K-THEORETIC CLASSIFICATION FOR INDUCTIVE LIMIT Z_{2} ACTIONS ON AF ALGEBRAS

GEORGE A. ELLIOTT AND HONGBING SU

Abstract

In this paper a K-theoretic classification is given of the C^{*}-dynamical systems $\lim _{\rightarrow}\left(A_{n}, \alpha_{n}, Z_{2}\right)$ where A_{n} is finite-dimensional. Corresponding to the trivial action is the K-theoretic classification for AF algebras obtained in [3] (also see [1]).

1. Introduction. Let G be a compact group, let $A=\lim , A_{n}$ be the inductive limit of a sequence of finite-dimensional C^{*}-algebras, and let $\alpha=\lim \alpha_{n}$ be an inductive limit action of G on A, with α_{n} acting on A_{n}. Then one can form the C^{*}-algebra crossed product $A \times_{\alpha} G=\lim \rightarrow A_{n} \times_{\alpha_{n}} G$. In [5], it was shown that if each α_{n} arises from a representation of G in the unitary group $U\left(A_{n}\right)$ of A_{n}, then the natural K-theory data of $A \times{ }_{\alpha} G$ is a complete invariant for the C^{*}-dynamical system (A, α, G). In the case that A is unital, this data consists of the K-group $K_{0}\left(A \times_{\alpha} G\right)$, together with (i) the natural order structure, (ii) the special element coming from the projection obtained by averaging the canonical unitaries of the crossed product, and (iii) the natural module structure over representation ring $K_{0}(G)$ (also see [4], [2] and [6]).

In this note, we shall show that one has a similar K-theoretic classification result if one removes the restriction on α_{n}, but restricts attention to the group $Z / 2 Z$. Let us denote this group by Z_{2}. Since α_{n} may not be inner, the information contained in $K_{0}(A)$ may not be recovered completely from $K_{0}\left(A \times_{\alpha} Z_{2}\right)$. One needs to adjoin this, as well as the actions on the K-groups, to the invariant.

More precisely, let A be a unital C^{*}-algebra and let α be a Z_{2} action on A. There is a canonical embedding of A into $A \times{ }_{\alpha} Z_{2}$. There is also a dual action of \hat{Z}_{2} on $A \times{ }_{\alpha} Z_{2}$. The K-theory data we need here is the following:
(i) $\left(K_{0}(A), K_{0}(A)^{+},\left[1_{A}\right], \alpha_{*}\right)$,
(ii) $\left(K_{0}\left(A \times_{\alpha} Z_{2}\right), K_{0}\left(A \times_{\alpha} Z_{2}\right)^{+}\right.$, the special element, $\left.\hat{\alpha}_{*}\right)$, and
(iii) the map $K_{0}(A) \rightarrow K_{0}\left(A \times_{\alpha} Z_{2}\right)$.
2. Order two actions on finite-dimensional C^{*}-algebras. Let A be a finite-dimensional C^{*}-algebra and let α be an order two automorphism of A. Write $A=\oplus_{k=1}^{m} M_{n_{k}}$. Then $\alpha\left(M_{n_{k}}\right)$ is another summand of A. So α can be decomposed into a direct sum of irreducible actions. Each such action β has the form $\left(M_{n}, \beta\right)$ or $\left(M_{n} \oplus M_{n}, \beta\right)$. Let (A, α) be irreducible. There are two possible cases. We gather some simple facts.

CASE 1. $A=M_{n}$.

In this case, α is determined by an order two unitary $V \in M_{n}$:

$$
\alpha(a)=V a V^{*}, \quad a \in A .
$$

V can be chosen to be diagonal. It is well known that $A \times{ }_{\alpha} Z_{2}$ is isomorphic to $M_{n} \oplus M_{n}$, and we will use the identification:

$$
a+b U_{\alpha} \longrightarrow\left(a+b V, a-b V^{*}\right), \quad a, b \in A
$$

where U_{α} is the canonical unitary in the crossed product.
If one identifies $K_{0}(A)$ with Z and identifies $K_{0}\left(A \times_{\alpha} Z_{2}\right)$ with Z^{2}, the map from $K_{0}(A)$ to $K_{0}\left(A \times{ }_{\alpha} Z_{2}\right)$ sends x to (x, x). The special element in $K_{0}\left(A \times_{\alpha} Z_{2}\right)$ is (x, y) in Z^{2} where x is the number of the positive eigenvalues of V and y is the number of the negative eigenvalues of $V . \alpha_{*}$ is of course trivial. In general, $\hat{\alpha}\left(a+b U_{\alpha}\right)=a-b U_{\alpha}$. Hence, $\hat{\alpha_{*}}$ permutes the two copies of Z in $K_{0}\left(A \times_{\alpha} Z_{2}\right)$.

