On the Stable Basin Theorem

John R. Parker

Abstract. The stable basin theorem was introduced by Basmajian and Miner as a key step in their necessary condition for the discreteness of a non-elementary group of complex hyperbolic isometries. In this paper we improve several of Basmajian and Miner's key estimates and so give a substantial improvement on the main inequality in the stable basin theorem.

1 Introduction

Jørgensen's inequality [4] gives a well known necessary condition for a non-elementary, two generator subgroup of $\operatorname{PSL}(2, \mathbb{C})$ to be discrete. In [1] Basmajian and Miner generalised this condition to complex hyperbolic 2-space $\mathbf{H}_{\mathbb{C}}^{2}$ and its isometry group $\operatorname{PU}(2,1)$. Their method involved first proving a result which they termed the stable basin theorem. (See Goldman's book [2] as well as the papers cited below for further information about complex hyperbolic geometry and the Heisenberg group.) Suppose that we are given a pair of points $p, q \in \partial \mathbf{H}_{\mathbb{C}}^{2}$ and neighbourhoods U_{p} and U_{q} in $\partial \mathbf{H}_{\mathbb{C}}^{2}$ of these points. Then the pair $\left(U_{p}, U_{q}\right)$ is said to be a stable with respect to the points (p, q) and a set \mathcal{S} of complex hyperbolic isometries if for all $A \in \mathcal{S}$ we have $A(p) \in U_{p}$ and $A(q) \in U_{q}$. We identify the boundary of complex hyperbolic space $\partial \mathbf{H}_{\mathbb{C}}^{2}$ with the one point compactification of the Heisenberg group $\mathcal{N} \cup\{\infty\}$. Following [1], we take p to be the origin $o=(0,0)$ in the Heisenberg group and U_{p} to be $\mathbf{B}_{r^{\prime}}$, the ball in \mathcal{N} centred at o with radius $r^{\prime}>0$ with respect to the Cygan metric (see below). Similarly, we take q to be ∞ and U_{q} to be $\overline{\mathbf{B}}_{1 / r^{\prime}}^{c}$, the exterior of the Cygan ball of radius $1 / r^{\prime}$. Given $0<r<1$ and $\epsilon>0$, let $\mathcal{S}(r, \epsilon)$ be the collection of those loxodromic maps A with multiplier $\lambda=\lambda(A) \in \mathbb{C}-\{0\}$ satisfying $|\lambda-1|<\epsilon$ and with fixed points in \mathbf{B}_{r} and $\overline{\mathbf{B}}_{1 / r}^{c}$. The stable basin theorem gives a condition on $\epsilon=\epsilon\left(r, r^{\prime}\right)$ that guarantees the pair $\left(\mathbf{B}_{r^{\prime}}, \overline{\mathbf{B}}_{1 / r^{\prime}}^{c}\right)$ is stable with respect to the points (o, ∞) and the set $\mathcal{S}(r, \epsilon)$. By refining the estimates used by Basmajian and Miner, Kamiya has given improved versions of the stable basin theorem [5, 6] which give a larger family of loxodromic transformations under which $\left(\mathbf{B}_{r^{\prime}}, \overline{\mathbf{B}}_{1 / r^{\prime}}^{c}\right)$ is stable. In this note we improve these conditions yet further.

In order to prove a complex hyperbolic Jørgensen's inequality we need to find a pair of open sets that are stable only with respect to a sequence of distinct loxodromic maps rather than with respect to an entire family (see Theorem 9.1 of [1]). Thus we expect our conditions for the stable basin theorem to be more restrictive than those for Jørgensen's inequality. This is indeed the case, see Section 6 of [3].

In Figure 1 we compare the various results by plotting $\epsilon(r, r)$ from three versions of the stable basin theorem and a bound coming from the complex hyperbolic

[^0]

Figure 1: Comparing three versions of the stable basin theorem and Jørgensen's inequality.

Jørgensen's inequality. The lowest curve is the stable basin theorem given in [5], Figure 2. The original curve of Basmajian and Miner would be a similar curve slightly below this one, intersecting the ϵ-axis in the same place, namely $\epsilon=\sqrt{3}-\sqrt{2}$, and meeting the r-axis at $r=1 / 2$. The second curve is the stable basin theorem given in [6], Figure 1. The third curve is the stable basin theorem from Theorem 3.2 below. Finally, the top curve is the corresponding curve from Figure 3 of [3] arising from Jørgensen's inequality.

