → M, where

X is a complex manifold, A is an analytic subvariety of X, and M is the complement of the union of a

set of hyperplanes in P
n but is not necessarily hyperbolically imbedded in P

n .

1 Introduction and Statements

The classical big Picard theorem states that any holomorphic map f from the punc-

tured disk △∗ to the Riemann sphere P
1 which omits three points can be extended to

a holomorphic map f : △ → P
1. Through work of Kwack, Kobayashi, and Kiernan

[4–6], the big Picard theorem has been generalized to showing that any holomorphic

map f : X − A → M ⊂ Y can be extended to a meromorphic mapping f : X → Y

provided that M is hyperbolically imbedded in Y , where X is a complex manifold, A

is an analytic subvariety of X, and M and Y are complex spaces. Here, according to

S. Kobayashi [5], a relatively compact open set M in a complex space Y is said to be
hyperbolically imbedded in Y if

(i) M is Kobayashi hyperbolic, i.e., the Kobayahsi pseudo-distance dM is a proper

distance;
(ii) whenever pn and qn are sequences in M converging to distinct boundary points,

then dM(pn, qn) does not converge to 0.

The space P
1−{0, 1,∞} is, for example, hyperbolically imbedded in P

1. More gener-

ally, according to the result of Dufresnoy, Fujimoto, and Green [1–3], if H1, . . . , H2n+1

are hyperplanes in general position in P
n, then M = P

n − (H1 ∪ · · · ∪ H2n+1)
is hyperbolically imbedded in P

n. Hence the above mentioned result of Kwack,

Kobayashi, and Kiernan holds when M = P
n − (H1 ∪ · · · ∪ H2n+1) and Y = P

n,
where H1, . . . , H2n+1 are hyperplanes in general position in P

n.

The purpose of this paper is to study the case when M is the complement of the

union of a set of hyperplanes in P
n, but M is not necessarily hyperbolically imbedded

in P
n. Hence the theorem of Kwack, Kobayashi, and Kiernan does not apply. To see

what M looks like, we recall the following result.

Theorem A (Ru) Let H be a collection of hyperplanes in P
n and let L be a set of linear

forms in z0, . . . , zn that define the hyperplanes in H. Denote by |H| the union of the

hyperplanes in H and denote by L the vector space generated by the elements in L over
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C. Then P
n − |H| is Brody hyperbolic (i.e., every holomorphic map f : C → P

n − |H|
must be constant) if and only if H satisfies the following conditions:

(i) dim(L) = n + 1;

(ii) for each proper non-empty subset L1 of L, we have L ∩ (L1) ∩ (L\(L1) 6= ∅.

Example 1.1 Let L = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 1, 1)}. Then L satis-

fies (i) and (ii) in Theorem A. Note that the hyperplanes in P
2 defined by these linear

forms are not in general position.

It is shown in [8] that P
2 − |H| is not hyperbolically imbedded in P

2 when H

consists of the hyperplanes from Example 1.1. So in general M = P
n − |H| does

not have to be hyperbolically imbedded in P
n if H satisfies (i) and (ii) in Theorem

A. However, one of the results in this paper will show that the extension theorem still

holds if H satisfies (i) and (ii) in Theorem A.
Next we recall a result of A. Levin [7] which generalizes Theorem A to the follow-

ing setting.

Theorem B (Levin) Let H be a collection of hyperplanes in P
n and let L be a set of

corresponding linear forms. Let m = dim
⋂

H∈H
H. Then there exists a holomorphic

map f : C → P
n − |H| with dim f (C) = d > m + 1 if and only if L satisfies the

following condition: there exists a partition of L into d − m nonempty pairwise disjoint

subsets L j , L =

⋃d−m
j=1 L j with L j 6= ∅ for all j, and L∩

∑d−m
j=1 (L j)∩ (L\L j ) = ∅.

In this paper, we prove an extension theorem which is motivated by Theorem A

and Theorem B. To state our main theorem, we first introduce the following defini-
tion.

Definition 1.2 Let H = {H1, . . . , Hq} be a collection of hyperplanes in P
n and

let L be a set of the corresponding linear forms. Let A be an analytic subvariety of a
complex manifold X and let f : X − A → P

n − |H| be holomorphic. Consider the

uniquely determined partition {1, . . . , q} = I1 ∪ · · · ∪ Is such that i and j are in the

same class if and only if Li( f )/L j( f ) extends across A meromorphically. The integer
s is called the degree of irrationality of f with respect to H.

Note that, when dim(L) = n + 1, the degree of irrationality of f with respect to H

is equal to 1 if and only if f : X − A → P
n − |H| extends meromorphically across A.

We will prove the following result.