CASE 2. $A=M_{n} \oplus M_{n}$.
There must exist a unitary $U \in M_{n}$ such that

$$
\alpha(a, b)=\left(U b U^{*}, U^{*} a U\right), \quad(a, b) \in A
$$

This action is equivalent to permuting the two components. In another word, we can take $U=1$. The C^{*}-algebra crossed product is $M_{2 n}$ and the identification is

$$
\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right) U_{\alpha} \longrightarrow\left(\begin{array}{cc}
a_{1} & b_{1} \\
U b_{2} U^{*} & U a_{2} U^{*}
\end{array}\right)
$$

Hence, $\hat{\alpha}$ can be identified with $\operatorname{Ad}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
If one identifies $K_{0}(A)$ with Z^{2} and identifies $K_{0}\left(A \times_{\alpha} Z_{2}\right)$ with Z, the map from $K_{0}(A)$ to $K_{0}\left(A \times_{\alpha} Z_{2}\right)$ will send (x, y) to $x+y$. The automorphism α_{*} is the permutation and $\hat{\alpha_{*}}$ is trivial. The special element is n.

3. Existence.

THEOREM 3.1. Let $\left(A, \alpha, Z_{2}\right)$ and $\left(B, \beta, Z_{2}\right)$ be two irreducible C^{*}-dynamical systems. Let F be an order preserving group homomorphism from $\left(K_{0}(A),\left[1_{A}\right], \alpha_{*}\right)$ to $\left(K_{0}(B),\left[1_{B}\right], \beta_{*}\right)$. Let ϕ be an order preserving group homomorphism from $\left(K_{0}\left(A \times{ }_{\alpha} Z_{2}\right), \hat{\alpha_{*}}\right)$ to $\left(K_{0}\left(B \times{ }_{\beta} Z_{2}\right), \hat{\beta_{*}}\right)$ preserving the special elements. Then there exists a morphism ψ from $\left(A, \alpha, Z_{2}\right)$ to $\left(B, \beta, Z_{2}\right)$ such that $\psi_{*}=F$ and such that the extension of ψ to $A \times_{\alpha} Z_{2}$ induces ϕ.

Proof. There are four cases to be considered.
CASE 1. $A=M_{k}$ and $B=M_{n}$.
Let $U \in M_{k}$ and $V \in M_{n}$ be two unitaries determining α and β, respectively. Denote by (\bar{x}, \bar{y}) and (x, y) the number of positive eigenvalues and negative eigenvalues of U and V, respectively.

Clearly, $F=n / k$. Since ϕ intertwines $\hat{\alpha_{*}}$ and $\hat{\beta_{*}}, \phi$ can be represented by $\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$. By the assumption on the special elements, one has

$$
(a \bar{x}+b \bar{y}, b \bar{x}+a \bar{y})=(x, y)
$$

This gives

$$
n=x+y=(a+b)(\bar{x}+\bar{y})=(a+b) k
$$

Set $\epsilon_{1}=\epsilon_{2}=\cdots=\epsilon_{b}=-I_{k} \in A$ and set $\epsilon_{b+1}=\cdots=\epsilon_{a+b}=I_{k} \in A$. Then $\epsilon=\operatorname{diag}\left(\epsilon_{1}, \ldots, \epsilon_{a+b}\right)$ is in B. Furthermore, ϵ commutes with $\operatorname{diag}(z, \ldots, z), a+b$ copies of $z \in A$. Since $\operatorname{diag}(U, \ldots, U)$ has $(a+b) \bar{x}$ positive eigenvalues, $\operatorname{diag}(U, \ldots, U) \epsilon$ has

$$
(a+b) \bar{x}-b \bar{x}+b \bar{y}=x
$$

positive eigenvalues. Similarly, it has y negative eigenvalues.
Since V and $\operatorname{diag}(U, \ldots, U) \epsilon$ have the same eigenvalues, there exists a unitary $W \in M_{n}$ such that $W^{*} V W=\operatorname{diag}(U, \ldots, U) \epsilon$, and for $a \in A$,

$$
\left[\begin{array}{ccc}
U & & \\
& \ddots & \\
& & U
\end{array}\right]^{*} W^{*} V W\left[\begin{array}{lll}
a & & \\
& \ddots & \\
& & a
\end{array}\right]=\left[\begin{array}{lll}
a & & \\
& \ddots & \\
& & a
\end{array}\right]\left[\begin{array}{lll}
U & & \\
& \ddots & \\
& & U
\end{array}\right]^{*} W^{*} V W
$$

This is to say that the map ψ from A to B defined by:

$$
\psi(a)=W\left[\begin{array}{lll}
a & & \\
& \ddots & \\
& & a
\end{array}\right] W^{*}, \quad a \in A,
$$

intertwines α and β.
As we pointed out, $\psi_{*}=F$. Let $\tilde{\psi}$ be the map from $A \times{ }_{\alpha} Z_{2}$ to $B \times{ }_{\beta} Z_{2}$ induced by ψ. A direct computation shows that $\tilde{\psi}_{*}=\phi$.