2 The Cygan Metric

Consider $\partial \mathbf{H}_{C}^{2}=\mathcal{N} \cup\{\infty\}$. There is a natural metric, called the Cygan metric, on \mathcal{N}. This metric is given by

$$
\rho_{0}((\zeta, v),(\xi, t))=\left|-|\zeta|^{2}-i v+2 \bar{\zeta} \xi-|\xi|^{2}+i t\right|^{1 / 2} .
$$

We want to investigate how the Cygan metric scales when we apply certain isometries of $\mathbf{H}_{\mathbb{C}}^{2}$. First we consider a complex dilation map fixing the origin $o=(0,0)$ and ∞ with multiplier $\lambda=\lambda(A) \in \mathbb{C}-\{0\}$. Such a map acts on \mathcal{N} by $A(\zeta, v)=\left(\lambda \zeta,|\lambda|^{2} v\right)$. Hence for all $z \in \mathcal{N}$:

$$
\rho_{0}(o, A(\zeta, v))=\left.\left.\left|-|\lambda \zeta|^{2}+i\right| \lambda\right|^{2} v\right|^{1 / 2}=|\lambda| \rho_{0}(o,(\zeta, v)) .
$$

A loxodromic map in $\mathrm{PU}(2,1)$ is a map conjugate to a complex dilation with $|\lambda| \neq 1$. We now estimate the Cygan translation length of a complex dilation. In the proof of the stable basin theorem this estimate will replace the dilation bound lemma of Basmajian and Miner (Proposition 3.3 of [1]) and should be compared with Lemma 2.1 of [6].

Lemma 2.1 Suppose that $A \in \operatorname{PU}(n, 1)$ fixes o and ∞ and has complex multiplier $\lambda=\lambda(A)$. Then $\rho_{0}(A z, z) \leq|\lambda-1|^{1 / 2}(|\lambda|+1)^{1 / 2} \rho_{0}(z, o)$ for all $z \in \partial \mathbf{H}_{C}^{2}-\{\infty\}$.

Proof If $z=(\zeta, v)$ then $A(z)=\left(\lambda \zeta,|\lambda|^{2} v\right)$. So:

This completes the proof.
Next we consider how the Cygan metric behaves when we apply elements B of $\mathrm{PU}(2,1)$ that do not fix infinity. We use a result of Kamiya in place of the uniform Lipschitz bound of Basmajian and Miner (Theorem 5.22 of [1]). To use Kamiya's result we need the notion of an isometric sphere. In Proposition 1.6 of [7] it is shown that the Cygan spheres centred at $B^{-1}(\infty)$ are mapped to Cygan spheres centred at $B(\infty)$. Among these there is exactly one sphere I_{B} centred at $B^{-1}(\infty)$ so that I_{B} and $B\left(I_{B}\right)$ have the same radius. We call I_{B} the isometric sphere of B and denote its radius by r_{B}.

Lemma 2.2 (Proposition 2.4 of [5]) Let B be any element of $\mathrm{PU}(2,1)$ not fixing ∞. Then for all z, w in $\partial \mathbf{H}_{\mathbb{C}}^{2}-\left\{\infty, B^{-1}(\infty)\right\}$ we have:

$$
\begin{aligned}
\rho_{0}(B(z), B(w)) & =\frac{r_{B}^{2} \rho_{0}(z, w)}{\rho_{0}\left(z, B^{-1}(\infty)\right) \rho_{0}\left(w, B^{-1}(\infty)\right)} \\
\rho_{0}(B(z), B(\infty)) & =\frac{r_{B}^{2}}{\rho_{0}\left(z, B^{-1}(\infty)\right)}
\end{aligned}
$$

3 The Stable Basin Theorem

For a given $0<r<1$ consider the neighbourhoods $U_{o}=\mathbf{B}_{r}$ of $o=(0,0)$ and $U_{\infty}=\overline{\mathbf{B}}_{1 / r}^{c}$ of ∞ given by

$$
\begin{aligned}
\mathbf{B}_{r} & =\left\{z \in \mathcal{N} \cup\{\infty\}: \rho_{0}(o, z)<r\right\} \\
\overline{\mathbf{B}}_{1 / r}^{c} & =\left\{z \in \mathcal{N} \cup\{\infty\}: \rho_{0}(o, z)>1 / r\right\}
\end{aligned}
$$

Consider the involution ι defined by

$$
\iota(\zeta, v)=\left(\frac{-\zeta}{|\zeta|^{2}-i v}, \frac{-v}{|\zeta|^{4}+v^{2}}\right)
$$

which swaps o and ∞. It is easy to see that $\rho_{0}(o, \iota(p))=1 / \rho_{0}(o, p)$ for any $p \in$ $\mathcal{N}-\{o\}$. Thus ι interchanges \mathbf{B}_{r} and $\overline{\mathbf{B}}_{1 / r}^{c}$.