Main Theorem Let H be a collection of hyperplanes in P
n and let L be a set of corre-

sponding linear forms. Let m = dim
⋂

H∈H
H. Let d > m + 1 be an integer. Then for

every complex manifold X, every proper analytic subvariety A of X, and every holomor-

phic map f : X −A → P
n − |H|, the degree of irrationality of f with respect to H is less

than d −m if and only if H satisfies the following property: for every partition of L into

d − m nonempty pairwise disjoint subsets L j , L =

⋃d−m
j=1 L j , we have

(1.1) L ∩

d−m
∑

j=1

(L j) ∩ (L\L j) 6= ∅.
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Note that in the above theorems and elsewhere we define dim ∅ = −1.

Corollary 1.3 Let H be a collection of hyperplanes in P
n and let L be a set of cor-

responding linear forms. Then for every complex manifold X, every proper analytic

subvariety A of X, and every holomorphic map f : X − A → P
n − |H|, f extends

meromorphically across A if and only if H satisfies the following conditions:

(i) dim(L) = n + 1;

(ii) for each proper non-empty subset L1 of L, we have L ∩ (L1) ∩ (L\(L1) 6= ∅.

In particular, for every holomorphic map f : X −A → P
n, if f omits 2n + 1 hyperplanes

in general position, then f extends meromorphically across A.

To see how the Main Theorem implies Corollary 1.3, we first notice that the con-

dition dim(L) = n + 1 implies that
⋂

H∈H
H = ∅. Hence m = −1. On the other

hand, it is clear that the assumption (ii) in Corollary 1.3 is the same as (1.1) with
d = 1. Hence, Corollary 1.3 is the special case of the Main Theorem with m = −1

and d = 1.

Corollary 1.4 [M. Green [3]] Let X be a complex manifold and A be an analytic
subvariety of X. Let f : X−A → P

n be a holomorphic map omitting n+k hyperplanes

in general position, then the degree of irrationality of f is less than or equal to [n/k]+

1.

We now show how the Main Theorem implies Corollary 1.4. Let H = {H1, . . . ,
Hn+k}, where H1, . . . , Hn+k are hyperplanes in general position. Then m =

dim
⋂

H∈H
H = −1. We show that for every integer d > n/k and for every partition

of L into d + 1 nonempty disjoint subsets Li , (1.1) holds. In fact, using d > n/k,

there must be a j0 such that #
⋃

j 6= j0
L j ≥

d
d+1

(n + k) > n. Hence, by the “in general

position” condition, we have (L\L j0
) = C

n+1. Therefore

L ∩ (L j0
) ∩ (L\L j0

) = L ∩ (L j0
) 6= ∅

which implies that

L ∩

d+1
∑

j=1

(L j) ∩ (L\L j) 6= ∅.

Thus (1.1) is satisfied. By the Main Theorem, the degree of irrationality of f is less
than or equal to [n/k] + 1.

2 Proof of the Main Theorem

We first recall the following well-known lemma (see, for instance, The Borel Lemma

for Punctured Domains in [3, Page 56]).

Lemma 2.1 Let f1, . . . , fn be nowhere-vanishing holomorphic functions on X − A,

where X is a complex manifold and A an analytic subvariety of X. If f1+· · ·+ fn = 1 and

the fi are linearly independent on X −A, then all the fi extend across A as meromorphic

functions. Without the assumption of linear independence, then at least one of the fi

extends meromorphically across A.
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We are now ready to prove the Main Theorem.

Proof of the Main Theorem “⇐”. Let d > m + 1 be an integer such that for every

partition of L into d − m non-empty pairwise disjoint subsets L j we have

(2.1) L ∩

d−m
∑

j=1

(L j) ∩ (L\L j) 6= ∅.

We prove that, for every holomorphic map f : X − A → P
n − |H|, the degree

of irrationality of f with respect to H is less than d − m. If not, we assume that

f : X − A → P
n − |H| has degree of irrationality ≥ d − m. Let {I1, . . . , Is} be

the set of equivalence classes of the elements of L under the equivalence relation

defining the degree of irrationality of f . Let L j = I j for 1 ≤ j < d − m and let

Ld−m = L\
⋃d−m−1

j=1 L j . By assumption (see (2.1)),

L ∩

d−m
∑

j=1

(L j) ∩ (L\L j) 6= ∅.

Thus, there is a linear form L in L and linearly independent linear forms Li such
that L =

∑

i ciLi for non-zero constants ci such that none of the Li are in the same

equivalence class as L. This contradicts Lemma 2.1, and hence the “⇐” is proven.
“⇒”. Let d > m + 1 and assume L can be partitioned into d −m pairwise disjoint

non-empty subsets L j such that

(2.2) L ∩

d−m
∑

j=1

(L j) ∩ (L\L j) = ∅.