CASE 2. $A=M_{k} \oplus M_{k}$ and $B=M_{n}$.
Let $U \in M_{k}$ and $V \in M_{n}$ be unitaries determining α and β, respectively. Identify $K_{0}(B)$ and $K_{0}\left(A \times_{\alpha} Z_{2}\right)$ with Z and identify $K_{0}(A)$ and $K_{0}\left(B \times_{\beta} Z_{2}\right)$ with $Z^{2} . F$ can be identified with (a, b) and ψ can be identified with $\binom{c}{d}$. Since F intertwines α_{*} and β_{*}, $a=b$. Since ϕ intertwines $\hat{\alpha}_{*}$ and $\hat{\beta}_{*}, c=d$. Let (x, y) denote the special element of $K_{0}\left(B \times{ }_{\beta} Z_{2}\right)$ from Section 2 it follows that k is the special element of $K_{0}\left(A \times{ }_{\alpha} Z_{2}\right)$. Hence,

$$
\binom{c}{d} k=\binom{x}{y} .
$$

This gives us $n=2 a=2 c k$, and $x=y$.
Consider the unitary N in M_{n} defined as follows:

$$
N=\left[\begin{array}{lll}
& & \\
& & \\
{\left[\begin{array}{llll}
U & & \\
& \ddots & \\
& & U
\end{array}\right]^{*}} & & \\
& & \\
& & \\
\end{array}\right]
$$

Clearly, N has $\frac{n}{2}$ positive eigenvalues and $\frac{n}{2}$ negative eigenvalues. There exists a unitary $W \in M_{n}$ such that $W^{*} V W=N$.

For $\left(a_{1}, a_{2}\right) \in A$, set

$$
\psi\left(a_{1}, a_{2}\right)=W\left[\begin{array}{llll}
{\left[\begin{array}{lll}
a_{1} & & \\
& \ddots & \\
& & a_{1}
\end{array}\right]} & & & \\
& & & {\left[\begin{array}{lll}
a_{2} & & \\
& \ddots & \\
& & \\
& & a_{2}
\end{array}\right]}
\end{array}\right] W^{*} .
$$

Then ψ is a morphism from $\left(A, \alpha, Z_{2}\right)$ to $\left(B, \beta, Z_{2}\right)$.
It is clear that $\psi_{*}=F$. Let $\tilde{\psi}$ be the map from $A \times{ }_{\alpha} Z_{2}$ to $B \times_{\beta} Z_{2}$ induced by $\psi . \tilde{\psi}_{*}$ maps Z^{2} to Z and $\tilde{\psi}_{*}$ intertwines $\hat{\alpha}_{*}$ and $\hat{\beta}_{*}$. Hence, $\tilde{\psi}_{*}$ is necessarily ϕ.

CASE 3. $A=M_{k}$ and $B=M_{n} \oplus M_{n}$.
Let $U \in M_{k}$ and $V \in M_{n}$ determine α and β, respectively. Identify $K_{0}(A)$ and $K_{0}\left(B \times_{\beta}\right.$ Z_{2}) with Z and identify $K_{0}\left(A \times_{\alpha} Z_{2}\right)$ and $K_{0}(B)$ with Z^{2}. One can write $F=\binom{a}{b}$ and $\phi=(c, d)$. Since these maps intertwine corresponding actions, $a=b$ and $c=d$. Again, denote the special elements of $K_{0}\left(A \times_{\alpha} Z_{2}\right)$ and $K_{0}\left(B \times_{\beta} Z_{2}\right)$ by (\bar{x}, \bar{y}) and n. Then one has

$$
c k=c \bar{x}+c \bar{y}=n .
$$

Define a map ψ from A to B as follows: for $\xi \in A$

$$
\psi(\xi)=\left(\psi_{1}(\xi), \psi_{2}(\xi)\right)
$$

where

$$
\begin{gathered}
\psi_{1}(\xi)=\left(\left[\begin{array}{lll}
\xi & & \\
& \ddots & \\
& & \xi
\end{array}\right]\right. \\
\psi_{2}(\xi)=\operatorname{Ad} V^{*}\left(\left[\begin{array}{lll}
U & & \\
& \ddots & \\
& & U
\end{array}\right]\right) \psi_{1}(\xi)
\end{gathered}
$$

Then it is readily checked that $\psi \circ \alpha=\beta \circ \psi$. It is also clear that $\psi_{*}=F$. With $\tilde{\psi}$ the map from $A \times_{\alpha} Z_{2}$ to $B \times_{\beta} Z_{2}$ induced by ξ, $\tilde{\psi}_{*}$ maps Z^{2} to Z. Since $\tilde{\psi}_{*}$ intertwines $\hat{\alpha}_{*}$ and $\tilde{\beta}_{*}, \tilde{\psi}_{*}=\phi$.

CASE 4. $A=M_{k} \oplus M_{k}$ and $B=M_{n} \oplus M_{n}$.
Let $U \in M_{k}$ and $V \in M_{n}$ determine α and β, respectively. One can take U and V to be I_{k} and I_{n}, respectively. F can be written as $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Since $F \circ \alpha_{*}=\beta_{*} \circ F$, we have $a=d$ and $b=c$.

