VARIETY INVARIANTS FOR MODULAR LATTIGES

RUDOLF WILLE

A variety (primitive class) is a class of abstract algebras which is closed under the formation of subalgebras, homomorphic images, and products. For a given variety \mathfrak{H} we shall call a function μ^{*}, which assigns to each algebra $A \in \mathscr{H}$ a natural number or ∞, denoted by $\mu^{*}(A)$, a variety invariant if for every natural number n the class of all $A \in \mathscr{U}$ with $\mu^{*}(A) \leqq n$ is again a variety. In this paper, a general method of finding variety invariants for the variety of all modular lattices will be developed. This method will be based on the concept of a quotient tree of a modular lattice. As examples of variety invariants we shall define, using the general result, the primitive length and the primitive width of modular lattices.

We start with an arbitrary lattice L. A pair $(a, b) \in L \times L$ is called a quotient of L and denoted by a / b if $a \geqq b$. Let $Q(L)$ be the set of all quotients of L. On $Q(L)$ we define the following binary relations (let a_{1} / b_{1} and a_{2} / b_{2} be quotients of L):
(i) $a_{1} / b_{1} \triangleleft a_{2} / b_{2}$ if $a_{1} \cap b_{2}=b_{1}$ and $a_{1} \cup b_{2}=a_{2}$;
(ii) $a_{1} / b_{1} \triangleright a_{2} / b_{2}$ if $b_{1} \cap a_{2}=b_{2}$ and $b_{1} \cup a_{2}=a_{1}$;
(iii) $a_{1} / b_{1} \square a_{2} / b_{2}$ if either $a_{1} / b_{1} \triangleleft a_{2} / b_{2}$ or $a_{1} / b_{1} \triangleright a_{2} / b_{2}$; then a_{1} / b_{1} and a_{2} / b_{2} are said to be transposed;
(iv) $a_{1} / b_{1} \approx a_{2} / b_{2}$ if there are $x_{i} / y_{i} \in Q(L)$ with $i=1, \ldots, n$ such that $a_{1} / b_{1}=x_{1} / y_{1}, a_{2} / b_{2}=x_{n} / y_{n}$, and $x_{i} / y_{i} \square x_{i+1} / y_{i+1}$ for $i=1, \ldots, n-1$; then a_{1} / b_{1} and a_{2} / b_{2} are said to be projective;
(v) $a_{1} / b_{1}<a_{2} / b_{2}$ if $a_{1} \leqq b_{2}$ and $a_{1}<a_{2}$.

If we consider $Q(L)$ together with the binary relations \square and $<$, we obtain $Q(L) \equiv(Q(L), \square,<)$ as a mixed graph (i.e., a set together with one symmetric and one anti-symmetric binary relation).

Now we are able to define a quotient tree of a modular lattice L. We shall call a pair (T, τ), where $T \equiv(T, \square,<)$ is a finite mixed graph and τ a mapping from T into $Q(L)$, a quotient tree of L if the following conditions are satisfied:
(i) (T, \square) is a tree (i.e., a connected graph without circuits);
(ii) $s \tau \square t \tau$ if $s \square t$ for $s, t \in T$;
(iii) $s \tau<t \tau$ if and only if $s<t$ for $s, t \in T$;
(iv) If $a_{t} / b_{t}=t \tau$, then $a_{t} \neq b_{t}$.

[^0]Every lattice homomorphism ρ from a modular lattice K into a modular lattice L induces a graph homomorphism $\hat{\rho}$ from ($Q(K), \square$) into ($Q(L), \square)$ (define $(a / b) \hat{\rho}=a \rho / b \rho$). For quotient trees (S, σ) of K and (T, τ) of L we say that (S, σ) induces (T, τ) under ρ and write $(S, \sigma) \rho(T, \tau)$ if there is a graph isomorphism α from the tree (S, \square) onto the tree (T, \square) with $s \alpha \tau=s \sigma \hat{\rho}$ for all $s \in S$.

Lemma. Let K and L be modular lattices and ρ a lattice homomorphism from K onto L. Let (T, τ) be a quotient tree of L. Then there is a quotient tree (S, σ) of K and a graph isomorphism α from ($S, \square,<$) onto $(T, \square,<)$ such that $s \alpha \tau=s \sigma \hat{\rho}$ for all $s \in S$; in particular, (S, σ) induces (T, τ) under ρ.