We will construct a holomorphic map f : △∗ → P
n−|H| with degree of irrationality

s ≥ d − m, where △∗ is the punctured unit disk in C. This will contradict our as-
sumption, and hence proves the “⇒” direction. To do so, we first prove the following

claim.

Claim There is a subspace Y ⊂ P
n such that dim Y = d, #H|Y = d − m, and the

hyperplanes in H|Y are linearly independent, where H|Y is the set of hyperplanes which

are the restriction of the hyperplanes in H to Y .

The claim is contained in [7, Theorem 7]. We enclose a proof here for the sake of

completeness. To construct such Y , let

U0 =

d−m
∑

j=1

(L j) ∩ (L \ (L j).

Obviously, since (L j) ∩ (L \ L j) ⊂ U0 ∩ (L j) for all j, we have

(2.3) U0 =

d−m
∑

j=1

U0 ∩ (L j).
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We now construct inductively the vector spaces Ui, 0 ≤ i ≤ d − m, which satisfy the
following four properties:

(1) Ui ⊂ U j for i < j;
(2) dim Ui ∩ (Li) = dim(Li) − 1 for i > 0;

(3) Ui ∩ L = ∅,

(4) Ui =

∑d−m
j=1 Ui ∩ (L j).

First, by (2.2) and (2.3), U0 satisfies (3) and (4). Suppose now that Ui−1 has

been constructed with properties (1), (2), (3), and (4). We now construct Ui . From
the induction assumption, Ui−1 ∩ L = ∅. Hence Ui−1 ∩ (Li) is a proper subset

of (Li), i.e., dim Ui−1 ∩ (Li) < dim(Li). We distinguish two cases: dim Ui−1 ∩
(Li) = dim(Li) − 1 and dim Ui−1 ∩ (Li) ≤ dim(Li) − 2. When dim Ui−1 ∩
(Li) = dim(Li) − 1, we let Ui = Ui− 1. Then, by the induction assumption

and the assumption that dim Ui−1 ∩ (Li) = dim(Li) − 1, we see that Ui satisfies

(1), (2), (3) and (4). So we can assume that dim Ui−1 ∩ (Li) ≤ dim(Li) − 2. Let
{a1, . . . , ati

} be a basis for Ui−1 ∩ (Li) (we take it as an empty set if Ui−1 ∩ (Li) =

{0}) and expand it to form a basis {a1, . . . , ati
, ati +1, . . . , ari

} for the space (Li),
where ri = dim(Li). By our assumption, ri − ti ≥ 2, and (a1, . . . , ati

) ∩ Li =

∅, where (a1, . . . , ati
) means the the vector space generated by {a1, . . . , ati

} over

C. We then can easily choose non-zero constants cti +1, . . . , cri−1 such that, if we
let Ai = (a1, . . . , ati

, ati +1 − cti +1ari
, . . . , ari−1 − cri−1ari

), then Ai ∩ Li = ∅, and

dim Ai = dim(Li) − 1. Now we let Bi = (ati +1 − cti +1ari
, . . . , ari−1 − cri−1ari

) and let

Ui = (Ui−1, Bi). Ui is the vector space generated by the vectors in Ui−1 and the vec-
tors ati +1 − cti +1ari

, . . . , ari−1 − cri−1ari
. Then, from the above, we have Ui ∩Li = ∅,

and dim Ui ∩ (Li) = dim(Li) − 1. It remains to show that Ui satisfies properties (3)
and (4). We first verify property (4). By induction assumption, we have

Ui−1 =

d−m
∑

j=1

Ui−1 ∩ (L j).

Hence,

Ui = (Ui−1, Bi) =

d−m
∑

j=1

Ui−1 ∩ (L j) + Bi

⊂

d−m
∑

j=1, j 6=i

Ui ∩ (L j) + Ui ∩ (Li) =

d−m
∑

j=1

Ui ∩ (L j) ⊂ Ui.

Hence property (4) holds. To show Ui ∩ L = ∅, we assume that L ∈ Ui ∩ L. Since

Ui ∩ Li = ∅, we have L ∈ Li ′ for some i ′ 6= i. Using Ui =

∑d−m
j=1, j 6=i Ui−1 ∩

(L j) + Ui ∩ (Li), we may write L =

∑d−m
j=1 u j with u j ∈ Ui−1 ∩ (L j) for j 6= i and

ui ∈ Ui ∩ (Li). Hence L − ui ′ =

∑

j 6=i ′u j ∈ (L \ Li ′). That means L − ui ′ ∈
(Li ′) ∩ (L \ Li ′) ⊂ U0 ⊂ Ui−1. But ui ′ ∈ Ui−1 which implies that L ∈ Ui−1. This
contradicts the assumption that Ui−1 ∩ L = ∅. Hence the property (3) also holds.