Define a map ψ from A to B by

$$
\psi\left(a_{1}, a_{2}\right)=\left(\psi_{1}\left(a_{1}, a_{2}\right), \psi_{2}\left(a_{1}, a_{2}\right)\right)
$$

where

$$
\begin{aligned}
& \psi_{1}\left(a_{1}, a_{2}\right)=\left[\begin{array}{llll}
{\left[\begin{array}{lll}
a_{1} & & \\
& \ddots & \\
& & a_{1}
\end{array}\right]_{d \times d}} & & & \\
& & & {\left[\begin{array}{lll}
a_{2} & & \\
& \ddots & \\
& & \\
\psi_{2}\left(a_{1}, a_{2}\right)
\end{array}\right]_{c \times c}}
\end{array}\right] \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Then ψ is a morphism from (a, α) to (B, β) and ψ induces F and ϕ.
Theorem 3.2. Let $\left(A, \alpha, Z_{2}\right)$ and $\left(B, \beta, Z_{2}\right)$ be two C^{*}-dynamical systems. Let F be an order preserving group homomorphism from $\left(K_{0}(A),\left[1_{A}\right], \alpha_{*}\right)$ to $\left(K_{0}(B),\left[1_{B}\right], \beta_{*}\right)$. Let ϕ be an order preservinggroup homomorphism from $\left(K_{0}\left(A \times{ }_{\alpha} Z_{2}\right)\right.$, $\left.\tilde{\alpha}_{*}\right)$ to $\left(K_{0}\left(B \times{ }_{\beta} Z_{2}\right), \tilde{\beta}_{*}\right)$, mapping the special element to the special element. Assume further that the following diagram commutes:

$$
\begin{array}{ccc}
K_{0}(A) & \longrightarrow & K_{0}\left(A \times_{\alpha} Z_{2}\right) \\
F \mid & & \mid \downarrow \\
K_{0}(B) & \longrightarrow & K_{0}\left(B \times_{\beta} Z_{2}\right)
\end{array} .
$$

Then there exists a morphism ψ from $\left(A, \alpha, Z_{2}\right)$ to $\left(B, \beta, Z_{2}\right)$ such that $\psi_{*}=F$ and such that the map induced by ψ from $A \times{ }_{\alpha} Z_{2}$ to $B \times{ }_{\beta} Z_{2}$ gives rise to ϕ.

Proof. Clearly, we may assume that $\left(B, \beta, Z_{2}\right)$ is irreducible and the unitary, say λ, implementing β is diagonal. Write $\left(A, \alpha, Z_{2}\right)=\left(A_{1}, \alpha_{1}, Z_{2}\right) \oplus\left(A_{2}, \alpha_{2}, Z_{2}\right)$. We will reduce the theorem to the case that $\left(A, \alpha, Z_{2}\right)=\left(A_{i}, \alpha_{i}, Z_{2}\right)$.

CASE 1. $B=M_{n}$.
Denote by (x, y) the special element of $K_{0}\left(B \times_{\beta} Z_{2}\right)$. Then

$$
\phi=\left(\left[\frac{1+U_{\alpha_{1}}}{2}\right],\left[\frac{1+U_{\alpha_{2}}}{2}\right]\right)=(x, y) .
$$

Define $\left(x_{i}, y_{i}\right), i=1,2$, as follows:

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)=\phi\left(\left[\frac{1+U_{\alpha_{1}}}{2}\right], 0\right) \\
& \left(x_{2}, y_{2}\right)=\phi\left(0,\left[\frac{1+U_{\alpha_{2}}}{2}\right]\right) .
\end{aligned}
$$

Let $P \in M_{n}$ be a diagonal projection such that $P \lambda P$ has x_{1} positive eigenvalues and y_{1} negative eigenvalues. Clearly, P commutes with λ. Hence, $\left(P B P, \operatorname{Ad}(P \lambda P), Z_{2}\right)$ is a dynamical system. Similarly, if one sets $Q=1-P$, then $\left(Q B Q, \operatorname{Ad}(Q \lambda Q), Z_{2}\right)$ is also a dynamical system. Furthermore, the embedding of $P B P$ into B, say i_{P}, and the embedding of $Q B Q$ into B, say i_{Q}, are equivariant. We shall denote the two dynamical systems by $\left(P B P, \beta_{1}\right)$ and $\left(Q B Q, \beta_{2}\right)$, respectively.

It is clear that $K_{0}\left(P B P \times{ }_{\beta_{1}} Z_{2}\right)=Z^{2}$. Furthermore, if one denotes the extension of i_{P} to $P B P \times_{\beta_{1}} Z_{2}$ by \tilde{i}_{P}, then for $a+U_{\beta_{1}} \in P B P \times \times_{\beta_{1}} Z_{2}$,

$$
\tilde{i}_{P *}\left(a+b U_{\beta_{1}}\right)=i_{P}(a)+i_{P}(b) U_{\beta} .
$$

So

$$
\tilde{i}_{P_{*}([e])}=[e], \quad[e] \in K_{0}\left(P B P \times_{\beta_{1}} Z_{2}\right) .
$$

In other words, $\tilde{i}_{P *}$ is the identity map on Z^{2}. Similarly, one can define \tilde{i}_{Q}, and $\tilde{i}_{Q *}$ and they are the identity maps on Z^{2}. Hence, we have the following diagram:

