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The impact of fluid drops on solid substrates is a cardinal fluid dynamics phenomenon
intrinsically related to many fields. Although these impacting objects are very often
non-spherical and non-Newtonian, previous studies have mainly focused on spherical
Newtonian drops. As a result, both shape and rheological effects on the drop-spreading
dynamics remain largely unexplored. In the present work we use a mixed approach
combining experiments with multiphase three-dimensional numerical simulations to
extend the work reported by Luu & Forterre (J. Fluid Mech., vol. 632, 2009, pp. 301–327)
by highlighting the fundamental role of shape in the normal impact of viscoplastic
drops. Such complex fluids are highly common in various industrial domains and ideally
behave either like a rigid body or a shear-rate-dependent liquid, according to the stress
solicitation. Spherical, prolate, cylindrical and prismatic drops are considered. The results
show that, under negligible capillary effects, the impacting kinetic energy of the drop is
dissipated through viscoplastic effects during the spreading process, giving rise to three
flow regimes: (i) inertio-viscous, (ii) inertio-plastic, and (iii) mixed inertio-visco-plastic.
These regimes are deeply affected by the drop initial aspect ratio, which in turn reveals
the possibility of using drop shape to control spreading. The physical mechanisms driving
the considered phenomenon are underlined by energy budget analyses and scaling laws.
The results are summarised in a two-dimensional diagram linking the drop maximum
spreading, minimum height and final shape with different spreading regimes through a
single dimensionless parameter, here called the impact number.
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1. Introduction

The spreading of drops impacting hydrophobic surfaces is a paramount fluid mechanics
phenomenon (Worthington 1883; Rein 1993), which occurs in a large number of areas
from inkjet-based bioprinting of cells, tissues and organs (Murphy & Atala 2020; Yumoto
et al. 2020) to the production of capsules, beads and non-spherical particles resulting from
the polymerisation of droplets through a liquid–air interface (Godefroid 2019), raindrops
and pesticide deposition (Yarin 2006), coating (Andrade, Osorio & Skurtys 2013) and
firefighting (Josserand & Thoroddsen 2016). In some of these processes, fluid drops tend
to behave as viscoplastic materials: at lower stress levels, they act like a non-deformable
solid and at stress levels higher than the characteristic yield stress τ0, they deform like
a complex (non-Newtonian) liquid (Balmforth, Frigaard & Ovarlez 2014; Thompson &
Soares 2016; Jalaal, Kemper & Lohse 2019; Valette et al. 2021). More specifically, some
of the microstructural interactions developed in these materials (intermolecular attractive
and/or repulsive forces, friction, capillary bridges, among others) are translated at the
macroscopic level through a yield-stress and a strain-rate-dependent viscosity η. The
latter is commonly represented by the Herschel–Bulkley viscosity equation (only valid for
flowing regions; Herschel & Bulkley 1926) according to which η = k| γ̇ |m−1 + τ0/| γ̇ |,
where k is the consistency index, m is the flow index and | γ̇ | is the norm of the strain-rate
tensor. The list of materials that can exhibit such a behaviour includes mineral dense
suspensions (bentonite, kaolin, carbon black, toothpaste and granular suspensions; Luu &
Forterre 2009; Guazzelli & Pouliquen 2018; Dages et al. 2021; Ness, Seto & Mari 2022),
organic suspensions (Carbopol-based microgels, alginate suspensions, ketchup; Balmforth
et al. 2014; Godefroid 2019; Jalaal et al. 2019), emulsions (mayonnaise; Zhang & Makse
2005; Derkach 2009; Tenorio-Garcia et al. 2022) and foams (Cohen-Addad, Reinhard &
Pitois 2013).

In contrast with Newtonian impacting drops (Yarin 2006; Josserand & Thoroddsen
2016), very few studies have been reported on the impact of viscoplastic drops (German &
Bertola 2009; Luu & Forterre 2009; Kim & Baek 2012; Luu & Forterre 2014; Blackwell
et al. 2015; Oishi, Thompson & Martins 2019; Jørgensen, Forterre & Lhuissier 2020;
Sen, Morales & Ewoldt 2020), which emerges from their complex nature. Some of
the differences between Newtonian and viscoplastic impact scenarios are illustrated in
figure 1, where experimental snapshots show the spreading evolution of a water drop
(figure 1a), as well as bentonite-in-water drops at three particle mass fractions φ: 0.5
(figure 1b), 0.55 (figure 1c) and 0.6 (figure 1d). The drops fall freely from a 5 mm
diameter nozzle, hitting a hydrophilic acrylic plate (Quetzeri-Santiago et al. 2019) at an
impact velocity U0 of 1.25 m s−1. As φ increases, 5 µm mineral particles aggregate in
house-of-cards-like clusters mainly through electrostatic and Van der Waals interactions
(Chafe & Bruyn 2005), building a microstructure that leads ultimately to the appearance
of an increasing macroscopic yield stress of 5 Pa, 50 Pa and 500 Pa, respectively. As
τ0 increases, the material resistance to surface-tension-induced deformations during
the free fall becomes more pronounced. Consequently, its initial shape moves from
spherical/quasi-spherical (figure 1a,b) to prolate-like (figure 1c,d) characterised not only
by an initial diameter D0 of 5 mm imposed by the nozzle, but also by an initial height
H0 of 12.5 mm. During the spreading process, the impacting kinetic energy is partially
converted into surface energy, and partially dissipated by viscoplastic effects until the
drop reaches its maximum spreading Dmax and minimum height Hmin at the instant tmax.
Kelvin–Helmholtz instabilities induced by liquid–air interactions (Liu et al. 2021) at low
φ tend to be suppressed by dissipative effects at larger τ0, while Dmax decreases. At
τ0 = 500 Pa, the drop exhibits the lowest final spreading level and preserves its top portion,
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Figure 1. Experimental snapshots showing the spreading evolution of a water drop (a) and bentonite-in-water
drops at three particle mass fractions φ (b–d). The yield stress τ0 increases with φ: (a) φ = 0, τ0 = 0 Pa; (b)
φ = 0.5, τ0 = 5 Pa; (c) φ = 0.55, τ0 = 50 Pa; and (d) φ = 0.6, τ0 = 500 Pa. The impact velocity is U0 =
1.25 m s−1. The diameter of the drops is D0 = 5 mm, and the height of the prolate ones is H0 = 12.5 mm. The
interval �t between two images is 1.9 ms.

i.e. its bottom part spreads like a viscous liquid, while its upper portion tends to behave
like a solid. In these connections, an open issue arises: can one predict Dmax, Hmin and tmax
for viscoplastic non-spherical impacting drops? This question is addressed in the present
work.

The very few studies on impacting viscoplastic drops conducted up to now (Luu
& Forterre 2009; Oishi et al. 2019) specify that, under negligible surface tension
effects, the maximum relative spreading Dmax/D0 depends on two dimensionless
parameters: the diameter-m-based Reynolds number defined for a Herschel–Bulkley fluid
as Rem,D = ρU2

0/k(U0/D0)
m (the ratio of the kinetic to the viscous stress) and the plastic

number defined as Pl = τ0/ρU2
0 (the ratio of the yield stress to the kinetic stress).