Proof. We prove the lemma by induction over the cardinality of T. The case $|T|=0$ is obvious.
$|T|=1$. We have that $T \tau=\{a / b\}$. Take $c \in a \rho^{-1}$ and $d \in b \rho^{-1}$. Define $d^{\prime}=c \cap d$. It follows that $c \rho=a, d^{\prime} \rho=(c \cap d) \rho=c \rho \cap d \rho=a \cap b=b$, and $c>d^{\prime}$ since $a \neq b$. If we choose $S=T$ and $S \sigma=\left\{c / d^{\prime}\right\},(S, \sigma)$ is a quotient tree of K which has the desired properties.
$|T|=n>1$. We assume that the claim is true for every quotient tree of L with $n-1$ elements. Since (T, \square) is a tree, there exists an element $r^{*} \in T$ for which there is exactly one $r \in T$ with $r \square r^{*}$. Let T_{r} be the section graph defined by $T-\left\{r^{*}\right\}$ and τ_{τ} the restriction of τ to $T-\left\{r^{*}\right\}$. Then $\left(T_{r}, \tau_{r}\right)$ is a quotient tree of L with $n-1$ elements. Hence, there is a quotient tree $\left(S_{r}, \sigma_{\tau}\right)$ of K and a graph isomorphism α_{τ} from S_{r} onto T_{r} with $s \alpha_{r} \tau_{r}=s \sigma_{r} \hat{\rho}$ for all $s \in S_{r}$. Now we wish to extend $\left(S_{r}, \sigma_{r}\right)$ and α_{r} to the desired (S, σ) and α. By duality, we only have to consider the case $r \tau \triangleleft r^{*} \tau$. We use the notation $a_{t} / b_{t}=t \tau$ for $t \in T$ and $c_{t} / d_{t}=t \alpha_{r}^{-1} \sigma_{r}$ for $t \in T-\left\{r^{*}\right\}$. Clearly, $c_{t} \rho=a_{t}$ and $d_{t} \rho=b_{t}$. Take $d \in b_{r^{*} \rho^{-1}}$. Define $j=\bigcup\left(c_{t}: t<r^{*}\right)$ and $m=\cap\left(d_{t}: r^{*}<t\right)$. Since the relation <is transitive, we have that $j \leqq m$. Define $d_{r^{*}}=j \cup(d \cap m)$. By modularity, we also have that $d_{r^{*}}=(j \cup d) \cap m$ which shows that $j \leqq d_{r^{*}} \leqq m$. Define $d_{r^{*}}=d_{r} \cup d_{r^{*}}$ and $c_{r^{*}}=c_{r} \cup d_{r^{*^{\prime}}}$. It follows that

$$
\begin{aligned}
& d_{r^{*}} \rho=\left(d_{r} \cup j \cup(d \cap m)\right) \rho=d_{r} \rho \cup j \rho \cup\left(d_{\rho} \cap m \rho\right)= \\
& b_{r} \cup \cup\left(a_{t}: t<r^{*}\right) \cup\left(b_{r^{*}} \cap \cap\left(b_{t}: r^{*}<t\right)\right)=b_{r} \cup b_{r^{*}}=b_{r^{*}} \\
& c_{r^{*}} \rho=\left(c_{r} \cup d_{r^{*}}\right) \rho=c_{r} \rho \cup d_{r^{\prime}} \rho=a_{r} \cup b_{r^{*}}=a_{r}
\end{aligned}
$$

and $c_{r^{*}}>d_{r^{*}}$ since $a_{r^{*}} \neq b_{r^{*}}$. Since $c_{r} \leqq m$ and $d_{r^{*}} \leqq m$, we have that $c_{r^{*}} \leqq m$. The essential part of the proof would be completed if c_{r} / d_{r} and $c_{r^{*}} / d_{r^{*^{\prime}}}$ are transposed; but this need not be true. To obtain the desired quotient tree we have to change the d_{i} 's. Since (T, \square) is a tree, for each $t \in T-\left\{r^{*}\right\}$ there exists a unique element $t^{*} \in T$ such that $t \square t^{*}$, and there are $t_{0}, \ldots, t_{n} \in T$ with $t^{*}=t_{n} \square \ldots \square t_{0}=r^{*}$ and $t \neq t_{i}$ for $i=0, \ldots, n$. Now, we define by induction for $t \in T-\left\{r^{*}\right\}$:

$$
d_{t}^{\prime}= \begin{cases}c_{t} \cap d_{t^{*^{\prime}}} & \text { if } t \tau \triangleleft t^{*} \tau, \\ d_{t} \cup d_{t^{*}} & \text { if } t \tau \triangleright t^{*} \tau .\end{cases}
$$

