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On the Stable Basin Theorem

John R. Parker

Abstract. The stable basin theorem was introduced by Basmajian and Miner as a key step in their

necessary condition for the discreteness of a non-elementary group of complex hyperbolic isometries.

In this paper we improve several of Basmajian and Miner’s key estimates and so give a substantial

improvement on the main inequality in the stable basin theorem.

1 Introduction

Jørgensen’s inequality [4] gives a well known necessary condition for a non-element-

ary, two generator subgroup of PSL(2, C) to be discrete. In [1] Basmajian and Miner

generalised this condition to complex hyperbolic 2-space H
2

C
and its isometry group

PU(2, 1). Their method involved first proving a result which they termed the stable

basin theorem. (See Goldman’s book [2] as well as the papers cited below for fur-

ther information about complex hyperbolic geometry and the Heisenberg group.)

Suppose that we are given a pair of points p, q ∈ ∂H
2

C
and neighbourhoods U p and

Uq in ∂H
2

C
of these points. Then the pair (U p, Uq) is said to be a stable with respect

to the points (p, q) and a set S of complex hyperbolic isometries if for all A ∈ S we

have A(p) ∈ U p and A(q) ∈ Uq. We identify the boundary of complex hyperbolic

space ∂H
2

C
with the one point compactification of the Heisenberg group N ∪ {∞}.

Following [1], we take p to be the origin o = (0, 0) in the Heisenberg group and U p

to be Br ′ , the ball in N centred at o with radius r ′ > 0 with respect to the Cygan

metric (see below). Similarly, we take q to be ∞ and Uq to be B
c

1/r ′ , the exterior of

the Cygan ball of radius 1/r ′. Given 0 < r < 1 and ǫ > 0, let S(r, ǫ) be the col-

lection of those loxodromic maps A with multiplier λ = λ(A) ∈ C − {0} satisfying
∣

∣λ − 1
∣

∣ < ǫ and with fixed points in Br and B
c

1/r . The stable basin theorem gives a

condition on ǫ = ǫ(r, r ′) that guarantees the pair (Br ′ , B
c

1/r ′) is stable with respect to

the points (o, ∞) and the set S(r, ǫ). By refining the estimates used by Basmajian and

Miner, Kamiya has given improved versions of the stable basin theorem [5, 6] which

give a larger family of loxodromic transformations under which (Br ′ , B
c

1/r ′) is stable.

In this note we improve these conditions yet further.

In order to prove a complex hyperbolic Jørgensen’s inequality we need to find a

pair of open sets that are stable only with respect to a sequence of distinct loxodromic

maps rather than with respect to an entire family (see Theorem 9.1 of [1]). Thus we

expect our conditions for the stable basin theorem to be more restrictive than those

for Jørgensen’s inequality. This is indeed the case, see Section 6 of [3].

In Figure 1 we compare the various results by plotting ǫ(r, r) from three ver-

sions of the stable basin theorem and a bound coming from the complex hyperbolic
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Figure 1: Comparing three versions of the stable basin theorem and Jørgensen’s inequality.

Jørgensen’s inequality. The lowest curve is the stable basin theorem given in [5],

Figure 2. The original curve of Basmajian and Miner would be a similar curve slightly

below this one, intersecting the ǫ-axis in the same place, namely ǫ =

√
3 −

√
2, and

meeting the r-axis at r = 1/2. The second curve is the stable basin theorem given in

[6], Figure 1. The third curve is the stable basin theorem from Theorem 3.2 below.

Finally, the top curve is the corresponding curve from Figure 3 of [3] arising from

Jørgensen’s inequality.

2 The Cygan Metric

Consider ∂H
2

C
= N∪{∞}. There is a natural metric, called the Cygan metric, on N.

This metric is given by

ρ0

(

(ζ, v), (ξ, t)
)

=

∣

∣−|ζ|2 − iv + 2ζξ − |ξ|2 + it
∣

∣

1/2

.

We want to investigate how the Cygan metric scales when we apply certain isometries

of H
2

C
. First we consider a complex dilation map fixing the origin o = (0, 0) and ∞

with multiplier λ = λ(A) ∈ C−{0}. Such a map acts on N by A(ζ, v) =

(

λζ, |λ|2v
)

.