More precisely, according to those studies, each Rem,D − Pl couple induces a unique
Dmax/D0 regardless of the volume of the impacting object. This idea is experimentally
explored in figure 2, where snapshots illustrate the spreading of three bentonite-in-water
drops impacting a hydrophilic acrylic plate at Rem,D = 47 and Pl = 0.18. In agreement
with the reported theoretical arguments, both the top-line and middle-line drops exhibit
similar spreading evolutions with a maximum relative spreading Dmax/D0 of 1.24,
although their volumes differ. However, when increasing the volume of the middle-line
drop through a simple height enhancement (see figure 2(c) for which H0/D0 = 4), one
observes a distinct spreading dynamics with Dmax/D0 = 1.91. Such differences indicate
that H0/D0 also plays a relevant role in the spreading dynamics, an effect not considered
by the current theory (Luu & Forterre 2009). Note that aspect ratio effects are also
observed when defining the Reynolds number based on the initial height of the drop,
Rem,H = ρU2

0/k(U0/H0)
m (height-m-based Reynolds number), a result shown by figure 3,
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Figure 2. Experimental snapshots illustrating the spreading time evolution of three bentonite-in-water drops
impacting a hydrophilic acrylic plate at Rem,D = 47 and Pl = 0.18. The dimensionless interval �t∗ = t/tmax
between two images is 0.1428 (tmax being the instant at which the drop achieves its maximum spreading Dmax).
Clearly, regardless of the volume of the drop Vtotal, Dmax/D0 is an increasing function of H0/D0: (a) Vtotal =
1.64 × 10−8 m3, H0/D0 = 1, Dmax/D0 = 1.24; (b) Vtotal = 6.54 × 10−8 m3, H0/D0 = 1, Dmax/D0 = 1.24;
(c) Vtotal = 2.62 × 10−7 m3, H0/D0 = 4, Dmax/D0 = 1.91.

where mayonnaise drops with distinct H0/D0 impacting an acrylic plate at the same
Rem,H − Pl exhibit different Dmax/D0.

In this work, we highlight the fundamental role of viscoplastic drop shape in normal
impact. More specifically, we extend the seminal work of Luu & Forterre (2009) by
analysing the drop initial aspect ratio effect on the spreading dynamics, maximum
spreading, minimum height and spreading time of viscoplastic non-spherical drops
impacting a solid hydrophilic surface. Our study is conducted through a mixed approach
combining three-dimensional (3-D) numerical simulations and experiments. Numerical
simulations based on an adaptive variational multi-scale method for two materials
(viscoplastic drop and air) are performed and compared with experiments. The latter are
either taken from existing literature or carried out with various yield-stress materials,
such as Carbopol-based microgels, alginate suspensions, bentonite and kaolin colloidal
suspensions, mayonnaise and ketchup. The results are explored in light of energy budget
analyses and scaling laws, which stress the investigated problem’s physical mechanisms.
Lastly, they are summarised in a two-dimensional diagram linking the maximum diameter,
minimum height and final shape of the drops with different flow spreading regimes through
a single dimensionless parameter called here the impact number, the latter being a function
of Rem,D, Pl and H0/D0.

The organization of the paper is as follows. A detailed description of the physical
formulation and the mixed experimental–numerical method is presented in § 2.
Experimental/numerical results are discussed in § 3. Finally, conclusions and perspectives
are drawn in the closing section.

2. Problem statement: experimental and numerical viscoplastic non-spherical drop
impact on a solid

As illustrated in figures 1, 2 and 3, we consider both experimentally and numerically
the normal impact of viscoplastic Herschel–Bulkley falling drops of initial diameter D0,
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Figure 3. Experimental snapshots showing the spreading evolution of two prolate mayonnaise drops impacting
an acrylic plate at Rem,H = 18.6 and Pl = 0.126. The dimensionless interval �t∗ = t/tmax between two images
is 0.3334 for the upper-line case, and 0.1667 ms for the bottom-line case. As observed, different initial
aspect ratios induce distinct maximum relative spreading: (a) H0/D0 = 3, Dmax/D0 = 2; (b) H0/D0 = 8,
Dmax/D0 = 2.6.

initial height H0, density ρ, consistency k, flow index m and yield stress τ0 against a
hydrophilic plate. The drop hits the plate at the instant t0 exhibiting an impact velocity U0.
It then spreads radially, undergoing shear and wetting the solid surface before achieving
a maximum diameter Dmax and a minimum height Hmin at the instant tmax. The eventual
retraction of the drop induced by surface tension effects is not considered here. Splashing
events are not taken into account either (Peters, Xu & Jaeger 2013; Blackwell et al. 2015;
Josserand & Thoroddsen 2016). The drop and the plate are surrounded by air whose density
is ρair and viscosity is ηair. Surface tension between the different phases of the system is
denoted by σ .

The drop behaviour is described only through gravitational, inertial, capillary and
viscoplastic Herschel–Bulkley parameters. Nevertheless, we show that such physical
ingredients are sufficient to capture the main features observed in our experiments.

The important dimensionless quantities of the problem Πi can be stressed by a
classical dimensional analysis based on the Buckingham-Π theorem with the following
dimensional variables H0, D0, U0, g, ρ, k, m, τ0 and σ . By doing so, one finds that

Π1 = H0

D0
, Π2 = k (U0/D0)

m

ρU2
0

, Π3 = τ0

ρU2
0
, Π4 = ρgD0

ρU2
0

, and Π5 = σ/D0

ρU2
0

,

(2.1a–e)

where Π2 = 1/Rem,D, Π3 = Pl, Π4 = 1/Fr (in which Fr is the Froude number)
and Π5 = 1/We (where We is the Weber number). Since we consider here
centimetric/millimetric drops for which k and/or τ0 are/is relatively high, ρgD0 and σ/D0
end up playing a marginal role in comparison to the other stress terms, i.e. Π4 ≤ 0.1
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and Π5 ≤ 0.01 (this will be shown in detail in the following subsection). This particular
problem can be explored with the first three dimensionless parameters listed above:
H0/D0, Rem,D and Pl.

Alternatively, the important dimensionless quantities of the problem can be stressed
by assuming that both the impacting gravitational potential energy of the drop
(∼ρgH0(H0D2

0)), and its kinetic energy (∼ρU2
0(H0D2

0)) are partially dissipated by
viscoplastic effects (estimated at first glance as ∼k(U0/H0)

mD3
0 + τ0D3

0), as well as
partially converted into surface energy (approximated as ∼(σ/D0)(H0D2

0) at this stage
of the present work) during the spreading process

ρgH0

(
H0D2

0

)
+ ρU2

0

(
H0D2

0

)
∼ k

(
U0

H0

)m

D3
0 + τ0D3

0 + σ

D0

(
H0D2

0

)
(2.2)

(a better estimation of the right-hand side terms will be given in § 3). As underlined earlier,
centimetric/millimetric drops for which k and/or τ0 are/is relatively high (such as those
used here) lead to marginal ρgH0(H0D2

0) and ρgH0(H0D2
0) in comparison to the other

energy terms. Furthermore, in the present work (k(U0/H0)
m + τ0)/(σ/D0) > 10 (a point

detailed in the following subsection). Thus, the above equation is rewritten as

ρU2
0 ∼ k

(
U0

D0

)m (
D0

H0

)m+1

+ τ0

(
D0

H0

)
, (2.3)

underlining that the impacting kinetic energy of the drop is mainly dissipated by both
viscous and plastic effects during spreading. As a result, at least two spreading scenarios
are expected to occur: inertio-viscous (balancing kinetic and viscous stresses) and
inertio-plastic (balancing kinetic and yield stresses). By dividing the above equation by
ρU2

0 (driving stress), one finds that

1 ∼ 1
Re

D0

H0
, (2.4)

in which Re is the Reynolds number (similar to Blackwell et al. 2015; Thompson, Sica &
de Souza Mendes 2018; Sen et al. 2020). Clearly, (2.4) indicates that the drop spreading
considered here is essentially a dissipative process exposed to shape effects. Finally,
aiming to make our study directly comparable to the one conducted by Luu & Forterre
(2009), the right-hand side term of the above equation is divided into

1 ∼ 1
Rem,D

(
D0

H0

)m+1

+ Pl
(

D0

H0

)
, (2.5)

which underlines that the relevant dimensionless parameters of the problem are Rem,D, Pl
and H0/D0, as previously pointed out by Buckingham-Π -theorem-based analyses. Their
effects on the spreading process will be highlighted in § 3.