Lemma 3.1 (Lemma 3.2 of [1]) Let $0<r<1$ be fixed and let \mathcal{S} be a set of elements of $\mathrm{PU}(2,1)$ with the following properties. Each $A \in \mathcal{S}$ should be loxodromic and fix a point of \mathbf{B}_{r} and a point of $\overline{\mathbf{B}}_{1 / r}^{c}$. Suppose also that \mathcal{S} is closed under conjugation by ι. Then the pair $\left(\mathbf{B}_{r^{\prime}}, \overline{\mathbf{B}}_{1 / r^{\prime}}^{c}\right)$ is stable with respect to the points (o, ∞) and the family S if and only if $A(o) \in \mathbf{B}_{r^{\prime}}$ for all $A \in \mathcal{S}$.

We can now state the main theorem:

Theorem 3.2 (Stable basin theorem) Let $0<r, r^{\prime}<1$ be given. For any $\epsilon=\epsilon\left(r, r^{\prime}\right)$ let $\mathcal{S}(r, \epsilon)$ be the collection of all loxodromic maps in A in $\mathrm{PU}(2,1)$ so that (i) the multiplier $\lambda=\lambda(A)$ satisfies $|\lambda-1|<\epsilon$ and (ii) A fixes a point of \mathbf{B}_{r} and a point of $\overline{\mathbf{B}}_{1 / r}^{c}$. Then the pair $\left(\mathbf{B}_{r^{\prime}}, \overline{\mathbf{B}}_{1 / r^{\prime}}^{c}\right)$ is stable with respect to the points (o, ∞) and the family $\mathcal{S}(r, \epsilon)$ where

$$
\begin{equation*}
\epsilon\left(r, r^{\prime}\right)=\frac{\sqrt{1+\left(1-r^{4}\right) s^{2}}-1-r^{2}\left(1-r^{2}\right) s^{2}}{1-r^{4} s^{2}} \tag{1}
\end{equation*}
$$

and s denotes r^{\prime} / r.

Proof Suppose we are given $A_{p q}$ fixing $p \in \mathbf{B}_{r}$ and $q \in \overline{\mathbf{B}}_{1 / r}^{c}$. Choose a map B with $B(p)=o$ and $B(q)=\infty$. Thus $\rho_{0}\left(o, B^{-1}(o)\right)<r$ and $\rho_{0}\left(o, B^{-1}(\infty)\right)>1 / r$. From Lemma 2.2 we have

$$
\begin{aligned}
\rho_{0}\left(o, B^{-1}(o)\right) & =\frac{r_{B}^{2} \rho_{0}(o, B(o))}{\rho_{0}(o, B(\infty)) \rho_{0}(B(o), B(\infty))} \\
\rho_{0}\left(o, B^{-1}(\infty)\right) & =\frac{r_{B}^{2}}{\rho_{0}(B(o), B(\infty))}
\end{aligned}
$$

Hence

$$
\frac{\rho_{0}(o, B(o))}{\rho_{0}(o, B(\infty))}=\frac{\rho_{0}\left(o, B^{-1}(o)\right)}{\rho_{0}\left(o, B^{-1}(\infty)\right)}<r^{2}
$$

The map B has been chosen so that $A=B A_{p q} B^{-1}$ is a complex dilation fixing o and ∞ with the same complex multiplier as $A_{p q}$, namely $\lambda=\lambda\left(A_{p q}\right)=\lambda(A)$. A brief computation shows that

$$
\epsilon=\frac{\sqrt{1+\left(1-r^{4}\right) s^{2}}-1-r^{2}\left(1-r^{2}\right) s^{2}}{1-r^{4} s^{2}}<\frac{1-r^{2}}{r^{2}}
$$

Thus when $|\lambda-1|<\epsilon$ we have $|\lambda| \leq|\lambda-1|+1<1 / r^{2}$ and so:

$$
\rho_{0}(o, B(\infty))-\rho_{0}(o, A B(o))>\left(1 / r^{2}-|\lambda|\right) \rho_{0}(o, B(o))>0
$$

