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Abstract
Path planning for the unmanned aerial vehicle (UAV) is to assist in finding the proper path, serving as a critical role
in the intelligence of a UAV. In this paper, a path planning for UAV in three-dimensional environment (3D) based
on enhanced gravitational search algorithm (EGSA) is put forward, taking the path length, yaw angle, pitch angle,
and flight altitude as considerations of the path. Considering EGSA is easy to fall into local optimum and conver-
gence insufficiency, two factors that are the memory of current optimal and random disturbance with chaotic levy
flight are adopted during the update of particle velocity, improving the balance between exploration and exploita-
tion for EGSA through different time-varying characteristics. With the identical cost function, EGSA is compared
with seven peer algorithms, such as moth flame optimization algorithm, gravitational search algorithm, and five
variants of gravitational search algorithm. The experimental results demonstrate that EGSA is superior to the seven
comparison algorithms on CEC 2020 benchmark functions and the path planning method based on EGSA is more
valuable than the other seven methods in diverse environments.

1. Introduction
Unmanned aerial vehicle (UAV) is a kind of airplane without human pilots on board [1]. In recent
decades, benefiting from the development of intelligence science and technology, the UAV has the advan-
tage of flexibility, high safety, and low cost compared with the manned vehicle, showing great potential in
military and civilian fields, such as reconnaissance, surveillance, rescue, and search in various complex
environments [2–5]. Generally speaking, as shown in Fig. 1, path planning targets at offering an appro-
priate path from the starting point to the goal point, simultaneously avoiding the obstacles and meeting
the requirements [6–8], e.g., time, energy [9], and distance, which is one of the critical technologies
determining the autonomy level of UAV in performing a mission.

Over the past few years, many scholars have done a lot of research and put forward a variety of
methods for UAV path planning [10]. Graph-based algorithms, such as probabilistic roadmaps algorithm
[11], A star algorithm [12], rapidly exploring random trees based algorithms [13], are a kind of path
planning method, converting the search area into a graph and regarding the grid cell as a node in the graph
structure [14]. Regular grids are often applied in the environmental model, but they are inappropriate in
the larger area environment due to high memory and computation and low precision. To eliminate the
shortcomings of regular grids, Shah and Gupta employed quadtree to improve the computing efficiency
of A star on visibility graph nodes [15]. Lee et al. applied the Dijkstra algorithm to obtain the path,
using the quadtree-based graph that is generated by the quadtree structure [16]. Potential field-based
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Figure 1. An example for UAV path planning.

method is a class of effective path planning method, and artificial potential field method regards the
target and obstacle as the attractive field and repulsive field, respectively, pulling the UAV to move
toward the destination and away from obstacles to obtain a proper path [17]. To solve the problem that
this algorithm is easy to get stuck at the local optimum, Sun et al. integrated the distance factor and
jump strategy into artificial potential field, avoiding the local minimum [18]. Considering that the UAV
moves very quickly and cannot fly to a specific location and stop moving, Woods and La put forward an
extended potential field controller, utilizing the relative velocity rather than position between the UAV
and a target or obstacles [19].

Artificial neural network is inspired by the biological neural network and can be considered as an
information processing system composed of interconnected neurons, having learning and reasoning abil-
ity [20–23]. One of the challenges for online path planning is that only limited information is detected in
the real-time environment, Liu et al. designed a residual convolutional neural network-based method to
predict the optimal path of similar scenarios, by learning the optimal paths in the offline scenarios [24].
For tracking errors generated by ignoring the UAV trajectory tracking controller, Liu et al. put forward a
trajectory mapping network-based control oriented highly feasible path planning method [25]. Different
from the artificial neural network with learning ability, fuzzy logic mainly takes expert experience and
knowledge as the core of reasoning and decision making. Adjusting the parameters of member functions
and rules in fuzzy logic needs lots of trial and error, Sathyan et al. designed a genetic fuzzy clustering for
path planning, adopting the genetic algorithm to rectify the parameters in fuzzy logic [26]. To determine
the parameters of differential evolution in path planning, Adhikari et al. put forward a fuzzy adaptive
differential evolution, transforming the path planning problem into a multiobjective optimization and
applying fuzzy logic to optimize the parameters of differential evolution [27]. Evolutionary algorithm,
with the guidance of the principles of evolution and natural genetics, is a kind of random search and opti-
mization technology and successfully solves various engineering problems [28–31]. For path planning
in a disaster situation, a novel dynamic group-based cooperative optimization algorithm for UAV path
planning is proposed by Qadir et al, considering the distance between the start point, control point, and
end point [32]. To get over the disadvantages of existing algorithms, such as falling into local optimal
solutions and slow convergence speed, Yu et al. invented a novel hybrid particle swarm optimization for
UAV path planning, combining simulated annealing algorithm to improve algorithm performance [33].

There are many mature researches on two-dimensional (2D) path planning [34, 35], and some
simple three-dimensional (3D) path planning problems can indeed be dealt with 2D path planning
algorithm, overlooking some important information, e.g., flight altitude, pitch angle, and height of obsta-
cle, However, in complex 3D space, more constraints and spatial information should be considered to
ensure the optimality and feasibility of the path. For a complex optimization problem, these heuristic
algorithms, e.g., moth flame optimization algorithm, are prone to fall into local minima and have the
problem of slow convergence rates. Although gravitational search algorithm has some advantages over
other heuristic algorithms, the standard gravitational search algorithm still has a few issues, e.g., no
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effective acceleration mechanism and poor local search ability [36, 37]. Therefore, a 3D path planning
method based on enhanced gravitational search algorithm (EGSA) is put forward in this paper. The path
length, yaw angle, pitch angle, and flight height are taken into account in path planning, and the memory
and random disturbance are adopted to enhance the balance ability of exploration and exploitation for
EGSA. The main contributions and innovations are as follows:

1) EGSA is proposed. Each particle in the population has the memory ability and random dis-
turbance ability to improve the performance of the algorithm, and the performance is illustrated by
comparing EGSA with seven peer algorithms on CEC 2020 benchmark functions. Moreover, the effect
of acceleration, memory ability of particle, and random disturbance are also carefully analyzed.

2) A path planning method is put forward, considering the path length, yaw angle, pitch angle, and
flight altitude for the UAV. The performance of the method is tested and analyzed in simple and complex
environments.

3) The effect of population size on path planning is explained, determining the population size by the
path planning results and computing resource.

The structure of this paper is organized as follows: The preliminaries, including gravitational search
algorithm (GSA) and chaotic tent map, are introduced in Section 2. Section 3 explains the proposed
algorithm EGSA for 3D path planning in detail. Subsequently, the experimental settings and results are
given in Section 4. Finally, the conclusions and future works are elaborated in the last section.

2. Preliminaries
In this section, the description of the gravitation search algorithm and chaotic tent map is introduced,
respectively.