2.1. Experimental approach
The experimental set-up for the investigation of the role of viscoplastic drop shape during
impact is illustrated in figure 4. The viscoplastic drop of height H0 and diameter D0
falls by gravity g from a nozzle and hits the solid acrylic plate at the instant t0 at an
impact velocity U0. The drop aspect ratio is imposed by controlling the fluid volume
within the nozzle, while U0 is a function of the distance between the nozzle and the plate
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Figure 4. (a) Experimental set-up for the investigation of the role of viscoplastic drop shape in impact. The
viscoplastic drop of height H0 and diameter D0 falls by gravity g from a nozzle and hits the solid acrylic
plate at the instant t0 at an impact velocity U0 (U0 being a function of the distance between the nozzle and
the plate H; U0 ∝ √

H). (b) After the impact, the drop spreads radially until it achieves a maximum diameter
Dmax and a minimum height Hmin at the instant tmax. A ketchup drop is used for the illustrated impact event
(U0 = 1.25 m s−1, D0 = 5 mm, H0 = 7.5 mm, ρ = 1250 kg m−3, k = 10 Pa sm, m = 0.5, τ0 = 12 Pa and
Dmax/D0 = 1.82). It is recorded by a high-speed camera (O(104) frames per second) with the aid of a LED
backlight panel. A movie showing the mentioned impact event is available as a supplemental material at https://
doi.org/10.1017/jfm.2023.926 (see supplementary movie 1).

H (U0 ∝ √
H). Impact events are experimentally recorded by a Optronis Cyclone 2-2000

high-speed camera (O(104) frames per second) equipped with a Sigma 105 mm F2.8 DG
OS HSM macro lens, and with the aid of a LED backlight panel. Initial drop diameters
D0 are in the range of 2–20 mm, while the initial drop heights H0 vary from 2 mm to
40 mm, and the impact velocities U0 vary from 1 m s−1 to 4 m s−1. The hydrophilic plate
is acrylic (Quetzeri-Santiago et al. 2019). A variety of fluids are used: sodium alginate in
40 % by weight zirconia-in-deionized-water solutions (A); Carbopol-based microgels (C);
5 µm bentonite particles in deionized water (B-W); 5 µm bentonite particles in 50 % by
weight glycerol-in-deionized-water solution (B-G-W); 5 µm kaolin particles in deionized
water (K-W); Amora, Bénédicta and Hellmann’s mayonnaises (M); and Amora, Nature and
Heinz ketchups (K). Suspensions at different concentrations are prepared by following the
procedures detailed in Luu & Forterre (2009) and Godefroid (2019).

Although the fluids listed above present a viscoplastic behaviour, they are of different
natures and microstructures. This diversity allows for a variety of accessible yield stresses
and flow behaviours (from viscoplastic to almost purely plastic suspensions). Mayonnaise
(though in reality more complex than that) can be seen as an oil-in-water emulsion with
micrometric-sized droplets (Ma & Barbosa-Cánovas 1995a,b; Derkach 2009). Ketchup
is a tomato paste that can be seen as a organic suspension (Bottiglieri et al. 1991;
Coussot & Gaulard 2005; Koocheki et al. 2009). Bentonite and kaolin in deionized
water and in a glycerol-in-deionized-water solution, in turn, are clay suspensions made
of micrometric sheet-like particles that interact between them thanks to van der Waals
and electrostatic forces (Luu & Forterre 2009; Loisel et al. 2015; Mwasame, Wagner &
Beris 2016; Vázquez-Quesada & Ellero 2016; Chun et al. 2017; Tanner 2018; Lin et al.
2019). They can form house-of-cards structures, since the electric charges of the edges
and the centres of the particles are different (in both water and glycerol-in-water solution).
Arrangements can become more complex, depending on ion concentration in solution and
pH (forming aggregates, pillars or more homogeneous structures). Yield stress emerges
from the network percolation and is also dependent on solid concentration. In addition,
Carbopol microgels are crosslinked acrylic acid polymers that swell in water (Coussot
2007; Paiu 2007; Balmforth et al. 2014). Finally, the alginate suspensions are composed
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of a charged biopolymer (alginate) and zirconia particles, which gives rise to a yield-stress
fluid due to depletion interactions (Godefroid 2019).

Solid content, pH and ion concentration play an important role in the rheological
parameters of the used fluids. Although we do not plan to discuss relationships between
rheology and microstructure in the present work, it is worth mentioning that we do
characterise the fresh materials just before the impact experiments to ensure the use of
accurate rheological parameter values.

The used fluids are rheologically characterised using an ARES-G2 rheometer (TA
Instruments) equipped with a cone-plate geometry. Their relevant properties and
concentrations are listed in table 1. Experimental data available in the literature are
also considered. As indicated by the yield stress and the storage modulus G′ levels,
these materials exhibit elasto-viscoplastic characteristics. Some of them are illustrated
in figure 5 where the shear stress is displayed as a function of |γ̇ | (figure 5a), and
G′ is plotted as a function of the shear stress (figure 5b) for four samples: 57 % by
weight bentonite-in-deionized-water (colloidal suspension; grey circles); 3 % by weight
Carbopol microgel (polymers; blue triangles); Nature ketchup (organic suspension; red
diamonds); and Amora mayonnaise (emulsion; green squares). However, except for the
alginate drops, elasticity does not play a relevant role in the impact events studied here,
which is underlined by comparing the estimated relaxation time λ of the considered
materials (λ ≈ (k/G′)1/m; Luu & Forterre 2009) to the flow characteristic time H0/U0,
i.e. De = (k/G′)1/m/(H0/U0) < 1, where De is the Deborah number (we set specific
values of H0, D0 and U0 allowing De to keep lower than 1). Nevertheless, the alginate
suspensions used here can be slightly exposed to elastic effects since, for these drops,
1.68 ≤ De ≤ 6.7. Moreover, although some of the used fluids can be affected by further
non-Newtonian signatures, such as microstructural orientation/anisotropy and thixotropy
(their mechanical properties can evolve at rest; see the Appendix for a brief discussion on
thixotropy; Pignon, Magnin & Piau 1996; Coussot 2005; Coussot et al. 2005; Paiu 2007;
Balmforth, Forterre & Pouliquen 2009; Balmforth et al. 2014), none of these are taken into
account given the size of our drops (millimetric/centimetric), the axisymmetric nature of
the problem and its typical impact/spreading time scale (few ms; similar to Luu & Forterre
2009, 2014). Lastly, since most surface tension measurement methods are corrupted by the
fluid yield stress and elasticity, we follow previous works (Luu & Forterre 2009; Jalaal
et al. 2019) and take pure water surface tension as an upper bound for the real σ of our
fluids, i.e. σ < 0.072 N m−1. As a result, one can show that, for the flow cases analysed
here, the ratio of the viscoplastic stress to the capillary stress is always greater than 10,
i.e. Ca = (k(U0/H0)

m + τ0)/(σ/D0) > 10, where Ca is the capillary number (except for
alginate whose Ca is around 1). In other words, surface tension plays a marginal role
(which will be shown in detail in § 3) when compared with viscoplastic effects. In these
connections, we have also neglected any wetting phenomenon (such as hysteresis and
dissipation at the contact line) that may particularly affect the receding dynamics (Richard,
Clanet & Quéré 2002; de Gennes, Brochard-Wyart & Quéré 2005; Nigen 2005; Quéré
2008; Bonn et al. 2009; Duez et al. 2010; Carlson, Do-Quang & Amberg 2011).

2.2. Numerical approach
Our multiphase computational approach is based on a general solver (CIMLIB-CFD,
a parallel, finite element library; Coupez & Hachem 2013) that takes into account the
rheological behaviour of each fluid phase (viscoplastic drop and air; figure 6), as well as
surface tension effects (Riber et al. 2016; Pereira et al. 2019; Valette et al. 2019; Pereira,
Hachem & Valette 2020; Valette et al. 2021). More precisely, the momentum equation

978 A1-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

92
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.926


The role of viscoplastic drop shape in impact

Fl
ui

d
W

ei
gh

t(
%

)
ρ

(k
g

m
−3

)
k

(P
a

sm
)

m
τ 0

(P
a)

G
′ (|

τ
|→

0)
(P

a)
D

0
(m

m
)

H
0

(m
m

)
H

0/
D

0
R

ef
er

en
ce

s

A
0.

4
10

10
0.

1
0.

79
0.

3
9

2
2

1
Pr

es
en

tw
or

k
C

0.
1–

4
10

07
–1

02
0

1.
5–

35
0.

5
2.

5–
15

0
30

–1
03

4
4–

20
4–

40
1–

4
Pr

es
en

tw
or

k
B

-W
54

–6
4

10
50

–1
11

0
0.