Furthermore, the two rows in the diagram respect the corresponding actions, respectively. By this diagram, we can define two maps from $K_{0}\left(A_{1} \oplus 0\right)$ to $K_{0}(P B P)$ and from $K_{0}\left(A_{1} \oplus\right.$ $0 \times_{\alpha_{1} \oplus \alpha_{2}} Z_{2}$) to $K_{0}\left(P B P \times_{\beta_{1}} Z_{2}\right)$, respectively. ($P B P, \beta$) was constructed to satisfy the conditions of the Theorem 3.2 for $\left(A_{1}, \alpha_{1}\right)$ and $\left(P B P, \beta_{1}\right)$. So by applying the Theorem 3.1 and the induction, we obtain a unital $*$-homomorphism ψ_{1} from $\left(A_{1}, \alpha_{1}\right)$ to $\left(P B P, \beta_{1}\right)$ to realize the K-theory data associated with these two C^{*}-dynamical systems.

Similarly, there is a unital $*$-homomorphism ψ_{2} from $\left(A_{2}, \alpha_{2}\right)$ to $\left(Q B Q, \beta_{2}\right)$ to realize the K-theory data associated with these two C^{*}-dynamical systems. Now $\psi=i_{p} \circ \psi_{1}+$ $i_{Q} \circ \psi_{2}$ is a desired map.

CASE 2. $B=M_{n} \oplus M_{n}$.
Using the same argument as above, one shows that the theorem can be reduced to the case that (A, α) is irreducible.

This completes the proof of the theorem.

4. Uniqueness.

Theorem 4.1. Let ϕ and ψ be two morphisms from $\left(A, \alpha, Z_{2}\right)$ to $\left(B, \beta, Z_{2}\right)$. Suppose that both (A, α) and (B, β) are irreducible. Denote by $\tilde{\phi}$ and $\tilde{\psi}$ the maps from $A \times_{\alpha} Z_{2}$ to $B \times{ }_{\beta} Z_{2}$ induced by ϕ and ψ, respectively. If $\phi_{*}=\psi_{*}$ and if $\tilde{\phi}_{*}=\tilde{\psi}_{*}$, then there exists a unitary $U \in B^{\beta}$, the fixed point subalgebra of B, such that $\phi=\operatorname{Ad} U \circ \psi$.

Proof. Again there are four cases to be considered.
Case 1. $A=M_{k}$ and $B=M_{n}$.

Let $U \in M_{k}$ and $V \in M_{n}$ be two unitaries that implement α and β, respectively. Let X and Y be two unitaries in B such that

$$
\begin{aligned}
& \phi(a)=X\left[\begin{array}{lll}
a & & \\
& \ddots & \\
& & a
\end{array}\right] X^{*}, \quad a \in A, \\
& \psi(a)=Y\left[\begin{array}{lll}
a & & \\
& \ddots & \\
& & a
\end{array}\right] Y^{*}, \quad a \in A .
\end{aligned}
$$

Since both maps are equivariant, one has two order two unitaries

$$
\begin{aligned}
& L=X^{*} V^{*} X\left[\begin{array}{lll}
U & & \\
& \ddots & \\
& & U
\end{array}\right], \\
& N=Y^{*} V^{*} Y\left[\begin{array}{lll}
U & & \\
& \ddots & \\
& & U
\end{array}\right],
\end{aligned}
$$

in the commutant of the following algebra:

$$
\left\{\left.\left[\begin{array}{ccc}
a & & \\
& \ddots & \\
& & a
\end{array}\right] \in B \right\rvert\, a \in A\right\} \cong 1_{k} \otimes M_{\frac{n}{k}}
$$

Let S and R be two unitaries in $1_{k} \otimes M_{\frac{n}{k}}$ such that

$$
\begin{aligned}
& S L S^{*}=1_{k} \otimes\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{\frac{n}{k}} \\
R N R^{*}=1_{k} \otimes\left[\begin{array}{lll}
\xi_{1} & & \\
& \ddots & \\
& & \xi_{\frac{n}{k}}
\end{array}\right] .
\end{array} . .=\right.\text {. }
\end{aligned}
$$

Clearly, $\left\{\lambda_{i}\right\}_{i=1}^{\frac{n}{k}}$ and $\left\{\xi_{i}\right\}_{i=1}^{\frac{n}{k}}$ are ones or negative ones.
Identify $A \times{ }_{\alpha} Z_{2}$ with $M_{k} \oplus M_{k}$ and identify $B \times{ }_{\beta} Z_{2}$ with $M_{k} \oplus M_{k}$. Then for $a, b \in A$

$$
\tilde{\phi}(a+b U, a-b U)=(\phi(a)+\phi(b) V, \phi(a)-\phi(b) V) .
$$

A direct computation shows that

$$
\tilde{\phi}(I, 0)=X S^{*}\left(I+\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{\frac{n}{k}}
\end{array}\right], I-\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{\frac{n}{k}}
\end{array}\right]\right) S X^{*} .
$$