2.1. Gravitational search algorithm
Gravitational search algorithm, proposed by Rashedi et al. in 2009, is inspired by the law of gravity
and motion [38, 39]. The solutions are viewed as particles, interacting with each other and moving in
D dimensional search space, whose performance is estimated by the mass. The better the particle, the
greater mass. Under the action of universal gravitation, the particles will move toward the particle with
a large mass, approaching the optimal solution. The flowchart of GSA is presented in Fig. 2.

Assume that there are N particles in D dimensional space, whose positions and velocities are
described as Eqs. (1) and (2).

Xi(t) = (
x1

i (t), x2
i (t), . . . , xd

i (t), . . . , xD
i (t)

)
, i = 1, 2, . . . , N (1)

Vi(t) = (
v1

i (t), v2
i (t), . . . , vd

i (t), . . . , vD
i (t)

)
, i = 1, 2, . . . , N (2)

The mass Mi(t) of particle Xi(t) is related to its fitness, for a minimization problem, mass can be
calculated by Eqs. (3)-(6):

Mi(t) = mi(t)∑N
j=1 mj(t)

(3)

mi(t) = fiti(t) − fitworst(t)

fitbest(t) − fitworst(t)
(4)

fitbest(t) = mini∈{1,...,N}fiti(t) (5)

fitworst(t) = maxi∈{1,...,N}fiti(t) (6)

where t stands for the number of iterations and fiti(t) represents the fitness of the particle Xi(t).
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Figure 2. The flowchart of GSA.

As the role of gravity, at each generation t, the force Fij(t) between particle Xi(t) and Xj(t) can be
defined as follows:

Fd
ij(t) = G(t)

Mi(t) · Mj(t)

Rij(t) + ε

(
xd

j (t) − xd
i (t)

)
(7)

where Rij(t) denotes the Euclidean distance between the particle Xi(t) and Xj(t);ε is a constant, preventing
the dominator from being 0. G(t) represents the gravitational constant, which can adjust the gravity and
be described as Eq. (8):

G(t) = G0e
−α t

T (8)

where G0 refers to the initial gravitational constant, α is the adaptive adjustment coefficient, and T
represents the maximum iterations.

To improve the performance of the algorithm, the total force acting on the particle Xi(t) from the top
K best particles is defined as follows:

Fd
i (t) =

∑
j∈Kbest ,j �=i

randjF
d
ij(t) (9)

where Kbest is the set storing the top K best particles, decreasing linearly over iterations; randj stands for
a random value between 0 and 1.

According to the law of motion, the acceleration a of the particle Xi(t) can be achieved by Eq. (10),
using its mass and resultant force.

ad
i (t) = Fd

i (t)

Mi(t)
(10)

Finally, the position xd
i (t) and velocity vd

i (t) of the ith particle can be updated by Eqs. (11) and (12),
respectively.

vd
i (t + 1) = randi · vd

i (t) + ad
i (t) (11)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (12)

where randi is a random value within the interval [0, 1].
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Figure 3. The tent map, in a case at a = 0.7.

2.2. Tent map
The tent map is one of the noninvertible and piecewise linear discrete maps [40], which is given by
Eq. (13).

cht+1 = f (cht) =

⎧⎪⎪⎨
⎪⎪⎩

cht

a
, 0 ≤ cht ≤ a

1 − cht

1 − a
, a < cht ≤ 1

(13)

where a is referred to as the control parameter, and cht represents the output chaotic sequence. Figure 3
characters the orbit of the tent map during the iteration, and the maximal value is obtained at cht = 0.7.

3. Proposed method
This section first gives the environment model and defines the overall cost function. Then the proposed
path planning algorithm is described. Finally, the computational complexity of EGSA is analyzed.

3.1. Modeling the environment
Suppose, S and T are the start and terminal points of the task for a UAV, whose corresponding coordi-
nates are (x1, y1, z1) and (xD, yD, zD), respectively. The coordinates of S and T in 3D space are the main
objects to be considered, just as shown in Fig. 4, ignoring the obstacles in the environment. D − 1 equal
parts are got by evenly dividing [x1, xD] along the X-axis, the vertical planes (β1, β2, . . . , βd, . . . , βD)
that are perpendicular to X-axis are attained according to the points (x1, x2, . . . , xd, . . . , xD) in the
X-axis. The point Pd = (xd, yd, zd) is taken from the plane βd. A path in three-dimensional space
can be achieved by connecting these points (P1, . . . , Pd, . . . , PD) in turn, which can be described as
P = {S, (x2, y2, z2), . . . , (xd, yd, zd), . . . , (xD−1, yD−1, zD−1), T}. Generally, the division method in X-axis
can also be revised to fulfill our needs.
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Figure 4. The three-dimensional environmental model.

Figure 5. Performance constraints of UAV.

The optimal path problem can be transformed into optimizing a coordinate sequence to satisfy con-
straints and minimize the objective function in 3D space. Since some coordinates are set in advance and
too large variable dimension would magnify the computational complexity, the path variable P can be
expressed as P = (y2, z2, y3, z3, . . . , yd, zd, . . . , yD−1, zD−1), reducing D − 2 variables.

3.2. Cost function
When performing a task, time and energy consumption are two important factors to be considered, which
are bound up with the path length. The greater the path length, the more time and energy required, and
vice versa. So, the path length is a very critical factor in the optimal path, which can be described as
follows:

F1 =
D−1∑
d=1

Fd
1 (14)

Fd
1 =

√
(xd − xd+1)

2 + (yd − yd+1)
2 + (zd − zd+1)

2 (15)

where Fd
1 denotes the Euclidean distance between the node d and its next node d + 1, (xd, yd, zd) and

(xd+1, yd+1, zd+1) are the coordinates of node d and its next node d + 1, respectively.
Due to the performance constraints of UAV, the UAV will lose control when the yaw angle or pitch

angle is too large. Therefore, the smoothness of the path needs to be taken into account, just as shown in
Fig. 5, the yaw angle and pitch angle are two primary factors to affect the smoothness and feasibility of
the path. Pd−1, Pd, and Pd+1 are three adjoining points, whose corresponding projection points are P′

d−1,
P′

d, and P′
d+1 in the plane OXY , respectively, and the projection of point Pd on the line Pd+1P′

d+1 is P′′
d+1.

The yaw angle γd, indicating the turning of the UAV in the horizontal plane, denotes the angle between
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−−−→
P′

d−1P′
d and

−−−→
P′

dP′
d+1, which can be calculated by Eqs. (16) and (17). So the turning cost function could

be computed by Eq. (19).