1–
1

0.
96

–1
50

–1
25

0
95

2–
40

05
34

4–
20

4–
40

1–
6

Pr
es

en
tw

or
k

B
-W

13
–1

5
10

90
0.

12
–0

.1
6

0.
96

68
–1

24
24

00
–3

80
0

14
–2

7
14

–2
7

1
Lu

u
&

Fo
rt

er
re

(2
00

9)
B

-G
-W

46
–5

4
10

50
–1

15
0

11
–1

30
0.

5
5.

5–
50

0
28

30
–1

09
50

0
4–

20
4–

40
1–

5
Pr

es
en

tw
or

k
K

-W
47

–5
3

16
00

–1
64

0
5–

25
0.

38
–0

.5
15

–2
40

34
00

0–
62

0
00

0
4–

20
4–

40
1–

4
Pr

es
en

tw
or

k
K

-W
51

–5
5

16
30

36
–6

8
0.

36
50

–9
1

37
00

0–
20

0
00

0
20

–2
7

20
–2

7
1

Lu
u

&
Fo

rt
er

re
(2

00
9)

M
*

*
*

96
5–

98
0

10
–5

0
0.

32
–0

.4
5

30
–1

25
13

3–
50

00
4–

10
4–

40
1–

8
Pr

es
en

tw
or

k
K

*
*

*
11

70
–1

25
0

7.
75

–1
0

0.
4

7–
12

14
0–

77
3

5–
10

5–
20

1–
2.

5
Pr

es
en

tw
or

k

Ta
bl

e
1.

D
et

ai
ls

co
nc

er
ni

ng
th

e
co

ns
id

er
ed

flu
id

s
fo

rt
he

ex
pe

ri
m

en
ts

:A
=

so
di

um
al

gi
na

te
in

40
%

by
w

ei
gh

tz
irc

on
ia

-i
n-

de
io

ni
ze

d-
w

at
er

so
lu

tio
ns

;C
=

C
ar

bo
po

l-
ba

se
d

m
ic

ro
ge

ls
;B

-W
=

5
µ

m
be

nt
on

ite
pa

rt
ic

le
s

in
de

io
ni

ze
d

w
at

er
;B

-G
-W

=
5

µ
m

be
nt

on
ite

pa
rt

ic
le

s
in

50
%

by
w

ei
gh

tg
ly

ce
ro

l-
in

-d
ei

on
iz

ed
-w

at
er

so
lu

tio
n;

K
-W

=
5

µ
m

ka
ol

in
pa

rt
ic

le
s

in
de

io
ni

ze
d

w
at

er
;M

=
A

m
or

a,
B

én
éd

ic
ta

an
d

H
el

lm
an

n’
s

m
ay

on
na

is
es

;K
=

A
m

or
a,

N
at

ur
e

an
d

H
ei

nz
ke

tc
hu

ps
.I

m
pa

ct
ve

lo
ci

tie
s

U
0

va
ry

fr
om

1
m

s−
1

to
4

m
s−

1 .

978 A1-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

92
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.926


K. Isukwem and others

10–3 10–2 10–1 100

Bentonite in water (57 %) Carbopol (3 %) Ketchup (Nature)

Mayonnaise (Amora) Herschel–Bulkley fit

Deformation rate (s–1)

101 102 103
100

101

102

103

S
h
ea

r 
st

re
ss

 (
P

a)

Shear stress (Pa)

10–1 100 101 102 103
100

101

102

103

104

105

S
to

ra
g
e 

m
o
d
u
lu

s 
(P

a)

(a) (b)

Figure 5. Rheological characterisation using an ARES-G2 rheometer (TA Instruments) equipped with a
cone-plate geometry. We employ standard ramp shear tests over a range of 10−3 s−1 to 103 s−1 to obtain stress
versus deformation rate levels (a) in addition to oscillatory tests at 10 rad s−1 to obtain the storage modulus of
the used fluids (b).

applied to the considered solenoidal flows (∇ · u = 0) reads

ρ

(
∂u
∂t

+ u · ∇u − g
)

= −∇p + ∇ · τ + fst, (2.6)

in which u, p, τ , ∇, g, ∇· and fst are, respectively, the velocity vector, the pressure, the
extra-stress tensor, the gradient operator, the gravity vector, the divergence operator and a
capillary term related to the surface tension force. The latter is defined as fst = −σκΦn,
where σ , κ , Φ and n are the surface tension, the curvature of the drop surface, the
Dirac function locating the drop surface and its normal vector, respectively. In addition,
the extra-stress tensor is given by τ = ηγ̇ , in which γ̇ represents the rate-of-strain
tensor defined as γ̇ = (∇u + ∇uT). The norm of γ̇ is called the deformation rate,
being defined as |γ̇ | = (1

2 γ̇ : γ̇ )1/2. The complex drop viscosity η is computed using a
Herschel–Bulkley equation (Herschel & Bulkley 1926) combined with a Papanastasiou
regularization (exponential parts in the following equation; Papanastasiou 1987)

η = k| γ̇ |m−1(1 − e|−γ̇ |/γ̇p)1−m + τ0

| γ̇ |(1 − e|−γ̇ |/γ̇p), (2.7)

where γ̇p is the cutoff deformation rate (fixed at γ̇p = 10−6 s−1) that allows us to bound
the value of the viscosity for vanishing | γ̇ | below γ̇p.

Our numerical methods are based on a variational multi-scale approach combined with
anisotropic mesh adaptation with highly stretched elements illustrated by the black lines
in figure 6(e) (size of the smaller mesh elements ∼1 µm; Riber et al. 2016; Valette et al.
2019; Pereira et al. 2019, 2020; Valette et al. 2021). The time evolution of the drop surface
is captured using a level-set function (Hachem et al. 2016).

The 3-D numerical configuration taken into account is illustrated in figure 6(e), where
the mesh (composed of approximately 106 elements) is depicted, adapted around each
interface. The corresponding zero isovalues for the level-set function are also shown
(in red). Four different drop initial shapes are numerically considered, as displayed in
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t0

H0

H0 H0
H0

U0

D0

D0 D0 D0 D0

x

z g

t1 t2 tmax

Dmax

Hmin

(a) (b) (c) (d)

(e)

Figure 6. Four different drop initial shapes are numerically considered: (a) spherical, (b) prolate,
(c) cylindrical and (d) prismatic. Their initial aspect ratio H0/D0 varies from 1 to 8. (e) Numerical configuration
taken into account. The used mesh (composed of approximately 106 elements) adapted around each interface
(viscoplastic drop in red, and air in blue) and illustrated by the black lines. The drop of height H0 and diameter
D0 falls by gravity and hits the solid plate at the instant t0 at an impact velocity U0. After the impact, the drop
spreads until it achieves a maximum diameter Dmax and a minimum height Hmin at the instant tmax. A movie
showing a typical numerical simulation is available as a supplemental material (see supplementary movie 2;
U0 = 1.5 m s−1, D0 = 3.15 mm, H0 = 12.6 mm, ρ = 1585 kg m−3, k = 0.1 Pa sm, m = 1, τ0 = 948 Pa).

Shape ρ (kg m−3) k (Pa sm) m τ0 (Pa) σ (N m−1) D0 (mm) H0 (mm) H0/D0

Spherical 500–2000 0.01–10 0.2–1 0.01–10 000 0.005–0.072 4–20 4–20 1
Prolate 500–2000 0.01–10 0.2–1 0.01–10 000 0.005–0.072 4–20 4–40 1–8
Cylindrical 500–2000 0.01–10 0.2–1 0.01–10 000 0.005–0.072 4–20 4–40 1–8
Prismatic 500–2000 0.01–10 0.2–1 0.01–10 000 0.005–0.072 4–20 4–40 1–8

Table 2. Details concerning the considered drops for the numerical simulations. Impact velocities U0 vary
from 0.5 m s−1 to 10 m s−1.

figures 6(a)–6(d): spherical, prolate, cylindrical and prismatic. Their initial aspect ratio
H0/D0 varies from 1 to 8. Furthermore, a wide range of drop rheological properties
is explored, as detailed in table 2, while the impact velocity varies from 0.5 m s−1 to
10 m s−1. Concerning the air phase (blue region in figure 6), both viscosity ηair and
density ρair are constant and respectively equal to 10−5 Pa s and 1 kg m−3. Lastly, initial
and boundary conditions for the flow equations are, respectively, initial vertical impact
velocity U0 within the drop, no-slip condition between the fluids and the impacted surface
(bottom plate), and zero normal stress in the other walls of the domain.