Write $\tilde{\phi_{*}}=\left[\begin{array}{ll}c & d \\ d & c\end{array}\right]$. Then c and d are the ranks of

$$
\frac{1}{2}\left(I+\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{\frac{n}{k}}
\end{array}\right]\right)
$$

and

$$
\frac{1}{2}\left(I-\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{\frac{n}{k}}
\end{array}\right]\right)
$$

respectively. Since $\tilde{\phi_{*}}=\tilde{\psi}_{*}$, this says that $\left\{\lambda_{i}\right\}_{i=1}^{\frac{n}{k}}=\left\{\xi_{i}\right\}_{i=1}^{\frac{n}{k}}$. So there exists $Z \in I_{k} \otimes M_{\frac{n}{k}}$ such that $Z L Z^{*}=N$. Then

$$
V\left(X Z^{*} Y^{*}\right)=\left(X Z^{*} Y^{*}\right) V
$$

If one replaces Y by $Y Z$, which will not change ψ, one has

$$
\phi=\operatorname{Ad}\left(X Y^{*}\right) \psi .
$$

CASE 2. $\quad A=M_{k} \oplus M_{k}$ and $B=M_{n}$.
Let $U \in M_{k}$ and $V \in M_{n}$ be two unitaries such that

$$
\begin{gathered}
\alpha\left(a_{1}, a_{2}\right)=\left(U a_{2} U^{*}, U^{*} a_{1} U\right), \quad\left(a_{1}, a_{2}\right) \in A, \\
\beta(b)=V b V^{*}, \quad b \in B .
\end{gathered}
$$

We may take $U=I_{k}$.
Let X and Y be two unitaries in B such that

$$
\begin{aligned}
& \phi(x, y)=X\left[\begin{array}{llllll}
x & & & & & \\
& \ddots & & & & \\
& & x & & & \\
& & & y & & \\
& & & & \ddots & \\
& & & & & y
\end{array}\right] X^{*}, \quad(x, y) \in A, \\
& \psi(x, y)=Y\left[\begin{array}{lllll}
x & & & & \\
& \ddots & & & \\
& & x & & \\
& & & y & \\
& & & & \ddots
\end{array}\right] Y^{*}, \quad(x, y) \in A .
\end{aligned}
$$

From Section 3, we see that n is necessarily an even number and the numbers of copies for x and y should be the same, for ϕ and ψ.

Again, using the same computation as in Case 1, one can show that $L=$ $X^{*} V X\left[\begin{array}{ll} & I_{\frac{n}{2}} \\ I_{\frac{n}{2}} & \end{array}\right]$ and $N=Y^{*} V Y\left[\begin{array}{ll} & I_{\frac{n}{2}} \\ I_{\frac{n}{2}} & \end{array}\right]$ belong to the following commutant:

$$
\left\{\left.\left[\begin{array}{llllll}
y & & & & & \\
& \ddots & & & & \\
& & y & & & \\
& & & x & & \\
& & & & \ddots & \\
& & & & & x
\end{array}\right] \right\rvert\,(x, y) \in A\right\} \cong I_{k} \otimes M_{\frac{n}{2 k}} \oplus I_{k} \otimes M_{\frac{n}{2 k}} .
$$

Now L and N can be written as

$$
L=\left[\begin{array}{ll}
L_{1} & \\
& L_{2}
\end{array}\right], \quad N=\left[\begin{array}{ll}
N_{1} & \\
& N_{2}
\end{array}\right] .
$$

This leads to the following equations:

$$
\begin{aligned}
& X^{*} V X=\left[\begin{array}{ll}
& L_{2} \\
L_{1} &
\end{array}\right] \\
& Y^{*} V Y=\left[\begin{array}{ll}
& N_{2} \\
N_{1} &
\end{array}\right]
\end{aligned}
$$

Since V is of order two, $L_{1} L_{2}=I$ and $N_{1} N_{2}=I$. We have

$$
\left[\begin{array}{ll}
N_{1}^{*} L_{I} & \\
& I
\end{array}\right]\left[\begin{array}{ll}
L_{1}^{*} N_{I} & \\
& I
\end{array}\right]=\left[\begin{array}{ll}
& N_{1}^{*} \\
N_{1} &
\end{array}\right] .
$$

So there exists $Z \in I_{k} \otimes M_{\frac{n}{2 k}} \oplus I_{k} \otimes M_{\frac{n}{2 k}}$ such that

$$
Z X^{*} V X Z^{*}=Y^{*} V Y
$$

Finally, one obtains $\phi=\operatorname{Ad}\left(Y Z X^{*}\right) \circ \psi$ by replacing Y by $Y Z$. Notice that $Y Z X^{*}$ commutes with V.