γd = arccos

⎛
⎝

−−−→
P′

d−1P′
d · −−−→

P′
dP′

d+1∥∥∥−−−→
P′

d−1P′
d

∥∥∥ ·
∥∥∥−−−→

P′
dP′

d+1

∥∥∥

⎞
⎠ (16)

γd = arccos

(
(xd − xd−1, yd − yd−1) · (xd+1 − xd, yd+1 − yd)

T

‖xd − xd−1, yd − yd−1‖ · ‖xd+1 − xd, yd+1 − yd‖
)

(17)

Fd
2 =

⎧⎨
⎩

0, if γd ≤ γmax

kt · γd, otherwise
(18)

F2 =
D−1∑
d=2

Fd
2 (19)

where ‖ · ‖ is the Euclidean distance, kt and γmax are the coefficient and threshold of yaw angle,
respectively, and (xd−1, yd−1, zd−1) denotes the coordinates of the point Pd−1.

The pitch angle, denoting the climbing angle in the vertical plane, represents the angle between the
projection

−−−→
PdP′′

d+1 of −−−→
PdPd+1 on the horizontal plane and −−−→

PdPd+1, which can be calculated using Eqs. (20)
and (21). The corresponding climbing cost function could be described by Eq. (23).

θd = arctan

⎛
⎝ |zd+1 − zd|∥∥∥−−−→

P′
dP′′

d+1

∥∥∥

⎞
⎠ (20)

θd = arctan

( |zd+1 − zd|
‖(xd − xd+1, yd − yd+1)‖

)
(21)

Fd
3 =

⎧⎨
⎩

0, if θd ≤ θmax

kc · θd, otherwise
(22)

F3 =
D−1∑
d=1

Fd
3 (23)

where | · | is the absolute value operation, kc and θmax stand for the coefficient and threshold of pitch
angle, respectively.

A UAV cannot touch buildings or break through the maximum altitude of flight, and the higher the
flight altitude, the greater the possibility of being monitored by radar. Considering the constraints of
geography, radar, and UAV performance, it is significant for a UAV to fly only within the feasible altitude
range. Assume that hmin and hmax are the maximum and minimum feasible flight altitudes, respectively.
Then the height cost function can be described by Eq. (25):

Fd
4 =

⎧⎨
⎩

0, ifh′
min ≤ zd ≤ hmax

kh · max
(
zd − hmax, h′

min − zd

)
, otherwise

(24)

h′
min = hmin + h(xi, yi)

F4 =
D∑

d=1

Fd
4 (25)
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where zd is the current flight altitude or the coordinate of UAV in the Z-axis, and kh denotes the flight
height coefficients of the UAV.

In conclusion, the overall cost function can be represented by Eq. (26), considering the path length,
UAV performance, and environmental factors for the path P.

F(P) =
4∑

t=1

Ft(P) (26)

3.3. Enhanced gravitational search algorithm for UAV path planning
As we know, exploration denotes the process of accessing the entire search space, while exploitation is
the process that visiting the neighborhood of the most promising points, and these two processes have
a great influence on the population-based algorithm with evolutionary behavior [41–43]. The particles
in particle swarm optimization, having memory function, can employ the social information to move
toward the current optimal particle, which can promote optimization. Since the current optimal solution
is uncertain to be the global optimal solution, perturbation is necessary, aiding the particle to jump out
of the local optimal solution. Therefore, an EGSA is proposed, where each particle has the memory
ability and random disturbance ability to improve the performance of the algorithm.

Levy flight is a non Gaussian random process, whose essence is a random walk derived from Levy
stable distribution. The step length is vital for Levy flight, which determines whether a particle can jump
out of the local solution. Since the proper step length is intractable to set, chaos is a good idea, consid-
ering randomness, ergodicity, and sensitivity to the initial value for chaos. Therefore, the combination
of chaos and Levy flight is applied as a random disturbance, boosting the balance ability of exploration
and exploitation. The velocity Eq. (11) can be rewritten as Eq. (27).

vd
i (t + 1) = randi · vd

i (t) + c1(t) · ad
i (t) + c2(t) · (gbestd − xd

i (t)
) + c3(t) · cht · Levy(β) (27)

c1(t) = −5 ·
( t

T

)3

+ 5 (28)

c2(t) = 2.6 ·
( t

T

)2

(29)

c3(t) = 2.58 ·
( t

T

)10

(30)

Levy(β) = μ

|ν|1/β
(31)

where gbestd denotes the dth dimension of the current optimal solution; c1, c2, and c3 are named as
the coefficients of acceleration, memory, and disturbance, respectively; μ and ν follow the normal
distribution as follows:

μ ∼ N(0, 1)

ν ∼ N
(
0, σ 2

ς

)

σς =
(


(1 + β) sin(πβ/2)


((1 + β) /2) β2(β−1)/2

)1/β

(32)

where 
 is referred to as the standard gamma function.
In summary, the pseudocode of our proposed EGSA for UAV path planning in 3D space is shown in

Algorithm 1.
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Algorithm 1. EGSA for UAV path planning
Input: dimension D, maximum number of iterations T , population size N, gravitational constant G0

and α, start points (x1, y1, z1), terminal point (xD, yD, zD)
Output: the best particle or path
1: % Initialization
2: Generate the population X and velocity V;
3: Calculate the overall cost or fitness of each particle using Eq. (26);
4: Obtain the current optimal particle gbest;
5: % Main loop;
6: while t < T do
7: Update the gravitation constant G(t) by Eq. (8);
8: Calculate the coefficients c1, c2, and c3 of acceleration, memory, and disturbance, respectively,

using Eqs. (28)-(30);
9: Get the fitbest(t) and fitworse(t) by Eqs. (5) and (6), respectively;

10: for all i = 1: N do
11: Obtain the mass M(t) by Eq. (3);
12: end for
13: for all i = 1: N do
14: for all d = 1: D do
15: Compute the acceleration ad

i (t) using Eq. (10);
16: Update the particle xd

i and velocity vd
i by Eqs. (12) and (27), respectively;

17: end for
18: end for
19: for all i = 1: N do
20: Evaluate the fitness fiti(t) for each particle using Eq. (26);
21: end for
22: Update the current optimal particle gbest;
23: end while

3.4. Computational complexity
Here, for the convenience of complexity analysis, let D and N be the dimension of decision variables
and the population size. For EGSA, the mass calculation, acceleration computing, update of velocity and
position, and evaluation consume the main calculation, whose maximum computational complexity is
O(ND) in one loop. Therefore, the overall computational complexity of EGSA is O(ND) for one main
cycle.

4. Experiments and discussion
This section characterizes the experimental setting and the performance of our proposed method. First,
the parameter setting is introduced. The performance of EGSA is checked by comparing it with seven
peer algorithms. Next, the effects of acceleration, memory ability of particle, and random disturbance
are observed. Then our proposed path planning method is compared with seven methods under diverse
environments. Finally, the influence of population size on our proposed algorithm is analyzed.