3. Results and discussions

3.1. Spreading dynamics
Following the analyses stressed in figure 2, supplemental aspect ratio effects are given
by 3-D numerical results in figure 7. The latter shows six numerical snapshots of the
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spreading process for eight viscoplastic drops at two Rem,D − Pl couples: Rem,D = 50
and Pl = 0.6 (figure 7a–d; left column); and Rem,D = 150 and Pl = 0.07 (figure 7e–h;
right column). The interval �t between two subsequent images correspond to 20 % of
the necessary time to achieve the maximum spreading tmax (�t∗ = �t/tmax = 0.2). The
red surface in both the first and the last snapshot denotes the 3-D drop–air interface.
Contours of the norm of the instantaneous velocity |u(x, y, z, t)| (made dimensionless by
the maximum instantaneous velocity |umax(t)|) on the centre x–z plane are represented on
the left side of the second through fifth snapshot of each displayed case. Yielded (flowing;
|τ | > τ0; black) and unyielded (non-flowing; |τ | ≤ τ0; grey) regions are illustrated on
their right side. During the spreading process, the drops develop shear flow within the
yielded regions as a result of the no-slip interactions between the solid surface and the
viscoplastic material. The more Rem,D increases and Pl decreases (moving from the
left-column results to the right-column ones), the more the drops behave like a liquid
and spread. Note also that for a fixed Rem,D − Pl, (i) viscoplastic drops with different
volumes but equal aspect ratios exhibit the same spreading dynamics (velocity field,
yielded/unyielded regions and maximum relative spreading); and (ii) viscoplastic drops
with distinct aspect ratios present contrasting spreading dynamics even when they exhibit
the same volume, as observed by comparing figure 7(b) to figure 7(d), and/or figure 7( f )
to figure 7(h). Additionally, the volume of unyielded regions is accentuated by the increase
of H0/D0. More specifically, high aspect ratio drops tend to preserve their upper portion
(solid-like portion), while their bottom part spreads like a liquid, dissipating the kinetic
energy. Such a deformation localisation within the bottom portion of the material naturally
leads to Dmax/D0 levels greater than those observed for smaller aspect ratio objects
impacting at the same Rem,D − Pl. Hence, Dmax/D0 appears as an increasing function
of H0/D0. Obviously, once the kinetic energy is completely dissipated (|u(x, y, z, t)| =
0 m s−1), the whole drop behaves like a solid, as highlighted by the grey region in the last
snapshot of each case.

Aspect ratio effects are equally observed when considering the height-based Reynolds
number Rem,H . In figure 8, six numerical snapshots illustrate the time evolution of
spherical (figure 8a) and prolate drops (figure 8b,c) impacting at Rem,H = 150 and Pl =
0.07. As in figure 7, contours of the norm of the instantaneous velocity |u(x, y, z, t)| (made
dimensionless by the maximum instantaneous velocity |umax(t)|) on the centre x–z plane
are represented on the left side of the second through fifth snapshot of each displayed
case. Yielded (flowing; black) and unyielded (non-flowing; grey) regions are displayed on
their right side. As observed by comparing figures 8(a) and 8(c), drops sharing the same
volume but a distinct aspect ratio exhibit different velocity field, yielded/unyielded regions
and maximum relative spreading. However, at a fixed aspect ratio, the drops present the
same impact dynamics, regardless of their volume, as seen by examining figures 8(b) and
8(c).

Further aspect ratio effects are underlined by figure 9, in which the instantaneous volume
fraction of unyielded regions Vunyielded/Vtotal × 100[%] is plotted as a function of t/tmax
for spherical (open symbols) and prolate numerical objects (H0/D0 = 4; solid symbols).
Subfigures are related to Rem,D − Pl couples: Rem,D = 50 and Pl = 0.6 (figure 9a);
Rem,D = 150 and Pl = 0.07 (figure 9b); Rem,H = 150 and Pl = 0.07 (figure 9c).
Additionally, each symbol form (circle, triangle and diamond) indicates a specific drop
volume Vtotal. Inset plots stressing the minimum Vunyielded/Vtotal are also provided. At a
fixed Rem,D − Pl, drops with a similar aspect ratio exhibit equal Vunyielded/Vtotal curves,
regardless of their volume. Moreover, in each subfigure Vunyielded/Vtotal appears as an
increasing function of H0/D0. Such a result emerges from the fact that the augmentation
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Rem,D = 50, Pl = 0.6

H0 = D0 = 3.15 mm(a)

(b)

(c)

(d )

H0/D0 = 1
Dmax
D0

 = 1.12

H0 = D0 = 5 mm H0/D0 = 1
Dmax
D0

 = 1.12

H0 = 4D0 = 20 mm H0/D0 = 4
Dmax
D0

 = 1.31

H0 = 4D0 = 12.6 mm

�t∗ = 0.2

g

|u|/|umax|

z

x 0 0.5 1.0
Yielded Unyielded Time

H0/D0 = 4
Dmax
D0

 = 1.31

Rem,D = 150, Pl = 0.07

H0 = D0 = 3.15 mm(e)

( f )

(g)

(h)

H0/D0 = 1
Dmax
D0

 = 1.8

H0 = D0 = 5 mm H0/D0 = 1
Dmax
D0

 = 1.8

H0 = 4D0 = 20 mm H0/D0 = 4 Dmax
D0

 = 2.58

H0 = 4D0 = 12.6 mm H0/D0 = 4
Dmax
D0

 = 2.58

Figure 7. Six numerical snapshots of the spreading process for eight viscoplastic drops at two Rem,D − Pl
couples: Rem,D = 50 and Pl = 0.6 (figure 7a–d; left column); Rem,D = 150 and Pl = 0.07 (figure 7e–h; right
column). The interval �t between two subsequent images corresponds to 20 % of the necessary time to achieve
the maximum spreading tmax (�t∗ = �t/tmax = 0.2). The drop volumes, their aspect ratio and their maximum
relative spreading are respectively: (a) Vtotal = 1.64 × 10−8 m3, H0/D0 = 1, Dmax/D0 = 1.12; (b) Vtotal =
6.54 × 10−8 m3, H0/D0 = 1, Dmax/D0 = 1.12; (c) Vtotal = 2.62 × 10−7 m3, H0/D0 = 4, Dmax/D0 =
1.31; (d) Vtotal = 6.54 × 10−8 m3, H0/D0 = 4, Dmax/D0 = 1.31; (e) Vtotal = 1.64 × 10−8 m3, H0/D0 = 1,
Dmax/D0 = 1.8; ( f ) Vtotal = 6.54 × 10−8 m3, H0/D0 = 1, Dmax/D0 = 1.8; (g) Vtotal = 2.62 × 10−7 m3,
H0/D0 = 4, Dmax/D0 = 2.58; (h) Vtotal = 6.54 × 10−8 m3, H0/D0 = 4, Dmax/D0 = 2.58. The red surface
in both the first and the last snapshot indicates the 3-D drop–air interface. Contours of the norm of the
instantaneous velocity |u(x, y, z, t)| (made dimensionless by the maximum instantaneous velocity |umax(t)|)
on the centre x–z plane are represented on the left side of the second through fifth snapshot of each displayed
case. Yielded (flowing; |τ | > τ0; black) and unyielded (non-flowing; |τ | ≤ τ0; grey) regions are illustrated on
their right side.

of H0/D0 leads to a deformation localisation within the bottom part of the drop, while its
upper part tends to remain unyielded. In the opposite sense, the increase of Rem,D and the
decrease of Pl favour the fluidization of the drop, as observed by examining figures 9(a)
and 9(b). Hence, the drops tend to behave like a liquid when their impacting inertial stress
increases with respect of the viscoplastic one.