We now estimate $\rho_{0}\left(o, A_{p q}(o)\right)$ as follows:

$$
\begin{aligned}
\rho_{0}\left(o, A_{p q}(o)\right) & =\rho_{0}\left(o, B^{-1} A B(o)\right) \\
& =\frac{r_{B}^{2} \rho_{0}(B(o), A B(o))}{\rho_{0}(B(o), B(\infty)) \rho_{0}(A B(o), B(\infty))} \\
& \leq \frac{r_{B}^{2}(|\lambda|+1)^{1 / 2}|\lambda-1|^{1 / 2} \rho_{0}(o, B(o))}{\rho_{0}(B(o), B(\infty))\left(\rho_{0}(o, B(\infty))-\rho_{0}(o, A B(o))\right)} \\
& =\frac{(|\lambda|+1)^{1 / 2}|\lambda-1|^{1 / 2} \rho_{0}\left(o, B^{-1}(o)\right) \rho_{0}(o, B(\infty))}{\rho_{0}(o, B(\infty))-|\lambda| \rho_{0}(o, B(o))} \\
& =\frac{(|\lambda|+1)^{1 / 2}|\lambda-1|^{1 / 2} \rho_{0}\left(o, B^{-1}(o)\right)}{1-|\lambda| \rho_{0}(o, B(o)) / \rho_{0}(o, B(\infty))} \\
& <\frac{(|\lambda|+1)^{1 / 2}|\lambda-1|^{1 / 2} r}{1-|\lambda| r^{2}} \\
& \leq \frac{(|\lambda-1|+2)^{1 / 2}|\lambda-1|^{1 / 2} r}{1-r^{2}-|\lambda-1| r^{2}} .
\end{aligned}
$$

In order for $A_{p q}(o)$ to be in $\mathbf{B}_{r^{\prime}}$ it suffices to impose the condition

$$
\frac{(|\lambda-1|+2)^{1 / 2}|\lambda-1|^{1 / 2} r}{1-r^{2}-|\lambda-1| r^{2}}<r^{\prime}
$$

Writing $s=r^{\prime} / r$ and rearranging this is equivalent to

$$
|\lambda-1|^{2}\left(1-r^{4} s^{2}\right)+2|\lambda-1|\left(1+r^{2}\left(1-r^{2}\right) s^{2}\right)-\left(1-r^{2}\right)^{2} s^{2}<0 .
$$

Solving for $|\lambda-1|$ gives

$$
|\lambda-1|<\frac{\sqrt{1+\left(1-r^{4}\right) s^{2}}-1-r^{2}\left(1-r^{2}\right) s^{2}}{1-r^{4} s^{2}}=\epsilon
$$

Hence $A_{p q}(o)$ is in $\mathbf{B}_{r^{\prime}}$ whenever $|\lambda-1|<\epsilon$. It is clear that $\mathcal{S}(r, \epsilon)$ is mapped to itself under conjugation by ι. Thus, using Lemma 3.1, we see that this proves the theorem.

References

[1] A. Basmajian \& R. Miner, Discrete subgroups of complex hyperbolic motions. Invent. Math. 131(1998), 85-136.
[2] W. M. Goldman, Complex Hyperbolic Geometry. Oxford University Press, 1999.
[3] Y. Jiang, S. Kamiya \& J. R. Parker, Jørgensen's inequality for complex hyperbolic space. Geom. Dedicata 97(2003), 55-80.
[4] T. Jørgensen, On discrete groups of Möbius transformations. Amer. J. Math. 98(1976), 739-749.
[5] S. Kamiya, On discrete subgroups of $P U(1,2 ; \mathbb{C})$ with Heisenberg translations. J. London Math. Soc. 62(2000), 827-842.
[6] S. Kamiya \& J. R. Parker, On discrete subgroups of $P U(1,2 ; \mathbb{C})$ with Heisenberg translations II. Rev. Roumaine Math. Pures Appl. 47(2002), 687-693.
[7] J. R. Parker, Uniform discreteness and Heisenberg translations. Math. Z. 225(1997), 485-505.

Department of Mathematical Sciences,
University of Durham,
Durham DH1 3LE, England
e-mail: j.r.parker@durham.ac.uk

[^0]: Received by the editors October 2, 2002.
 AMS subject classification: 22E40, 20H10, 57 S 30 .
 (C)Canadian Mathematical Society 2004.