4.1. Parameter setting
To verify the performance of the proposed algorithm, let EGSA compare with moth flame optimiza-
tion algorithm (MFO) [44], GSA [38], chaotic kbest gravitational search algorithm (CKGSA) [45],
gbest guided gravitational search algorithm (GGSA) [46], gaussian particle swarm optimization and
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Table I. Parameter settings for eight algorithms.

Algorithms Parameters
MFO Constant b = 1.
GSA G0 = 100, α = 20.
CKGSA G0 = 100, α = 20, constant in logistic mapping μ = 4.
GGSA G0 = 100, α = 20, c1 = ( − 2t3/T3) + 2, c2 = 2t3/T3.
GPSOGSA G0 = 1, α = 20.
HGSPSO G0 = 100, α = 20, c1 = 2(1 − t/T) + 0.5, c2 = −2(1 − t/T) + 2.5.
LKGSA G0 = 100, α = 20.
EGSA G0 = 100, α = 20, c1 = ( − 5t3/T3) + 5, c2 = 2.6t2/T2, c3 = 2.58t10/T10, β = 1.5,

control parameter in tent mapping a = 0.7.

gravitational search algorithm (GPSOGSA) [47], hybrid gravitational search particle swarm optimiza-
tion algorithm (HGSPSO) [48], and logarithmic kbest gravitational search algorithm (LKGSA) [49],
and the parameters of these eight algorithms are listed in Table I, and the population size N and the
maximum number of iterations T are 50 and 3000, respectively. The coefficients kt, kc, and kh of yaw
angle, pitch angle, and flight height are defined to 20, 20, and 30, respectively. The thresholds γmax, θmax,
hmin, and hmax of yaw angle, pitch angle, minimum flight height, and maximum flight height are set to 60,
45, 5, and 200, respectively. To be fair, all the experiments are run on the computer with an Intel Core
i7 2.6 GHz and Windows 10 operating system.

4.2. Experimental results on CEC 2020 benchmark functions
Here, the performance of EGSA is verified on CEC 2020 with dimension D = 20, compared with
MFO, GSA, CKGSA, GGSA, GPSOGSA, HGSPSO, and LKGSA [50]. These eight algorithms were
run 30 times independently, and several indicators, including the best results, mean results, and stan-
dard deviation (Std) of the optimal values, are applied to evaluate the performance of these algorithms.
Furthermore, the Wilcoxon rank sum test at a 0.05 significance level is employed between EGSA and
the other seven algorithms, and the symbols ‘+’, ‘−’, and ‘∼’ denote that the performance of the cor-
responding algorithm is significantly better, worse, and similar than that obtained by EGSA on the
benchmark function, respectively [51, 52]. The experimental results on CEC 2020 obtained by these
eight algorithms are recorded in Table II and Fig. 6.

From the view of the mean value in Table II, EGSA reveals a better performance than the other seven
algorithms on most of these benchmark functions, winning the best place except CEC1 and CEC8. For
function CEC1, the best performance is obtained by GSA, in fact, EGSA behaves similarly to GSA
from the perspective of the Wilcoxon rank sum test. For function CEC8, GGSA performs best, but the
performance of EGSA is not bad and ranks second among that displayed by eight algorithms, maybe
the random disturbance cannot improve the performance of EGSA on CEC8. At the same time, the
convergence curves in Fig. 6 verified the excellent performance of EGSA in CEC 2020 again.

As denoted by the symbols of “+/−/∼” at the bottom of Table II, EGSA performs better than MFO,
GSA, CKGSA, GGSA, GPSOGSA, HGSPSO, and LKGSA on 10, 8, 8, 7, 10, 10, and 7 benchmark
functions and gets similar results with GSA, CKGSA, GGSA, and LKGSA on 2, 2, 2, and 3 out of the
10 test instances. As shown by the average ranking, the average ranking of EGSA is better than that
of comparison algorithms, demonstrating that EGSA owns a better balance between exploitation and
exploration and has superiority over the peer algorithms.

4.3. The effect of acceleration, memory ability of particle, and random disturbance
To investigate the influence of acceleration, memory ability of particle, and random disturbance, EGSA
is compared with six variants on CEC 2020, meanwhile, explaining the rationality of parameter setting.
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Table II. Best values, mean values, standard deviations, and p-values of the minimum values obtained by EGSA and compared algorithms on CEC
2020 benchmark functions.

Function Quality MFO GSA CKGSA GGSA GPSOGSA HGSPSO LKGSA EGSA
CEC1 Best 1.453E + 02 1.001E + 02 1.087E + 02 1.012E + 02 1.274E + 10 1.463E + 10 1.001E + 02 1.094E + 02

Mean 1.268E + 09 3.105E + 02 6.345E + 02 5.534E + 02 1.992E + 10 2.005E + 10 6.272E + 02 5.754E + 02

Std 1.425E + 09 2.265E + 02 6.417E + 02 6.138E + 02 2.283E + 09 2.838E + 09 9.575E + 02 5.377E + 02

p-value 1.279E-09 − 5.188E-02 ∼ 6.414E-01 ∼ 6.309E-01 ∼ 3.020E-11 − 3.020E-11 − 5.793E-01 ∼
CEC2 Best 1.634E + 03 2.830E + 03 3.302E + 03 2.377E + 03 4.791E + 03 4.526E + 03 3.659E + 03 1.346E + 03

Mean 3.123E + 03 3.694E + 03 4.127E + 03 3.065E + 03 5.130E + 03 5.120E + 03 4.481E + 03 1.764E + 03

Std 6.667E + 02 3.782E + 02 4.085E + 02 4.222E + 02 1.832E + 02 2.257E + 02 4.910E + 02 2.224E + 02

p-value 1.957E-10 − 3.020E-11 − 3.020E-11 − 3.020E-11 − 3.020E-11 − 3.020E-11 − 3.020E-11 −
CEC3 Best 7.463E + 02 7.258E + 02 7.301E + 02 7.233E + 02 1.245E + 03 1.304E + 03 7.661E + 02 7.233E + 02

Mean 8.116E + 02 7.303E + 02 7.430E + 02 7.284E + 02 1.397E + 03 1.416E + 03 8.077E + 02 7.283E + 02

Std 5.825E + 01 3.245E + 00 7.175E + 00 2.507E + 00 6.346E + 01 5.952E + 01 2.798E + 01 3.174E + 00

p-value 3.020E-11 − 2.510E-02 − 9.919E-11 − 5.997E-01 ∼ 3.020E-11 − 3.020E-11 − 3.020E-11 −
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Table II. Continued.