Another interesting aspect ratio effect is shown by figure 10, where the instantaneous
relative diameter D(t)/D0 is plotted as a function of t/tmax for spherical (figure 10a) and
prolate drops with H0/D0 = 4 (figure 10b) and H0/D0 = 8 (figure 10c). Their volume is
fixed at Vtotal = 2.62 × 10−7 m3. In each subfigure, three Rem,D − Pl couples are explored:
Rem,D = 80 and Pl = 0.002 (grey circles); Rem,D = 80 and Pl = 0.03 (blue triangles);
and Rem,D = 80 and Pl = 0.7 (red diamonds). First, at a constant aspect ratio, the drop
spreading is mitigated by the increment of Pl. Additionally, the enlargement of H0/D0
leads to higher Dmax/D0 levels at a fixed Rem,D − Pl couple (compare, for instance, the
grey circle curves in figures 10a, 10b and 10c). However, this effect tends to vanish when
plasticity increases and, consequently, the drop tends to behave like a solid (note that the
red diamond curves are close to one another, while the grey circle curves exhibit very
different relative spreading levels). Hence, drops impacting at higher Pl are less exposed
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Rem,H = 150, Pl = 0.07

H0 = D0 = 7.94 mm H0/D0 = 1 Dmax
D0

 = 1.8
(a)

H0 = 4D0 = 7.94 mm H0/D0 = 4 Dmax
D0

 = 2.37
(b)

H0 = 4D0 = 20 mm H0/D0 = 4 Dmax
D0

 = 2.37
(c)

�t∗ = 0.2

g

z

x
|u|/|umax| 0 0.5 1.0

Yielded Unyielded
Time

Figure 8. Six numerical snaphots obtained at Rem,H = 150 and Pl = 0.07 illustrate the spreading evolution
of spherical and prolate drops: (a) Vtotal = 2.62 × 10−7 m3, H0/D0 = 1, Dmax/D0 = 1.8; (b) Vtotal = 1.64 ×
10−8 m3, H0/D0 = 4, Dmax/D0 = 2.37; (c) Vtotal = 2.62 × 10−7 m3, H0/D0 = 4, Dmax/D0 = 2.37. The red
surface in both the first and the last snapshot indicates the 3-D drop–air interface. Contours of the norm of the
instantaneous velocity |u(x, y, z, t)| (made dimensionless by the maximum instantaneous velocity |umax(t)|) on
the centre x–z plane are represented on the left side of the second through fifth snapshot of each displayed case.
Yielded (flowing; black) and unyielded (non-flowing; grey) regions are illustrated on their right side.

to aspect ratio effects than those hitting the solid plate at Pl close to 0 (fully viscous
scenario).

3.2. Energy transfer analyses
Aiming to highlight the physical mechanism driving the aspect ratio effects presented
above, we carry out energy budget analyses. More specifically, in figure 11,
energy percentage curves are plotted as a function of t/tmax: kinetic energy (blue
triangles), surface energy (grey circles), gravitational energy (green squares) and
dissipation (red diamonds). The latter is divided into two parts: viscous dissipation
(orange triangles) and plastic dissipation (black asterisks). These terms are defined
as KE = (1/2)

∫
V ρ|u|2 dV (kinetic energy), SE = ∫

S σ dS (surface energy), G =∫
V ρgz dV (gravitational energy), W = ∫

t

∫
V k|γ̇ |m+1 + τ0|γ̇ | dV dt (dissipation), Wm =∫

t

∫
V k|γ̇ |m+1 dV dt (viscous dissipation) and Wτ0 = ∫

t

∫
V τ0|γ̇ | dV dt (plastic dissipation),

where V and S denote the drop volume and surface, respectively (similar to Sanjay, Lohse
& Jalaal 2021; Valette et al. 2021). Each computed energy term is made dimensionless by
the total energy of the system (= KE(t = t0) + SE(t = t0) + G(t = t0) + W(t = t0)) and
generically represented by variable ε∗. Aspect ratio effects on the spreading dynamics are
stressed using four different numerical drops: H0/D0 = 1 and Vtotal = 6.54 × 10−8 m3
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of dimensionless time t/tmax for spherical (open symbols) and prolate numerical objects (H0/D0 = 4; solid
symbols). For each subfigure, both the Reynolds number and the plastic number are kept fixed: (a) Rem,D =
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10−7 m3. In each subfigure, three Rem,D − Pl couples are explored: Rem,D = 80 and Pl = 0.002 (grey circles),
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(first line); H0/D0 = 1 and Vtotal = 2.62 × 10−7 m3 (second line); H0/D0 = 4 and
Vtotal = 2.62 × 10−7 m3 (third line); and H0/D0 = 4 and Vtotal = 6.54 × 10−8m3 (fourth
line). For each one of them, three Rem,D − Pl couples are considered: Rem,D = 112.5
and Pl = 0.002 (a,d,g, j); Rem,D = 112.5 and Pl = 0.05 (b,e,h,k); and Rem,D = 112.5 and
Pl = 0.5 (c, f,i,l).

For all 12 impact events displayed in figure 11, the drop kinetic energy is primarily
dissipated during its spreading (note that both the surface energy and the gravitational
one play a marginal role in comparison to the other energy terms, as mentioned in § 2).
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Figure 11. Energy percentage curves plotted as a function of dimensionless time t/tmax: kinetic energy (blue
triangles), surface energy (grey circles), gravitational energy (green squares) and dissipation (red diamonds).
The latter is divided into two parts: viscous dissipation (orange triangles) and plastic dissipation (black
asterisks). The computed terms are made dimensionless by the total energy of the system and generically
represented by variable ε∗. Aspect ratio effects on the spreading dynamics are pointed out with the aid
of four different numerical drops: H0/D0 = 1 and Vtotal = 6.54 × 10−8 m3 (first line); H0/D0 = 1 and
Vtotal = 2.62 × 10−7 m3 (second line); H0/D0 = 4 and Vtotal = 2.62 × 10−7 m3 (third line); and H0/D0 = 4
and Vtotal = 6.54 × 10−8m3 (fourth line). For each of them, three Rem,D − Pl couples are considered: Rem,D =
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(c, f,i,l).
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Nevertheless, the dissipative process exhibits particular signatures depending on Rem,D,
Pl and H0/D0. For the drops impacting at Rem,D = 112.5 and Pl = 0.002, for example,
plasticity is negligible and, consequently, dissipation is basically driven by the viscous
stress (k|γ̇ |m). However, when increasing Pl to 0.05 and keeping Rem,D and H0/D0
fixed (middle-column results), plastic dissipation becomes comparable to the viscous
one (τ0|γ̇ | ≈ k|γ̇ |m+1). Interestingly, the former becomes slightly dominant by increasing
H0/D0 from 1 (spherical) to 4 (prolate), as highlighted by opposing the middle-column
results above and below the black horizontal line. Such a result is rather in line with the
augmentation of the unyielded volume fraction induced by the increase of aspect ratio
exposed in figure 9. It clearly indicates that the shape of the drop affects the dissipative
mechanism during the spreading. Logically, plastic effects are strengthened by the increase
of Pl, eventually leading to a plasticity-driven dissipation, as shown by the third-column
results. Lastly, it is worth noting that the volume of the drop does not affect the energy
percentage curves displayed in figure 11, which can be observed by comparing the top-line
curves with the second-line ones (and/or the third-line with the fourth-line curves) at fixed
Rem,D and Pl.