Hence for all z ∈ N:

ρ0

(

o, A(ζ, v)
)

=

∣

∣−|λζ|2 + i|λ|2v
∣

∣

1/2

= |λ|ρ0

(

o, (ζ, v)
)

.

A loxodromic map in PU(2, 1) is a map conjugate to a complex dilation with |λ| 6= 1.

We now estimate the Cygan translation length of a complex dilation. In the proof

of the stable basin theorem this estimate will replace the dilation bound lemma of

Basmajian and Miner (Proposition 3.3 of [1]) and should be compared with Lemma

2.1 of [6].

Lemma 2.1 Suppose that A ∈ PU(n, 1) fixes o and ∞ and has complex multiplier

λ = λ(A). Then ρ0(Az, z) ≤ |λ − 1|1/2
(

|λ| + 1
) 1/2

ρ0(z, o) for all z ∈ ∂H
2

C
− {∞}.
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Proof If z = (ζ, v) then A(z) = (λζ, |λ|2v). So:

ρ0(Az, z) =

∣

∣ |λ|2(−|ζ|2 − iv) + 2λ|ζ|2 − |ζ|2 + iv
∣

∣

1/2

=

∣

∣λ
(

λ − 1
)

(−|ζ|2 − iv) −
(

λ − 1
)

(−|ζ|2 + iv)
∣

∣

1/2

≤ |λ − 1|1/2
(
∣

∣λ
∣

∣ + 1
) 1/2∣

∣−|ζ|2 + iv
∣

∣

1/2

= |λ − 1|1/2
(

|λ| + 1
) 1/2

ρ0(z, o).

This completes the proof.

Next we consider how the Cygan metric behaves when we apply elements B of

PU(2, 1) that do not fix infinity. We use a result of Kamiya in place of the uniform

Lipschitz bound of Basmajian and Miner (Theorem 5.22 of [1]). To use Kamiya’s

result we need the notion of an isometric sphere. In Proposition 1.6 of [7] it is shown

that the Cygan spheres centred at B−1(∞) are mapped to Cygan spheres centred at

B(∞). Among these there is exactly one sphere IB centred at B−1(∞) so that IB and

B(IB) have the same radius. We call IB the isometric sphere of B and denote its radius

by rB.

Lemma 2.2 (Proposition 2.4 of [5]) Let B be any element of PU(2, 1) not fixing ∞.

Then for all z, w in ∂H
2

C
− {∞, B−1(∞)} we have:

ρ0

(

B(z), B(w)
)

=

rB
2ρ0(z, w)

ρ0

(

z, B−1(∞)
)

ρ0

(

w, B−1(∞)
) ,

ρ0

(

B(z), B(∞)
)

=

rB
2

ρ0

(

z, B−1(∞)
) .

3 The Stable Basin Theorem

For a given 0 < r < 1 consider the neighbourhoods Uo = Br of o = (0, 0) and

U∞ = B
c

1/r of ∞ given by

Br = {z ∈ N ∪ {∞} : ρ0(o, z) < r} ,

B
c

1/r = {z ∈ N ∪ {∞} : ρ0(o, z) > 1/r} .

Consider the involution ι defined by

ι(ζ, v) =

(

−ζ

|ζ|2 − iv
,

−v

|ζ|4 + v2

)

,

which swaps o and ∞. It is easy to see that ρ0(o, ι(p)) = 1/ρ0(o, p) for any p ∈
N − {o}. Thus ι interchanges Br and B

c

1/r .
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Lemma 3.1 (Lemma 3.2 of [1]) Let 0 < r < 1 be fixed and let S be a set of elements

of PU(2, 1) with the following properties. Each A ∈ S should be loxodromic and fix a

point of Br and a point of B
c

1/r . Suppose also that S is closed under conjugation by ι.

Then the pair
(

Br ′ , B
c

1/r ′

)

is stable with respect to the points (o, ∞) and the family S if

and only if A(o) ∈ Br ′ for all A ∈ S.

We can now state the main theorem:

Theorem 3.2 (Stable basin theorem) Let 0 < r, r ′ < 1 be given. For any ǫ = ǫ(r, r ′)

let S(r, ǫ) be the collection of all loxodromic maps in A in PU(2, 1) so that (i) the multi-

plier λ = λ(A) satisfies
∣

∣λ − 1
∣

∣ < ǫ and (ii) A fixes a point of Br and a point of B
c

1/r .