Function Quality MFO GSA CKGSA GGSA GPSOGSA HGSPSO LKGSA EGSA
CEC4 Best 1.904E + 03 1.901E + 03 1.901E + 03 1.901E + 03 2.431E + 04 1.662E + 04 1.902E + 03 1.901E + 03

Mean 1.003E + 04 1.902E + 03 1.902E + 03 1.902E + 03 9.233E + 04 9.790E + 04 1.904E + 03 1.902E + 03

Std 1.555E + 04 4.951E-01 6.071E-01 8.225E-01 4.376E + 04 4.422E + 04 1.365E + 00 4.485E-01

p-value 3.020E-11 − 4.733E-01 ∼ 6.567E-02 ∼ 3.265E-02 − 3.020E-11 − 3.020E-11 − 4.573E-09 −
CEC5 Best 1.946E + 04 1.250E + 05 5.835E + 04 1.088E + 05 1.086E + 06 2.831E + 05 2.202E + 04 2.145E + 04

Mean 4.144E + 05 3.330E + 05 1.207E + 05 2.545E + 05 3.159E + 06 2.593E + 06 5.784E + 04 5.106E + 04

Std 3.930E + 05 1.279E + 05 3.363E + 04 6.802E + 04 1.155E + 06 1.198E + 06 2.703E + 04 1.664E + 04

p-value 6.010E-08 − 3.020E-11 − 1.464E-10 − 3.020E-11 − 3.020E-11 − 3.020E-11 − 5.692E-01 ∼
CEC6 Best 1.690E + 03 2.456E + 03 2.195E + 03 2.057E + 03 2.491E + 03 2.534E + 03 2.135E + 03 1.604E + 03

Mean 2.026E + 03 2.743E + 03 2.717E + 03 2.396E + 03 2.864E + 03 2.873E + 03 2.701E + 03 1.782E + 03

Std 1.736E + 02 1.583E + 02 2.525E + 02 2.040E + 02 1.490E + 02 1.475E + 02 2.605E + 02 9.923E + 01

p-value 1.254E-07 − 3.020E-11 − 3.020E-11 − 3.690E-11 − 3.020E-11 − 3.020E-11 − 3.020E-11 −
CEC7 Best 9.564E + 03 6.198E + 04 1.801E + 04 5.804E + 04 4.058E + 04 1.980E + 05 7.381E + 03 4.730E + 03

Mean 2.313E + 05 1.750E + 05 4.785E + 04 1.265E + 05 6.673E + 05 6.459E + 05 2.162E + 04 9.951E + 03

Std 2.695E + 05 7.499E + 04 2.013E + 04 4.917E + 04 2.485E + 05 2.711E + 05 1.047E + 04 4.584E + 03

p-value 7.380E-10 − 3.020E-11 − 4.077E-11 − 3.020E-11 − 3.020E-11 − 3.020E-11 − 3.010E-07 −
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Table II. Continued.

Function Quality MFO GSA CKGSA GGSA GPSOGSA HGSPSO LKGSA EGSA
CEC8 Best 2.300E + 03 2.300E + 03 2.300E + 03 2.300E + 03 3.626E + 03 3.535E + 03 2.300E + 03 2.300E + 03

Mean 3.098E + 03 2.506E + 03 3.038E + 03 2.300E + 03 4.637E + 03 4.610E + 03 3.410E + 03 2.300E + 03

Std 1.113E + 03 7.829E + 02 1.366E + 03 7.753E-11 3.950E + 02 4.113E + 02 1.504E + 03 3.832E-04

p-value 8.477E-09 − 8.485E-09 − 3.987E-04 − 3.020E-11 + 3.020E-11 − 3.020E-11 − 6.627E-01 ∼
CEC9 Best 2.838E + 03 2.500E + 03 2.500E + 03 2.700E + 03 3.062E + 03 3.057E + 03 3.067E + 03 2.700E + 03

Mean 2.888E + 03 2.997E + 03 3.075E + 03 2.804E + 03 3.149E + 03 3.151E + 03 3.188E + 03 2.759E + 03

Std 2.575E + 01 1.045E + 02 1.147E + 02 3.923E + 01 4.290E + 01 3.669E + 01 6.538E + 01 2.052E + 01

p-value 3.020E-11 − 5.573E-10 − 5.573E-10 − 9.533E-07 − 3.020E-11 − 3.020E-11 − 3.020E-11 −
CEC10 Best 2.911E + 03 2.906E + 03 2.918E + 03 2.936E + 03 3.737E + 03 3.794E + 03 2.902E + 03 2.917E + 03

Mean 3.029E + 03 2.982E + 03 2.972E + 03 2.976E + 03 4.527E + 03 4.415E + 03 2.978E + 03 2.946E + 03

Std 1.662E + 02 1.819E + 01 1.905E + 01 1.400E + 01 3.077E + 02 3.323E + 02 2.542E + 01 2.513E + 01

p-value 3.265E-02 − 1.873E-07 − 1.248E-04 − 1.194E-06 − 3.020E-11 − 3.020E-11 − 7.221E-06 −
Average ranking 4.900 3.800 3.900 2.700 7.400 7.400 4.600 1.300

+/−/∼ 0/10/0 0/8/2 0/8/2 1/7/2 0/10/0 0/10/0 0/7/3
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(1a)                                                                                                (1b)                      (1c)

(2a)      (2b)                                                                                              (2c)

(3a)                                                      (3b)                                                                                              (3c)

(4a) 

Figure 6. The convergence curves of mean values obtained by EGSA and compared algorithms on CEC
2020 benchmark functions.

The coefficients c1, c2, and c3 are set to the minimum and maximum in the range of variation, respectively.
The changed parameters and functions of six variants about EGSA are listed in Table III, and all the
other parameters remain unchanged. Table IV and Fig. 7 reveal the experimental results attained by six
variants and EGSA.

Our proposed algorithm EGSA achieves the top two on eight benchmark functions and wins the
first place on six benchmark functions. For the functions CEC1 and CEC6, the EGSA-Variant5 and
EGSA-Variant4 win the championship, respectively, however, these two algorithms do not perform well
in the other five functions, which implies that the performance of EGSA cannot be promoted by over-
strengthening the memory ability of particle or abandoning the random disturbance. For the algorithms
EGSA-Variant2, EGSA-Variant3, and EGSA-Variant6, the performance of these three algorithms seem
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Table III. The changed parameter and function of six variants about EGSA.

Algorithm Changed parameter Function
EGSA-Variant1 c1 = 5; Enlarge the impact of acceleration;
EGSA-Variant2 c1 = 0; Weaken or cancel the impact of acceleration;
EGSA-Variant3 c2 = 0; Remove the memory ability of particle;
EGSA-Variant4 c2 = 2.6; Strengthen the memory ability of particle;
EGSA-Variant5 c3 = 0; Abolish the role of random disturbance;
EGSA-Variant6 c3 = 2.58; Expand the role of random disturbance;

to be deteriorating, which implies that acceleration and memory ability of particle can evoke the per-
formance, but large random disturbance is not desirable. For EGAS-Variant1, boosting the effect of
acceleration, the performance is a little worse, which illustrates that overemphasized acceleration cannot
facilitate performance.