Supplemental energy transfer analyses are conducted in figures 12 and 13, respectively,
for spherical and H0/D0 = 4 prolate numerical drops with the same volume Vtotal =
2.62 × 10−7 m3. Each subfigure is related to a specific Rem,D − Pl couple: Rem,D = 112.5
and Pl = 0.002 (figures 12a and 13a); Rem,D = 112.5 and Pl = 0.05 (figures 12b and
13b); and Rem,D = 112.5 and Pl = 0.5 (figures 12c and 13c). They are composed of
six upper-line snapshots and six bottom-line snapshots (�t∗ = t/tmax = 0.2). The first
one shows the 3-D drop–air interface in red. From the second to the last upper-line
snapshot, |γ̇ |/(U0/H0) contours are displayed on the left side of the centre x–z plane, while
yielded (black) and unyielded (grey) regions are shown on the right side. Furthermore,
from the second to the last bottom-line snapshot, the dissipative process is stressed
by k|γ̇ |m+1/(ρU3

0/H0) and τ0|γ̇ |/(ρU3
0/H0) contours on the left and right side of the

centre x–z plane, respectively. Logically, greater dissipation levels are observed within
high deformation rate zones developed at the vicinities of the solid substrate due to the
imposed no-slip condition. As Pl moves from 0.002 to 0.5, dissipation switches from a
viscous-dominated process to a plastic-dominated one, and tends to occur exclusively in
the bottom portion of the drop, where the shear stresses overpass τ0. Such a localisation
effect is also favoured by the augmentation of H0/D0 (figure 13b,c), since shear stresses
tend to vanish far from the wall (in the upper portion of the drops) for any impact event.
Note, for example, that more than 50 % of the prolate drop shown by the second snapshot
in figure 13(a) exhibits a very low deformation rate (blue contour) against less than 25 %
for the spherical drop displayed by the corresponding snapshot in figure 12(a). It is equally
important to emphasise that the vicinities of the interfaces between yielded (liquid-like)
and unyielded (solid-like) zones are characterised by low deformation rate levels, which
naturally makes them plasticity-driven from a dissipative standpoint (plastic dissipation
is proportional to |γ̇ |, whereas viscous dissipation is comparable to |γ̇ |m+1). Hence, the
growth of such interfaces induced by the increase of H0/D0 may lead to a swelling of the
plastic dissipation, as observed by comparing spherical to prolate energy curves at a fixed
Rem,D − Pl couple in figure 11. Lastly, despite the differences observed at low and high
Pl, it is worth noting that, from an average viewpoint, the height of the dissipative layer
remains comparable to Hmin, as pointed out by the magenta dashed line in figures 12(b)
and 13(b). For this reason, Hmin is used to estimate the mean viscous dissipation in the
following subsection.
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Figure 12. Spherical numerical drops (H0/D0 = 1) with the same volume Vtotal = 2.62 × 10−7 m3. Each
subfigure is related to a specific Rem,D − Pl couple: (a) Rem,D = 112.5 and Pl = 0.002; (b) Rem,D = 112.5 and
Pl = 0.05; (c) Rem,D = 112.5 and Pl = 0.5. They are composed of six upper-line snapshots and six bottom-line
snapshots (�t∗ = t/tmax = 0.2). The first one shows the 3-D drop–air interface in red. From the second to the
last upper-line snapshot, |γ̇ |/(U0/H0) contours are displayed on the left side of the centre x–z plane, while
yielded (black) and unyielded (grey) regions are shown on the right side. Additionally, from the second to
the last bottom-line snapshot, the dissipative process is stressed by k|γ̇ |m+1/(ρU3

0/H0) and τ0|γ̇ |/(ρU3
0/H0)

contours on the left and right side of the centre x–z plane, respectively.

3.3. Scaling laws: maximum spreading, spreading time, minimum height and final shape
Based on the energy transfer analyses conducted above, we propose scaling laws for
Dmax by considering at least two spreading regimes: inertio-viscous (figure 11a,d,g, j) and
inertio-plastic (figure 11c, f,i,l). The scaling laws are developed in the following paragraph.

In the inertio-viscous spreading regime, the impacting kinetic energy of the drop
(∼ρU2

0H0D2
0) is primarily dissipated by viscous effects (∼k(Uc/Hmin)

mD3
max, where

Uc represents a characteristic dissipation velocity, which will be approximated, at first
glance, as U0). On the other hand, in the inertio-plastic spreading regime, the kinetic
energy is mainly dissipated by plastic effects (∼τ0D3

max). Together with mass conservation
(H0D2

0 ∼ HminD2
max), we conclude that Dmax/D0 scales as [Rem,D(H0/D0)

m+1]1/2m+3

in the former scenario and [(1/Pl)(H0/D0)]1/3 in the latter. For the inertio-viscous
scaling, aspect ratio effects on Dmax/D0 are amplified by the growth of Rem,D. However,
for the inertio-plastic scaling, the drop spreading becomes less exposed to aspect ratio
effects as Pl increases. Such tendencies are rather in line with the results brought up by
figure 10. It is also worth noting that when working with spherical drops (H0/D0 = 1)
we recover scaling laws previously reported in the literature (Luu & Forterre 2009),
i.e. Rem,D

1/2m+3 (inertio-viscous spreading) and (1/Pl)1/3 (inertio-plastic spreading).
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Figure 13. Prolate numerical drops (H0/D0 = 4) with the same volume Vtotal = 2.62 × 10−7 m3. Subfigures
are related to specific Rem,D − Pl couples: (a) Rem,D = 112.5 and Pl = 0.002; (b) Rem,D = 112.5 and
Pl = 0.05; (c) Rem,D = 112.5 and Pl = 0.5. They are composed of six upper-line snapshots and six bottom-line
snapshots (�t∗ = t/tmax = 0.2). The first snapshot shows the 3-D drop–air interface in red. From the second
to the last upper-line snapshot, |γ̇ |/(U0/H0) contours are displayed on the left side of the centre x–z plane,
while yielded (black) and unyielded (grey) regions are shown on the right side. Additionally, from the second
to the last bottom-line snapshot, the dissipative process is stressed by k|γ̇ |m+1/(ρU3

0/H0) and τ0|γ̇ |/(ρU3
0/H0)

contours on the left and right side of the centre x–z plane, respectively.

Moreover, for Newtonian spherical drops, m is equal to 1, and so Dmax/D0 ∼ Rem,D
1/5, as

widely cited in the literature (Clanet et al. 2004; Laan et al. 2014; Josserand & Thoroddsen
2016; Wildeman et al. 2016).
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By equating the scaling laws presented above, we define the impact number I =
(1/Pl)1/3(1/Rem,D)1/2m+3(H0/D0)

−m/6m+9 = 1, a unifying dimensionless parameter for
both the inertio-plastic and the inertio-viscous spreading that approaches to 1 at the
transition between the mentioned regimes. In other words, regime transition is expected to
occur at I ≈ 1.

The validity of the above theoretical arguments is corroborated by figure 14, in which
the rescaled maximum spreading (Dmax/D0)/[Rem,D(H0/D0)

m+1]1/2m+3 is plotted as
a function of I not only for spherical, prolate, cylindrical and prismatic numerical
objects but also for spherical and non-spherical experimental drops (asterisks; error
bars are comparable to the size of the symbols). More specifically, in figure 14(a) the
results are plotted using the impact number definition given by Luu & Forterre (2009),
(1/Pl)1/3(1/Rem,D)1/2m+3, while in figure 14(b) the impact number developed in the
present work is used. Comparing these subfigures, we clearly note that, when the aspect
ratio effects are taken into account, the points collapse across a single path divided into
three regions linked with three spreading regimes: inertio-plastic (I; I ≤ 1; blue box); the
inertio-viscous (II; I ≥ 3; red box); and a mixed regime (III; 1 < I < 3; white box), for
which inertial, viscous and plastic effects all play an important role (the viscous dissipation
is comparable to the plastic one). The mixed inertio-visco-plastic region is defined based
on the detachment of the points from both the inertio-plastic scaling (black dash-dotted
line) and the inertio-viscous one (black dotted line). Interestingly, for the impact number
interval explored here (0.2 ≤ I ≤ 100), the results can be fitted by the following Padé
approximant (polynomial expression)

P = 0.9
I3 + I2 + I

I3 + I2 + I + 1
, (3.1)

which in turn is represented by the red line in figure 14(b). Padé approximants similar to
that given in (3.1) are typically employed in drop impact works to represent master curves
(Laan et al. 2014; Josserand & Thoroddsen 2016). Hence, Dmax/D0 can be predicted by
the following equation:

Dmax

D0
= P

[(
H0

D0

)m+1

Rem,D

]1/2m+3

. (3.2)

Additionally, thanks to the mass conservation (
√

H0/Hmin ∼ Dmax/D0), we can plot the
rescaled minimum height

√
H0/Hmin/[Rem,D(H0/D0)

m+1]1/2m+3 as a function of the
impact number, as illustrated in figure 14(c). Once again, the points collapse across a single
path divided into the three regimes mentioned previously (only numerical results related
to prolate drops are shown, for clarity). In inertio-plastic impact events the upper part of
the drop tends to preserve its initial shape, while its bottom portion spreads radially. As a
result, prolate impacting objects exhibit a more conical shape at the end of the spreading
process, as illustrated by the blue drop (see also figures 2c and 13c). However, as plastic
effects are attenuated, and consequently I increases, the drop final shape becomes flattened
(pancake-like, in red), which characterises inertio-viscous impact events (see figures 4b
and 13a).