Claim 1. $d_{t}^{\prime} \rho=b_{t}$ for $t \in T$.
Proof by induction. The case $t=r^{*}$ is already proved. Assume that $d_{t^{*} \rho}=b_{t}$ for some $t \in T$. It follows that
if $t \tau \triangleleft t^{*} \tau$, then $d_{t}^{\prime} \rho=\left(c_{t} \cap d_{t^{*}}\right) \rho=c_{t} \rho \cap d_{t^{*} \rho}=a_{t} \cap b_{t^{*}}=b_{t}$;
if $t \tau \triangleright t^{*} \tau$, then $d_{t^{\prime}} \rho=\left(d_{t} \cup d_{t^{*}}\right) \rho=d_{t} \rho \cup d_{t^{*} \rho} \rho=b_{t} \cup b_{t^{*}}=b_{t}$.
Claim 2. $d_{t}^{\prime} \geqq d_{t}$ for $t \in T$.
Proof by induction. The case $t=r^{*}$ is obvious. If $t=r$, then

$$
d_{r}^{\prime}=c_{r} \cap d_{r^{*^{\prime}}}=c_{r} \cap\left(d_{r} \cup d_{r^{*}}\right)=\left(c_{r} \cap d_{r^{*}}\right) \cup d_{r} \geqq d_{r} .
$$

Assume that $d_{t^{*}} \geqq d_{t^{*}}$ for some $t \in T$ and $t \neq r$. It follows that
if $t \tau \triangleleft t^{*} \tau$, then $d_{t}^{\prime}=c_{t} \cap d_{t^{*}} \geqq c_{t} \cap d_{t^{*}}=d_{t}$;
if $t \tau \triangleright t^{*} \tau$, then $d_{t}^{\prime}=d_{t} \cup d_{t^{*}} \geqq d_{t}$.
Claim 3. $d_{t}{ }^{\prime}<c_{t}$ for $t \in T$.
Proof by induction. The case $t=r^{*}$ is already proved. Assume that $d_{t^{*}}<c_{t^{*}}$ for some $t \in T$. It follows that
if $t \tau \triangleleft t^{*} \tau$, then $d_{t}{ }^{\prime}=c_{t} \cap d_{t^{*}} \leqq c_{t}$;
if $t \tau \triangleright t^{*} \tau$, then $d_{t}^{\prime}=d_{t} \cup d_{t^{*}} \leqq d_{t} \cup c_{t^{*}}=c_{t}$.
Since $c_{t} \rho=a_{t}, d_{t}^{\prime} \rho=b_{t}$ by Claim 1 and $a_{t} \neq b_{t}$, we have that $c_{t} \neq d_{t}^{\prime}$ for $t \in T$.

Claim 4. $c_{t} / d_{t}^{\prime} \square c_{t^{*}} / d_{i^{*}}$ for $t \in T-\left\{r^{*}\right\}$.
Proof. If $t=r$, then $c_{t} \cap d_{t^{*}}=d_{t}^{\prime}$ and $c_{t} \cup d_{t^{*}}=c_{t}$ by definition. Take $t \neq r$. It follows that
if $t \tau \triangleleft t^{*} \tau$, then

$$
c_{t} \cap d_{t^{*^{\prime}}}=d_{t}^{\prime} \quad \text { and } \quad c_{t} \cup d_{t^{*^{\prime}}}=c_{t} \cup d_{t^{*}} \cup d_{t^{*^{\prime}}}=c_{t^{*}} \cup d_{t^{*^{\prime}}}=c_{t^{*}}
$$

if $t \tau \triangleright t^{*} \tau$, then

$$
d_{t}^{\prime} \cap c_{t^{*}}=\left(d_{t} \cup d_{t^{*}}\right) \cap c_{t^{*}}=d_{t^{*}} \cup\left(d_{t} \cap c_{t^{*}}\right)=d_{t^{*}} \cup d_{t^{*}}=d_{t^{*}}
$$