The results of the Wilcoxon test, shown in the last row of Table IV, indicate that EGSA is superior to
six variants in 1, 10, 7, 6, 6, and 8 out of the 10 test functions and performs similarly to six variants in 9,
0, 3, 3, and 2 out of the 10 test functions. The average ranking, put on the penultimate row of Table IV,
explains that the performance of EGSA surpasses that of six variants, and the convergence curves in
Fig. 7 declare the outstanding performance of EGSA again. Therefore, the acceleration, memory ability
of particle, and random disturbance can affect the performance, which should not be too weakened or
strengthened.

4.4. Experimental results in the simple environment
Assume that there is no more than one obstacle in an environment, which is named as a simple envi-
ronment. The coordinates of the starting point and end point for a UAV are defined as (1, 5, 10) and
(201, 190, 70), respectively. The paths achieved by eight algorithms are shown in Fig. 8, and the rele-
vant convergence curves are represented in Fig. 9. Intuitively, in Fig. 8, the path got by EGSA is much
better than that obtained by MFO, GSA, CKGSA, GGSA, GPSOGSA, HGSPSO, and LKGSA in terms
of smoothness and length. From the perspective of convergence curves, just as presented in Fig. 9, EGSA
converges faster than the other seven algorithms and wins the lowest overall cost value in the end, which
means that EGSA has a good balance between exploration and exploitation for this question. So EGSA
can perform better than MFO, GSA, CKGSA, GGSA, GPSOGSA, HGSPSO, and LKGSA in this simple
environment. As a matter of fact, we discover that F2, F3, and F4 in the overall cost function are all equal
to 0 for the last obtained paths, which implies that the proposed method can obtain the path satisfying
the three constraints and the path length becomes the main factor affecting the optimality at last.

4.5. Experimental results in the complex environment
Suppose that plenty of obstacles exist in the environment, like hills and buildings, which is considered
as a complex environment. In complex environment 1, the obstacles are scattered, while in complex
environments 2, 3, and 4, the obstacles are relatively concentrated. The starting point and terminal
point settings are identical to those in the simple environment. For the complex environment 1, the
paths and convergence curves obtained by eight algorithms are drawn in Fig. 10 and Fig. 11. The path
obtained by EGSA is shorter and smoother than those obtained by the other seven algorithms. The con-
vergence rate of EGSA is faster than those of comparison algorithms and its corresponding cost value
is the smallest among the eight algorithms. For the complex environments 2, 3, and 4, Fig. 12, Fig. 13,
Fig. 14, Fig. 15, Fig. 16, and Fig. 17 represent the paths and convergence curves obtained by eight
algorithms, respectively. Intuitively, the paths obtained by MFO, GSA, CKGSA, GGSA, GPSOGSA,
HGSPSO, and LKGSA are longer than those obtained by EGSA. At the same time, from the views of
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Table IV. Best values, mean values, standard deviations, and p-values of the minimum values obtained by six variants and EGSA on CEC 2020
benchmark functions.

Function Quality EGSA-Variant1 EGSA-Variant2 EGSA-Variant3 EGSA-Variant4 EGSA-Variant5 EGSA-Variant6 EGSA
CEC1 Best 1.073E + 02 1.832E + 03 1.098E + 02 3.867E + 02 1.011E + 02 2.043E + 06 1.094E + 02

Mean 4.290E + 02 3.911E + 03 5.187E + 02 2.601E + 03 2.748E + 02 3.119E + 06 5.754E + 02

Std 5.065E + 02 1.552E + 03 7.533E + 02 2.211E + 03 2.464E + 02 7.880E + 05 5.377E + 02

p-value 1.958E-01 ∼ 3.690E-11 − 1.958E-01 ∼ 2.028E-07 − 8.315E-03 + 3.020E-11 −
CEC2 Best 1.445E + 03 1.776E + 03 1.467E + 03 1.278E + 03 1.347E + 03 1.287E + 03 1.346E + 03

Mean 1.807E + 03 2.414E + 03 2.076E + 03 1.698E + 03 1.966E + 03 1.838E + 03 1.764E + 03

Std 2.198E + 02 4.053E + 02 3.112E + 02 2.153E + 02 2.705E + 02 2.792E + 02 2.224E + 02

p-value 5.298E-01 ∼ 4.573E-09 − 1.248E-04 − 2.905E-01 ∼ 2.891E-03 − 3.255E-01 ∼
CEC3 Best 7.242E + 02 7.619E + 02 7.248E + 02 7.334E + 02 7.233E + 02 7.414E + 02 7.233E + 02

Mean 7.291E + 02 8.019E + 02 7.286E + 02 7.540E + 02 7.296E + 02 7.549E + 02 7.283E + 02

Std 3.475E + 00 2.860E + 01 2.463E + 00 9.704E + 00 4.750E + 00 9.432E + 00 3.174E + 00

p-value 3.042E-01 ∼ 3.020E-11 − 5.201E-01 ∼ 4.077E-11 − 3.112E-01 ∼ 3.020E-11 −
CEC4 Best 1.902E + 03 1.901E + 03 1.902E + 03 1.901E + 03 1.901E + 03 1.905E + 03 1.901E + 03
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Table IV. Continued.

Function Quality EGSA-Variant1 EGSA-Variant2 EGSA-Variant3 EGSA-Variant4 EGSA-Variant5 EGSA-Variant6 EGSA
Mean 1.903E + 03 1.907E + 03 1.903E + 03 1.902E + 03 1.903E + 03 1.906E + 03 1.902E + 03

Std 3.846E-01 4.412E + 00 8.290E-01 8.391E-01 6.575E-01 1.202E + 00 4.485E-01

p-value 6.528E-08 − 8.485E-09 − 1.411E-09 − 9.049E-02 ∼ 4.311E-08 − 3.020E-11 −
CEC5 Best 2.246E + 04 9.560E + 03 1.213E + 05 3.992E + 03 3.787E + 04 2.924E + 04 2.145E + 04

Mean 5.128E + 04 7.768E + 04 2.803E + 05 1.066E + 05 1.183E + 05 8.685E + 04 5.106E + 04

Std 1.620E + 04 3.793E + 04 1.354E + 05 1.518E + 05 6.006E + 04 3.012E + 04 1.664E + 04

p-value 9.234E-01 ∼ 2.380E-03 − 3.020E-11 − 1.260E-01 ∼ 7.043E-07 − 8.292E-06 −
CEC6 Best 1.637E + 03 1.722E + 03 2.051E + 03 1.602E + 03 1.721E + 03 1.613E + 03 1.604E + 03

Mean 1.841E + 03 1.949E + 03 2.327E + 03 1.714E + 03 2.002E + 03 1.727E + 03 1.782E + 03

Std 1.431E + 02 1.773E + 02 1.662E + 02 9.366E + 01 1.705E + 02 1.085E + 02 9.923E + 01

p-value 1.224E-01 ∼ 7.739E-06 − 3.338E-11 − 6.669E-03 + 6.283E-06 − 1.087E-01 ∼
CEC7 Best 5.739E + 03 4.100E + 03 2.945E + 04 4.542E + 03 5.155E + 03 1.305E + 04 4.730E + 03

Mean 1.458E + 04 6.106E + 04 1.287E + 05 2.707E + 04 4.100E + 04 3.075E + 04 9.951E + 03

Std 1.648E + 04 1.221E + 05 8.546E + 04 3.069E + 04 2.664E + 04 1.480E + 04 4.584E + 03

p-value 1.154E-01 ∼ 1.041E-04 − 3.020E-11 − 1.748E-05 − 4.998E-09 − 1.547E-09 −
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Table IV. Continued.