Case 3. $A=M_{k}$ and $B=M_{n} \oplus M_{n}$.
Let U and V be two unitaries determining α and β, respectively. We may assume that $V=I_{n}$. Let X_{1} and X_{2} be two unitaries in M_{n} such that

$$
\phi(x)=\left(X_{1}\left[\begin{array}{lll}
x & & \\
& \ddots & \\
& & x
\end{array}\right] X_{1}^{*}, X_{2}\left[\begin{array}{lll}
x & & \\
& \ddots & \\
& & x
\end{array}\right] X_{2}^{*}\right), \quad x \in A,
$$

and let Y_{1} and Y_{2} be two unitaries in M_{n} such that

$$
\psi(x)=\left(Y_{1}\left[\begin{array}{lll}
x & & \\
& \ddots & \\
& & x
\end{array}\right] Y_{1}{ }^{*}, Y_{2}\left[\begin{array}{lll}
x & & \\
& \ddots & \\
& & x
\end{array}\right] Y_{2}^{*}\right), \quad x \in A .
$$

Since both maps intertwine α and β, one has that

$$
\begin{aligned}
& L=Y_{2}{ }^{*} Y_{1}\left[\begin{array}{lll}
U & & \\
& \ddots & \\
& & U
\end{array}\right] \\
& N=X_{2}{ }^{*} X_{1}\left[\begin{array}{lll}
U & & \\
& \ddots & \\
& & U
\end{array}\right]
\end{aligned}
$$

belong to the commutant:

$$
\left\{\left.\left[\begin{array}{lll}
x & & \\
& \ddots & \\
& & x
\end{array}\right] \in M_{n} \right\rvert\, x \in A\right\} .
$$

One computes that:

$$
N L^{*}=X_{2}{ }^{*} X_{1} Y_{1}{ }^{*} Y_{2}
$$

i.e.,

$$
X_{1} Y_{1}{ }^{*}=X_{2} N L^{*} Y_{2}{ }^{*}
$$

If one replaces Y_{2} by $Y_{2} L N^{*}, \psi$ will not be changed. On the other hand, one has

$$
X_{1} Y_{1}{ }^{*}=X_{2} Y_{2}{ }^{*}
$$

This is exactly the condition for $\left(X_{1} Y_{1}^{*}, X_{2} Y_{2}^{*}\right)$ to commute with β. Clearly,

$$
\phi=\operatorname{Ad}\left(X_{1} Y_{1}{ }^{*}, X_{2} Y_{2}{ }^{*}\right) \circ \psi
$$

CASE 4. $A=M_{k} \oplus M_{k}$ and $B=M_{n} \oplus M_{n}$.
Let U and V be two unitaries determining α and β, respectively. Since ϕ intertwines α and β, ϕ must have the following form: for $(x, y) \in A$,

$$
\phi(x, y)=\left(\phi_{1}(x, y), \phi_{2}(x, y)\right)
$$

where

$$
\left.\left.\begin{array}{l}
\phi_{1}(x, y)=X\left[\begin{array}{llll}
{\left[\begin{array}{llll}
x & & \\
& \ddots & \\
& & x
\end{array}\right]_{c \times c}} & & & \\
& & & \\
y & & \\
& \ddots & \\
& & & y
\end{array}\right]_{d \times d}
\end{array}\right] X^{*}(x, y)=X\left[\begin{array}{lll}
{\left[\begin{array}{lll}
y & & \\
& \ddots & \\
& & y
\end{array}\right]_{c \times c}} & & \\
& & \\
& & \\
& & \\
& & \\
& &
\end{array}\right]_{d \times d}\right] X^{*} .
$$

Here X is a unitary in M_{n} and $\phi_{*}=\left[\begin{array}{ll}c & d \\ d & c\end{array}\right]$ if one identifies both $K_{0}(A)$ and $K_{0}(B)$ with Z^{2}. Similarly, there exists a unitary Y in M_{n} such that for $(x, y) \in A$,

$$
\psi(x, y)=\left(\psi_{1}(x, y), \psi_{2}(x, y)\right)
$$

where

$$
\left[\begin{array}{lll}
\psi_{1}(x, y)=Y\left[\begin{array}{lll}
x & & \\
& \ddots & \\
& & x x \\
& \ddots & \\
& & x
\end{array}\right]_{c \times c} & & \\
\\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
d \times d
\end{array}\right] Y^{*}
$$

$$
\left.\psi_{2}(x, y)=Y\left[\begin{array}{llll}
{\left[\begin{array}{llll}
y & & \\
& \ddots & \\
& & y
\end{array}\right]_{c \times c}} & & & \\
& & & \\
& & & \\
& \ddots & \\
& & x
\end{array}\right]_{d \times d}\right] Y^{*}
$$

Clearly,

$$
\psi=\operatorname{Ad}\left(Y X^{*}, Y X^{*}\right) \circ \phi
$$

and $\left(Y X^{*}, Y X^{*}\right)$ is a fixed point of β.
This completes the proof of the theorem.
THEOREM 4.2. Let ϕ and ψ be two morphism from $\left(A, \alpha, Z_{2}\right)$ to $\left(B, \beta, Z_{2}\right)$ where each of which is a finite direct sum of irreducible C^{*}-dynamical systems. Denote by $\tilde{\phi}$ and $\tilde{\psi}$ the maps from $A \times{ }_{\alpha} Z_{2}$ to $B \times_{\beta} Z_{2}$ induced by ϕ and ψ, respectively.