and $d_{t}^{\prime} \cup c_{t^{*}}=d_{t} \cup d_{i^{*}} \cup c_{i^{*}}=d_{t} \cup c_{i^{*}}=c_{i}$.
Claim 5. $a_{t_{1}} \leqq b_{t_{2}}$ if and only if $c_{t_{1}} \leqq d_{t_{2}}{ }^{\prime}$ for $t_{1}, t_{2} \in T$.
Proof. Since $a_{t_{1}} \leqq b_{t_{2}}$ implies $c_{t_{1}} \leqq d_{t_{2}}$ for $t_{1}, t_{2} \in T$, it follows by Claim 2 that $a_{t_{1}} \leqq b_{t_{2}}$ implies $c_{t_{1}} \leqq d_{t_{2}}{ }^{\prime}$ for $t_{1}, t_{2} \in T$. The converse is also true since $c_{t} \rho=a_{t}$ and $d_{t}^{\prime} \rho=b_{t}$ by Claim 1 for all $t \in T$.

Now we are ready to state the quotient tree (S, σ) and the graph isomorphism α. Define $S=S_{r} \cup\left\{r^{*}\right\}, r^{*} \alpha=r^{*}$ and $s \alpha=s \alpha_{r}$ for $s \in S_{r}$. Extend $\left(S_{r}, \square,<\right)$ to $(S, \square,<)$ in such a way that α becomes an isomorphism from $(S, \square,<)$ onto ($T, \square,<$). Then we define $s \sigma=c_{s \alpha} / d_{s \alpha}$ ' for $s \in S$. Claims 3, 4, and 5 imply that (S, σ) is a quotient tree of K. But we also have that $s \alpha \tau=s \sigma \hat{\rho}$ for all $s \in S$ by Claim 1 . Thus, the proof of the lemma is complete.

We shall call a function μ which assigns to each quotient tree (T, τ) a natural number $\mu(T, \tau)$ a QT-invariant if
(i) $(S, \square,<) \cong(T, \square,<)$ implies $\mu(S, \sigma)=\mu(T, \tau)$;
(ii) $(S, \sigma) \rho(T, \tau)$ implies $\mu(S, \sigma) \leqq \mu(T, \tau)$.

We shall call μ a QT*-invariant if
(ii*) $(S, \sigma) \rho(T, \tau)$ implies $\mu(S, \sigma)=\mu(T, \tau)$.
Theorem. Let μ be a QT- or a QT*-invariant. For every modular lattice L we define $\mu^{*}(L)=\sup \{\mu(T, \tau):(T, \tau)$ quotient tree of $L\}$. Then μ^{*} is a variety invariant of the variety of all modular lattices.
Proof. Let L be a sublattice of the modular lattice K. Since every quotient tree of L can be considered as a quotient tree of K, we have that $\mu^{*}(L) \leqq \mu^{*}(K)$. Let L be a homomorphic image of the modular lattice K and (T, τ) a quotient tree of L. By the lemma there is a quotient tree (S, σ) of K such that $(S, \square,<) \cong(T, \square,<)$ and $(S, \sigma) \rho(T, \tau)$. Hence, $\mu(S, \sigma)=\mu(T, \tau)$. Therefore, we have that $\mu^{*}(L) \leqq \mu^{*}(K)$. Let L be the product of the modular lattices K_{ω} with $\omega \in \Omega$ and (T, τ) a quotient tree of L. Then there is a projection $\pi_{\omega_{0}}: L \rightarrow K_{\omega_{0}}$ such that $t \tau \hat{\pi}_{\omega_{0}}=a_{t} / b_{t}$ implies that $a_{t} \neq b_{t}$ for $t \in T$. Extend $(T, \square,<)$ to $\left(T_{0}, \square_{0},<_{0}\right)$, leaving $(T, \square)=\left(T_{0}, \square_{0}\right)$, such that $\left(T_{0}, \tau \hat{\pi}_{\omega_{0}}\right)$ becomes a quotient tree of $K_{\omega_{0}}$. Obviously, $(T, \tau) \pi_{\omega_{0}}\left(T_{0}, \tau \hat{\pi}_{\omega_{0}}\right)$. Hence, $\mu(T, \tau) \leqq \mu\left(T_{0}, \tau \hat{\pi}_{\omega_{0}}\right)$. Thus, for every quotient tree (T, τ) of L there is an $\omega \in \Omega$ and a quotient tree $\left(T_{\omega}, \tau_{\omega}\right)$ of K_{ω} with $\mu(T, \tau) \leqq \mu\left(T_{\omega}, \tau_{\omega}\right)$. All together, this shows that the class of all modular lattices L with $\mu^{*}(L) \leqq n$ for a natural number n is closed under the formation of sublattices, homomorphic images and products. Therefore, μ^{*} is a variety invariant of the variety of all modular lattices.