Function Quality EGSA-Variant1 EGSA-Variant2 EGSA-Variant3 EGSA-Variant4 EGSA-Variant5 EGSA-Variant6 EGSA
CEC8 Best 2.300E + 03 2.300E + 03 2.300E + 03 2.300E + 03 2.300E + 03 2.312E + 03 2.300E + 03

Mean 2.300E + 03 3.414E + 03 2.300E + 03 2.301E + 03 2.300E + 03 2.312E + 03 2.300E + 03

Std 5.146E-01 1.504E + 03 4.899E-04 7.420E-01 2.431E-01 3.978E-01 3.832E-04

p-value 7.483E-02 ∼ 3.020E-11 − 8.841E-07 − 3.020E-11 − 5.573E-10 − 3.020E-11 −
CEC9 Best 2.700E + 03 3.004E + 03 2.700E + 03 2.847E + 03 2.700E + 03 2.747E + 03 2.700E + 03

Mean 2.764E + 03 3.143E + 03 2.761E + 03 2.916E + 03 2.754E + 03 2.775E + 03 2.759E + 03

Std 2.150E + 01 9.821E + 01 2.144E + 01 5.669E + 01 2.675E + 01 2.016E + 01 2.052E + 01

p-value 1.858E-01 ∼ 3.020E-11 − 2.226E-01 ∼ 3.020E-11 − 1.844E-01 ∼ 1.302E-03 −
CEC10 Best 2.919E + 03 2.952E + 03 2.924E + 03 2.903E + 03 2.920E + 03 2.921E + 03 2.917E + 03

Mean 2.953E + 03 2.989E + 03 2.959E + 03 2.960E + 03 2.946E + 03 2.958E + 03 2.946E + 03

Std 2.575E + 01 1.795E + 01 1.866E + 01 2.824E + 01 2.423E + 01 2.396E + 01 2.513E + 01

p-value 3.790E-01 ∼ 8.352E-08 − 4.515E-02 − 4.060E-02 − 9.117E-01 ∼ 4.207E-02 −
Average ranking 3.000 6.200 4.700 3.900 3.700 4.800 1.700

+/−/∼ 0/1/9 0/10/0 0/7/3 1/6/3 1/6/3 0/8/2

https://doi.org/10.1017/S0263574724000869 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0263574724000869


Robotica 19

(1a)           (1b)                                                                                              (1c)

(2a)                                                           (2b)                                                                                              (2c)

(3a)                                                                                                (3b)        (3c)

(4a)

Figure 7. The convergence curves of mean values obtained by six variants and EGSA on CEC 2020
benchmark functions.

convergence speed and cost value, the performance of EGSA is much better than that of the other seven
algorithms, and EGSA stands out as the top performer. Therefore, the performance of EGSA is the best
among those eight algorithms in these four complex environments. The path length, like that in the
simple environment, also becomes the primary contributor affecting the optimality for the last obtained
path.

To objectively and accurately verify the performance of the proposed algorithm, the eight algorithms
have been run 30 times in four kinds of environments, and Table V presents the mean, Std, and p-vlaue
of the overall cost values. Obviously, the mean and Std of EGSA are much smaller than the results of
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Figure 8. Path planning results obtained by eight algorithms in the simple environment; blue triangle
dotted line, blue pentagram solid line, green triangle dotted line, green pentagram solid line, purple
triangle dotted line, purple pentagram solid line, red triangle dotted line, and red pentagram solid line
are acquired by MFO, GSA, CKGSA, GGSA, GPSOGSA, HGSPSO, LKGSA, and EGSA, respectively.

Figure 9. Convergence curves of eight algorithms in the simple environment.
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Figure 10. Path planning results obtained by eight algorithms in the complex environment 1; blue trian-
gle dotted line, blue pentagram solid line, green triangle dotted line, green pentagram solid line, purple
triangle dotted line, purple pentagram solid line, red triangle dotted line, and red pentagram solid line
are acquired by MFO, GSA, CKGSA, GGSA, GPSOGSA, HGSPSO, LKGSA, and EGSA, respectively.

Figure 11. Convergence curves of eight algorithms in the complex environment 1.
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Figure 12. Path planning results obtained by eight algorithms in the complex environment 2; blue trian-
gle dotted line, blue pentagram solid line, green triangle dotted line, green pentagram solid line, purple
triangle dotted line, purple pentagram solid line, red triangle dotted line, and red pentagram solid line
are acquired by MFO, GSA, CKGSA, GGSA, GPSOGSA, HGSPSO, LKGSA, and EGSA, respectively.

Figure 13. Convergence curves of eight algorithms in the complex environment 2.
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Figure 14. Path planning results obtained by eight algorithms in the complex environment 3; blue trian-
gle dotted line, blue pentagram solid line, green triangle dotted line, green pentagram solid line, purple
triangle dotted line, purple pentagram solid line, red triangle dotted line, and red pentagram solid line
are acquired by MFO, GSA, CKGSA, GGSA, GPSOGSA, HGSPSO, LKGSA, and EGSA, respectively.

Figure 15. Convergence curves of eight algorithms in the complex environment 3.
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Figure 16. Path planning results obtained by eight algorithms in the complex environment 4; blue trian-
gle dotted line, blue pentagram solid line, green triangle dotted line, green pentagram solid line, purple
triangle dotted line, purple pentagram solid line, red triangle dotted line, and red pentagram solid line
are acquired by MFO, GSA, CKGSA, GGSA, GPSOGSA, HGSPSO, LKGSA, and EGSA, respectively.

Figure 17. Convergence curves of eight algorithms in the complex environment 4.
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Table V. Comparison of simulation results of eight algorithms.