It is important to underline that, as observed by examining figure 14(a) with figure 14(b),
the augmentation of H0/D0 can induce an increase of more than 80 % in Dmax/D0, in
respect to spherical objects. Additionally, although shape effects on the impact number
stay relatively low even for the highest aspect ratio drop considered here (<15 % for
H0/D0 = 8), they can eventually lead to spreading regime changes, especially for impact
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Figure 14. (a) Rescaled maximum spreading plotted using the scaling laws and the impact number
definition given by Luu & Forterre (2009): (Dmax/D0)/[Rem,D]1/2m+3 against (1/Pl)1/3(1/Rem,D)1/2m+3.
(b) Rescaled maximum spreading plotted using the scaling laws and the impact number definition
taking the drop aspect ratio into account (present work): (Dmax/D0)/[Rem,D(H0/D0)

m+1]1/2m+3 against
(1/Pl)1/3(1/Rem,D)1/2m+3(H0/D0)

−m/6m+9. The symbols denote aspect ratio values (for the numerical
simulations) or intervals (for the experiments; asterisks). (c) Rescaled minimum height as a function of the
impact number (only numerical results related to prolate drops are plotted, for clarity). (d) Comparisons
between the spreading time tmax obtained from numerical simulations using prolate drops, and the one predicted
by combining (3.4) and (3.2).

events at I close to 1 and/or 3 (critical values giving the interfaces between the three impact
zones illustrated in figure 14b,c). Hence, the role of drop shape in the impact/spreading
process cannot be overestimated.

Lastly, an expression for the drop maximum spreading time is proposed through energy
conservation arguments, by considering both the viscous and the plastic source of energy
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dissipation, i.e.

ρU2
0H0D2

0 ∼ k(Uc/Hmin)
mD3

max + τ0D3
max. (3.3)

By defining the spreading time tmax = Dmax/Uc, and together with mass conservation
(H0D2

0 ∼ HminD2
max), we find that

tmax =

⎡
⎢⎢⎢⎣

Ak
(

Dmax

D0

)3m+3 (
D0

H0

)m+1

BρU2
0 − Cτ0

(
D0

H0

) (
Dmax

D0

)3

⎤
⎥⎥⎥⎦

1/m

, (3.4)

where A, B and C are adjustable prefactors, and Dmax/D0 can be approximated as
P[Rem,D(H0/D0)

m+1]1/2m+3 according to (3.2), ultimately giving us a predicted tmax. The
latter is plotted against the measured tmax in figure 14(d) for a wide range of H0/D0 with
A = 1.25, B = 0.4 and C = 1 (for clarity, only numerical results are shown). As observed,
both the predicted and the measured spreading time are in good agreement with each other.

In short, figure 14 emphasises that the viscoplastic drop-spreading dynamics is deeply
affected by H0/D0, which in turn reveals the potential of using drop shape to control
spreading.

4. Concluding remarks and perspectives

In this paper we have experimentally and numerically studied the normal impact of
viscoplastic drops on a solid plate under negligible capillary effects. We have extended
the seminal work reported by Luu & Forterre (2009) by highlighting the fundamental
role of shape in the normal impact of viscoplastic drops. In this connection, spherical,
prolate, cylindrical and prismatic drops have been analysed and their rheological behaviour
was expressed through a classical Herschel–Bulkley constitutive equation. Supplemental
non-Newtonian signatures such as microstructural orientation/anisotropy and thixotropy
have not been considered.

High aspect ratio viscoplastic drops tend to preserve their upper portion (solid-like
portion), while their bottom part spreads like a liquid, dissipating the kinetic energy. Such
a deformation localisation within the bottom portion of the material naturally leads to
Dmax/D0 levels greater than those observed for smaller aspect ratio objects impacting at
the same Rem,D − Pl. Hence, Dmax/D0 appears as an increasing function of H0/D0.

In short, results show that the drop impacting kinetic energy is primarily dissipated
through viscoplastic effects during the spreading process, giving rise to three flow
regimes: (i) inertio-viscous (balancing kinetic and viscous stresses); (ii) inertio-plastic
(balancing the kinetic stress and yield stress); and (iii) mixed inertio-visco-plastic
(balancing kinetic and viscoplastic stresses). They are highly affected by the
initial aspect ratio of the drop, and can be found using the impact number I =
(1/Pl)1/3(1/Rem,D)1/2m+3(H0/D0)

−m/6m+9. The drop maximum spreading, minimum
height, spreading time and final shape are all directly linked with the impact number as
well.

Our study has direct applications in a number of impact-based situations, which includes
spraying generation, firefighting, inkjet printing, atomization, viscoplastic water entry and
3-D printing of organs, tissues, prosthetics and electronic components, among others
(Modak et al. 2020; Murphy & Atala 2020; Vijayavenkataraman et al. 2018; Jalaal
et al. 2019; Lorenceau & Quéré 2003; Bordoloi & Longmire 2014; Ryu et al. 2017;
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Figure 15. Three-step deformation rate rheological tests: 57 % bentonite (a), 3 % Carbopol (b), ‘Nature’
ketchup (c) and ‘Amora’ mayonnaise (d). These tests were carried out using an ARES-G2 rheometer (TA
Instruments) equipped with a cone-plate geometry. At each step, the shear viscosity is plotted as a function of
time (over 60 s) at a specific deformation rate: 0.1 s−1 at steps 1 and 3; and 100 s−1 at step 2. The black arrows
indicate the recovery process.

Kumar et al. 2018; Soto et al. 2018; Su et al. 2020). More specifically, the mentioned
applications could benefit from the diagrams highlighted in figure 14, which ultimately
could be used to predict and control the spreading dynamics (spreading time, maximum
spreading, minimum height and final shapes) of prolate viscoplastic drops impacting on a
solid surface (in purely viscoplastic scenarios).

Finally, in terms of perspectives, since complex fluids are highly diffused in industrial
domains, it would be interesting to consider in future works supplemental non-Newtonian
effects on the spreading dynamics, such as those related to elasticity and/or thixotropy.
Similar analyses using bentonite suspensions at lower concentrations (<50 % and,
consequently, k ≈ 0.01 Pa sm and τ0 < 50 Pa) would be welcome as well since they could
be used to explore supplemental spreading regimes balanced by the inertial stress, the
capillary pressure and the yield stress.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.926.
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Appendix. Thixotropy

Aiming to underline thixotropic effects, we present in figure 15 three-step deformation
rate rheological tests for the samples shown in figure 5: 57 % bentonite (figure 15a), 3 %
Carbopol (figure 15b), ‘Nature’ ketchup (figure 15c) and ‘Amora’ mayonnaise (figure 15d).
These tests were carried out using an ARES-G2 rheometer (TA Instruments) equipped
with a cone-plate geometry. At each step, the shear viscosity is plotted as a function of time
(over 60 s) at a specific deformation rate: 0.1 s−1 at steps 1 and 3; and 100 s−1 at step 2.
An acquisition rate of 10 points per second was chosen. As observed, thixotropic recovery
time scales tthixotropy vary from O(100) s (figure 15a–c) to O(101) s (figure 15d), which
is at least 100 times longer than the analysed impact events (tmax ≈ O(10−2) s). Hence,
thixotropic effects have not been considered in our theoretical analyses. Nevertheless, since
tthixotropy � tmax, future numerical studies focusing on both the local and time evolution of
the breakdown/recovery process during the drop spreading would be more than welcome.
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