Let U0, . . . ,Ud−m be the vector spaces as defined above. Let Y be the subspace of

P
n such that y ∈ Y if and only if L(y) = 0 for all L ∈ Ud−m. We show that Y satisfies
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the conditions stated in the claim. Since Ud−m ∩ L = ∅, we have that Y 6⊂ |H|.
Next we show that L|Y is a linearly independent set. To do so, we first show that

dim Ud−m ∩ (Li) = dim(Li)−1 for all i. In fact, from property (2), dim Ui ∩ (Li ) =

dim(Li) − 1, and from (1) Ui ⊂ Ud−m. So dim(Li) − 1 ≤ dim Ud−m ∩ (Li) ≤
dim(Li). But dim Ud−m ∩ (Li) cannot be equal to dim(Li) because otherwise we

would have Ud−m ∩ (Li) = (Li), which is impossible since Ud−m ∩ Li = ∅. Hence
dim Ud−m ∩ (Li) = dim(Li) − 1 for all i. Therefore

dim(Ud−m + (Li)) = dim Ud−m + dim(Li) − dim Ud−m ∩ (Li) = dim Ud−m + 1.

Hence, dim(Li|Y ) = 1. Let Hi be the set of the hyperplanes defined by the linear

forms in Li . Then it implies that Hi |Y consists of only a single hyperplane in Y . So
H|Y consists of at most d − m hyperplanes. On the other hand, since Ud−m ⊂ (L),

the condition dim
⋂

H∈H
H = m implies that dim

⋂

H∈H|Y
H = m. This, together

with the fact that dim Y = d (we will show it below) and the fact that H|Y consists

of at most d − m hyperplanes, shows that L|Y is a linearly independent set. Note
that from dim(L) ≤ #L|Y + n − d, we also have #L|Y ≥ d − m. Hence, we in

fact have #H|Y = d − m. It remains to show that dim Y = d, or equivalently, that
dim Ud−m = n − d. Repeatedly applying the dimension formula dim(U + V ) =

dim U + dim V − dim U ∩V , we get that

(2.4)

dim

d−m
∑

i=1

(Li) = dim(L) = n − m =

d−m
∑

i=1

dim(Li) −

d−m−1
∑

j=1

dim
(

(L j+1) ∩

j
∑

i=1

(Li)
)

and

(2.5) dim Ud−m = dim
d−m
∑

i=1

((Li) ∩Ud−m) =

d−m
∑

i=1

dim(Li) ∩Ud−m

−
d−m−1

∑

j=1

dim
(

(L j+1) ∩Ud−m ∩
j

∑

i=1

Ud−m ∩ (Li)
)

.

We claim that

(2.6) (L j+1) ∩Ud−m ∩

j
∑

i=1

Ud−m ∩ (Li) = (L j+1) ∩

j
∑

i=1

(Li).

In fact, let u ∈ (L j+1) ∩
∑ j

i=1(Li). Then u =

∑ j
i=1 ui where u ∈ (L j+1) and ui ∈

(Li). By the definition of U0, we have u ∈ U0 ⊂ Ud−m. Also ui = u −
∑ j

k=1,k6=i uk ∈
(L \ Li), so all ui ∈ U0 ⊂ Ud−m. Hence

(L j+1) ∩

j
∑

i=1

(Li) ⊂ (L j+1) ∩Ud−m ∩

j
∑

i=1

Ud−m ∩ (Li).
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The other inclusion is obvious and hence (2.6) holds. Using dim Ud−m ∩ (Li) =

dim(Li) − 1, (2.6) and (2.4), the equation in (2.5) gives

dim Ud−m =

d−m
∑

i=1

dim(Li) −

d−m−1
∑

j=1

dim((L j+1) ∩

j
∑

i=1

(Li)) − (d − m)

= n − m − (d − m) = n − d.

This proves that dim Y = d. Hence the claim is proved.

We now continue the proof of the Main Theorem. Let Y be the subspace in the
claim. Then dim Y = d, #H|Y = d − m, and the hyperplanes in H|Y are linearly

independent. So, without loss of generality, we assume that Y = P
d and that H|Y are

the first d − m coordinate hyperplanes {x j = 0} where 0 ≤ j ≤ d − m − 1. Then,

f (z) = (1, e1/z, e1/z2

, . . . , e1/zd−m−1

, 0, . . . , 0)

is a holomorphic map from △∗ to P
d ⊂ P

n omitting the hyperplanes in H which

clearly has degree of irrationality ≥ d−m. This proves the “⇒” direction. The proof
of the Main Theorem is thus finished.

Acknowledgement Yasheng Ye wishes to thank the Department of Mathematics at
the University of Houston for its kind hospitality during which part of the work on

this paper took place.

References
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