MFO GSA CKGSA GGSA GPSOGSA HGSPSO LKGSA EGSA
Simple environment Mean 317.607 314.328 313.993 304.477 353.381 357.534 329.291 286.889

Std 12.723 1.881 2.149 2.158 9.163 9.313 11.752 1.501

p-value 3.020E-11 − 3.020E-11 − 3.020E-11 − 3.020E-11 − 3.020E-11 − 3.020E-11 − 3.020E-11 −
Complex environment 1 Mean 316.815 312.222 313.152 301.234 372.699 381.986 318.676 292.042

Std 27.860 8.694 8.191 6.326 16.136 33.695 18.149 8.019

p-value 7.599E-07 − 4.183E-09 − 1.857E-09 − 6.736E-06 − 3.020E-11 − 3.020E-11 − 4.183E-09 −
Complex environment 2 Mean 326.938 314.235 314.741 308.466 355.211 361.020 325.264 304.811

Std 14.128 1.759 1.770 0.979 8.141 12.925 9.519 0.792

p-value 5.570E-10 − 3.020E-11 − 3.020E-11 − 3.020E-11 − 3.020E-11 − 3.001E-11 − 3.020E-11 −
Complex environment 3 Mean 343.907 340.016 340.026 338.584 359.941 369.575 339.464 328.688

Std 13.259 0.570 0.566 0.321 8.697 9.206 1.096 4.404

p-value 4.737E-06 − 3.020E-11 − 3.020E-11 − 3.020E-11 − 3.020E-11 − 2.916E-11 − 3.020E-11 −
Complex environment 4 Mean 322.298 318.991 319.128 315.695 354.011 357.594 325.998 310.476

Std 17.435 0.904 1.182 0.903 8.555 8.936 6.198 4.075

p-value 5.800E-03 − 3.020E-11 − 3.020E-11 − 6.121E-10 − 3.020E-11 − 3.020E-11 − 3.020E-11 −

https://doi.org/10.1017/S0263574724000869 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0263574724000869


26 Keming Jiao et al.

Figure 18. Boxplots of the results obtained by eight algorithms in different environments.

MFO, GSA, CKGSA, GGSA, GPSOGSA, HGSPSO, and LKGSA. From the Wilcoxon test, our pro-
posed EGSA has significant advantages over other comparison algorithms. Meanwhile, it can be seen
that chaotic levy flight could regulate exploration and exploitation compared with GGSA. The data
distribution characteristics are presented in Fig. 18. The boxplots of the proposed algorithm, with the
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Figure 19. Average convergence curves of EGSA with different population size in the simple environ-
ment.

Figure 20. Boxplots of the results obtained by EGSA with different population size in the simple
environment.

lowest values, are very narrow compared to the results of the other seven algorithms. Hence, the proposed
EGSA has much better effectiveness and robustness than MFO, GSA, CKGSA, GGSA, GPSOGSA,
HGSPSO, and LKGSA for path planning in simple and complex environments.
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Figure 21. Average convergence curves of EGSA with different population size in the complex
environment 1.

Figure 22. Boxplots of the results obtained by EGSA with different population size in the complex
environment 1.
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Figure 23. Average convergence curves of EGSA with different population size in the complex
environment 2.

Figure 24. Boxplots of the results obtained by EGSA with different population size in the complex
environment 2.
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Figure 25. Average convergence curves of EGSA with different population size in the complex
environment 3.

Figure 26. Boxplots of the results obtained by EGSA with different population size in the complex
environment 3.
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Figure 27. Average convergence curves of EGSA with different population size in the complex
environment 4.

Figure 28. Boxplots of the results obtained by EGSA with different population size in the complex
environment 3.
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The mean running time of EGSA in the simple environment. The mean running time of EGSA in the complex environment 1.

The mean running time of EGSA in the complex environment 2. The mean running time of EGSA in the complex environment 3.

The mean running time of EGSA in the complex environment 4.

(a) (b)

(c) (d)

(e)

Figure 29. The mean running time of EGSA with different population size N.

4.6. Parameter analysis
As we know, the population size N can affect the performance of algorithm. If N is too small, it will harm
the convergence of the population to the optimal solution. On the contrary, too large N will consume
more computing resource. Here, to observe the influence of parameter N on our proposed algorithm, all
the parameters in EGSA remain the same except for the population size N, the population N is set to 10,
30, 50, and 70 in simple and complex environments, respectively. Figure 19, Fig. 21, Fig. 23, Fig. 25,
and Fig. 27 show the average convergence with iteration in different environments, respectively. The

https://doi.org/10.1017/S0263574724000869 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000869


Robotica 33

Table VI. The simulation results of EGSA with different population size.

N = 10 N = 30 N = 50 N = 70
Simple environment Mean 305.633 287.917 286.889 286.792

Std 4.990 1.331 1.501 1.589

Complex environment 1 Mean 370.056 292.287 292.042 289.351

Std 72.698 6.695 8.019 6.496

Complex environment 2 Mean 313.825 305.340 304.811 304.653

Std 2.796 1.501 0.792 0.751

Complex environment 3 Mean 335.184 329.140 328.688 324.354

Std 4.359 4.825 4.404 10.487

Complex environment 4 Mean 317.860 311.553 310.476 310.120

Std 7.965 5.022 4.075 5.277

convergence rates are very similar when the populations are 30, 50, and 70, respectively. The boxplots
with diverse population sizes for three environments are revealed in Fig. 20, Fig. 22, Fig. 24, Fig. 26,
and Fig. 28, respectively. Figure 29 describes the running time for our proposed path planning method
in three environments, showing that the running time increases with the population size. Table VI rep-
resents the mean and Std of overall cost values for various environments with different population sizes.
It is obvious that the performance of EGSA becomes better with the increase of population size N, but
in both cases of N = 50 and N = 70, the performance of EGSA is not very different, the performance
improvement is very small for N increasing from 50 to 70. So, a compromise between the obtained path
length and the running time is made, and 50 is set as the size of the population.

5. Conclusion
In this work, a UAV path planning algorithm in 3D space based on EGSA is presented. For EGSA,
the balance between exploration and exploitation is strengthened, adding the memory and random dis-
turbance ability to each particle in the population. The path can be achieved by connecting these nodes
obtained by EGSA, considering the path length, yaw angle, pitch angle, and flight altitude. EGSA is com-
pared with seven peer algorithms on CEC 2020 benchmark functions, such as MFO, GSA, CKGSA,
GGSA, GPSOGSA, HGSPSO, and LKGSA, demonstrating that EGSA has superiority over the other
algorithms. The experimental results of UAV path planning illustrate that the path planning method
based on EGSA is more effective than the other seven methods. The influence of population size on our
proposed algorithm is also analyzed and the appropriate population size is given.

In future research, our work will mainly focus on two interesting topics, one is the path planning of
multiple UAVs, considering the collaboration and constraints between UAVs, and the other one is to use
UAVs to verify the proposed algorithm in reality.
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