Examples. (i) For a quotient tree (T, τ), the length $\lambda(T, \tau)$ is defined as the maximal cardinality of an index set I such that there are $t_{i} \in T(i \in I)$ with $t_{i}<t_{j}$ or $t_{j}<t_{i}$ for $i, j \in I$ and $i \neq j$. Clearly, $(S, \square,<) \cong(T, \square,<)$ implies that $\lambda(S, \sigma)=\lambda(T, \tau)$. But we also have that $(S, \sigma) \rho(T, \tau)$ implies that $\lambda(S, \sigma) \leqq \lambda(T, \tau)$ since $\sigma \hat{\rho}$ preserves the relation $<$. Therefore, λ is a QT-invariant. For every modular lattice L let us define the primitive length $\lambda^{*}(L)=\sup \{\lambda(T, \tau):(T, \tau)$ a quotient tree of $L\}$. Then, by the theorem, the primitive length of modular lattices is a variety invariant. Obviously, the primitive length of a modular lattice L is the supremum of all numbers n such that there are $a_{i} / b_{i} \in Q(L)(1 \leqq i \leqq n)$ with

$$
a_{i} / b_{i}<a_{i+1} / b_{i+1} \quad \text { and } \quad a_{i} / b_{i} \approx a_{i+1} / b_{i+1}
$$

for $i=1, \ldots, n-1$. For a simple modular lattice of finite length (in this case, every two prime quotients are projective), the length and the primitive length coincide.
(ii) For a quotient tree (T, τ), the width $\omega(T, \tau)$ is defined as the maximal cardinality of an index set I such that there are $s_{i j}, t_{i j} \in T(i, j \in I$ and $i \neq j)$ with $s_{i j} \square t_{j i}$ and $s_{i j}<t_{i k}$ for $i, j, k \in I$. It easily follows that ω is a QT-
invariant. For every modular lattice L let us define the primitive width $\omega^{*}(L)=\sup \{\omega(T, \tau):(T, \tau)$ a quotient tree of $L\}$. Then, by the theorem, the primitive width of modular lattices is a variety invariant. For the lattice $L_{n}(3 \leqq n<\infty)$ of subspaces of a projective line P_{n} with n points p_{1}, \ldots, p_{n} we obtain $\omega^{*}\left(L_{n}\right)=n$; the following quotient tree (T, τ) of L_{n} has width n :

$$
T=\left\{s_{i j}: 1 \leqq i, j \leqq n \quad \text { and } \quad i \neq j\right\} \cup\left\{t_{i j}: 1 \leqq i, j \leqq n \quad \text { and } \quad i \neq j\right\}
$$

$s_{i j} \square t_{j i}, s_{12} \square t_{i j}$ for $2 \leqq i \leqq n, s_{23} \square t_{1 j}, s_{i j}<t_{i k}, s_{i j} \tau=p_{i} / \emptyset$ and $t_{i j} \tau=$ P_{n} / p_{i}. Conversely, let (T, τ) be a quotient tree of L_{n} with the desired $s_{i j}, t_{i j} \in T$ ($i, j \in I$ and $i \neq j$); then $s_{i j} \tau=s_{k l} \tau\left(t_{i j} \tau=t_{k l} \tau\right.$, respectively) if and only if $i=k$; hence, $|I| \leqq n$, and therefore $\omega(T, \tau) \leqq n$.

References

1. P. M. Cohn, Universal algebra (Harper and Row, New York-London, 1965).
2. F. Maeda, Kontinuierliche Geometrien (Springer-Verlag, Berlin, 1958).
3. O. Ore, Theory of graphs, Amer. Math. Soc. Colloq. Publ., Vol. 38 (Amer. Math. Soc., Providence, R.I., 1962).

Mathematisches Institut der Universität Bonn, Wegelerstr., Germany

[^0]: Received July 24, 1967. The author gratefully acknowledges partial support by a Postdoctoral Fellowship held at McMaster University and provided by Operating Grant No. A-2976 of the National Research Council of Canada.