Then the pair
(

Br ′ , B
c

1/r ′

)

is stable with respect to the points (o, ∞) and the family

S(r, ǫ) where

(1) ǫ(r, r ′) =

√
1 + (1 − r4)s2 − 1 − r2(1 − r2)s2

1 − r4s2

and s denotes r ′/r.

Proof Suppose we are given Apq fixing p ∈ Br and q ∈ B
c

1/r. Choose a map B with

B(p) = o and B(q) = ∞. Thus ρ0(o, B−1(o)) < r and ρ0(o, B−1(∞)) > 1/r. From

Lemma 2.2 we have

ρ0(o, B−1(o)) =

rB
2ρ0(o, B(o))

ρ0(o, B(∞))ρ0(B(o), B(∞))
,

ρ0(o, B−1(∞)) =

rB
2

ρ0(B(o), B(∞))
.

Hence

ρ0(o, B(o))

ρ0(o, B(∞))
=

ρ0(o, B−1(o))

ρ0(o, B−1(∞))
< r2.

The map B has been chosen so that A = BApqB−1 is a complex dilation fixing o

and ∞ with the same complex multiplier as Apq, namely λ = λ(Apq) = λ(A). A brief

computation shows that

ǫ =

√
1 + (1 − r4)s2 − 1 − r2(1 − r2)s2

1 − r4s2
<

1 − r2

r2
.

Thus when |λ − 1| < ǫ we have |λ| ≤ |λ − 1| + 1 < 1/r2 and so:

ρ0(o, B(∞)) − ρ0(o, AB(o)) >
(

1/r2 − |λ|
)

ρ0(o, B(o)) > 0.
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We now estimate ρ0

(

o, Apq(o)
)

as follows:

ρ0(o, Apq(o)) = ρ0(o, B−1AB(o))

=

rB
2ρ0(B(o), AB(o))

ρ0(B(o), B(∞))ρ0(AB(o), B(∞))

≤ rB
2
(

|λ| + 1
) 1/2|λ − 1|1/2ρ0(o, B(o))

ρ0(B(o), B(∞))
(

ρ0(o, B(∞)) − ρ0(o, AB(o))
)

=

(

|λ| + 1
) 1/2|λ − 1|1/2ρ0(o, B−1(o))ρ0(o, B(∞))

ρ0(o, B(∞)) − |λ|ρ0(o, B(o))

=

(

|λ| + 1
) 1/2|λ − 1|1/2ρ0(o, B−1(o))

1 − |λ|ρ0(o, B(o))/ρ0(o, B(∞))

<

(

|λ| + 1
) 1/2|λ − 1|1/2r

1 − |λ|r2

≤
(

|λ − 1| + 2
) 1/2|λ − 1|1/2r

1 − r2 − |λ − 1|r2
.

In order for Apq(o) to be in Br ′ it suffices to impose the condition

(

|λ − 1| + 2
) 1/2|λ − 1|1/2r

1 − r2 − |λ − 1|r2
< r ′.

Writing s = r ′/r and rearranging this is equivalent to

|λ − 1|2(1 − r4s2) + 2|λ − 1|(1 + r2(1 − r2)s2) − (1 − r2)2s2 < 0.

Solving for |λ − 1| gives

|λ − 1| <

√
1 + (1 − r4)s2 − 1 − r2(1 − r2)s2

1 − r4s2
= ǫ.

Hence Apq(o) is in Br ′ whenever |λ− 1| < ǫ. It is clear that S(r, ǫ) is mapped to itself

under conjugation by ι. Thus, using Lemma 3.1, we see that this proves the theorem.

References

[1] A. Basmajian & R. Miner, Discrete subgroups of complex hyperbolic motions. Invent. Math.
131(1998), 85–136.

[2] W. M. Goldman, Complex Hyperbolic Geometry. Oxford University Press, 1999.

https://doi.org/10.4153/CMB-2004-043-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2004-043-9


444 John R. Parker

[3] Y. Jiang, S. Kamiya & J. R. Parker, Jørgensen’s inequality for complex hyperbolic space. Geom.
Dedicata 97(2003), 55–80.
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