If $\phi_{*}=\psi_{*}$ and if $\tilde{\phi_{*}}=\tilde{\psi_{*}}$, then there exists a unitary $U \in B^{\beta}$, the fixed point subalgebra of B, such that $\phi=\operatorname{Ad} U \circ \psi$.

Proof. Clearly, we may assume that (B, β) is irreducible and the unitary V that implements β is diagonal. We will reduce the problem to the case that (A, α) is irreducible.

Let $P \in A^{\alpha}$ be a projection. Than $\phi(P) \in B^{\beta}$ and $\psi(P) \in B^{3}$. In our case, the crossed products and the fixed point subalgebras are stable isomorphic. So $\phi(P)$ and $\psi(P)$ have the same K-theory in $K_{0}\left(B^{\beta}\right)$. There is a unitary $X \in B^{\beta}$ so that $\operatorname{Ad}(X) \phi(P)=\psi(P)$.

Let $(A, \alpha)=\oplus\left(A_{i}, \alpha_{i}\right)$ where each $\left(A_{i}, \alpha_{i}\right)$ is irreducible. Let P_{i} be the identity of A_{i}. Then P_{i} is in the fixed point algebra. The same argument as above produces a unitary $Y \in B^{\beta}$ such that $\operatorname{Ad}(Y) \phi\left(P_{i}\right)=\psi\left(P_{i}\right)$ for all i. By considering $\operatorname{Ad}(Y) \phi$ and ψ from $\left(A_{i}, \alpha_{i}\right)$ to $\left(P_{i} B P_{i}, \beta\right)$ we reduce the theorem to 4.1.

This completes the proof of the theorem.

5. Classification.

Theorem. Let $\left(A, \alpha, Z_{2}\right)=\lim \rightarrow\left(A_{n}, \alpha_{n}, Z_{2}\right)$ and $\left(B, \beta, Z_{2}\right)=\lim \left(B_{n}, \beta_{n}, Z_{2}\right)$ be two inductive limit C^{*}-dynamical systems, let F be an order preserving group isomorphism from $\left(K_{0}(A), \alpha_{*}\right)$ to $\left(K_{0}(B), \beta_{*}\right)$ mapping $\left[1_{A}\right]$ to $\left[1_{B}\right]$ and let ϕ be an order preserving group isomorphism from $\left(K_{0}\left(A \times_{\alpha} Z_{2}\right), \hat{\alpha}_{*}\right)$ to $\left(K_{0}\left(B \times_{\beta} Z_{2}\right), \hat{\beta}_{*}\right)$ mapping the special element to the special element. Suppose that the following diagram commutes:

Then there is an isomorphism ψ from (A, α) to (B, β) such that $\psi_{*}=F$ and such that the extension of a map from $A \times_{\alpha} Z_{2}$ to $B \times_{\beta} Z_{2}$ gives rise to the map ϕ.

Proof. By passing to subsequences and changing notation, we may assume that we have the following intertwings:

and

We would like to make these two intertwings compatible. Notice that we have:

So there exists n such that

commutes. This shows that we can actually have two intertwing sequences satisfying

We would like to point out that we may require these intertwings to preserve the special elements and the identity projections.

By Theorem 3.2, one may lift each map to the dynamical system. By Theorem 4.2, one can correct each up and down map by an inner automorphism commuting with the actions so the following diagram is commutative:

(cf. e.g., [2].) Hence (A, α) and (B, β) must be isomorphic, and by an isomorphism giving rise to the given maps ϕ and F.

ACKNowLEDGMENTS. This research was done at the University College of Swansea. The first author was supported by a Royal Society Professorship. The second author was supported by a Science and Engineering Research Council Postdoctoral Fellowship and by a Natural Sciences and Engineering Research Council of Canada Postdoctoral Fellowship. Both authors are indebted to Professor David Evans for his hospitality at the University College of Swansea. The first author is indebted to David Handelman for his comments on the subject of this paper.

ReFERENCES

1. O. Bratteli, Inductive limits of finite dimensional C^{*}-algebras, Trans. Amer. Math. Soc. 171(1972), 195234.
2. O. Bratteli, G. A. Elliott, D. E. Evans and A. Kishimoto, On the classification of inductive limits of inner actions of a compact group, preprint.
3. G. Elliott, On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Algebra 38(1976), $29-44$.
4. T. Fact and O. Marechal, Sur la automorphisms periodiques des C*-algebras UHF, J. Funct. Anal. 40(1981), 267-301.
5. D. E. Handelman and W. Rossmann, Actions of compact groups on AF-algebras, Illinois J. Math. 29(1985), 51-95.
6. A. Kishimoto, Actions of finite groups on certain inductive limit C^{*}-algebras, Internat. J. Math. 1(1990), 267-292.

Department of Mathematics
University of Toronto
Toronto, Ontario
M5S 3G3

And
Mathematics Institute
Universitetsparken
DK-2100 Copenhagen \varnothing

The Fields Institute
222 College Street
Toronto, Ontario
M5T 3JI

