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Abstract

We study questions in incidence geometry where the precise position of points is ‘blurry’ (for
example due to noise, inaccuracy or error). Thus lines are replaced by narrow tubes, and more
generally affine subspaces are replaced by their small neighborhood. We show that the presence of
a sufficiently large number of approximately collinear triples in a set of points in Cd implies that
the points are close to a low dimensional affine subspace. This can be viewed as a stable variant of
the Sylvester–Gallai theorem and its extensions. Building on the recently found connection between
Sylvester–Gallai type theorems and complex locally correctable codes (LCCs), we define the new
notion of stable LCCs, in which the (local) correction procedure can also handle small perturbations
in the Euclidean metric. We prove that such stable codes with constant query complexity do not
exist. No impossibility results were known in any such local setting for more than two queries.

2010 Mathematics Subject Classification: primary 52C35; secondary 68Q99, 94B65

1. Introduction

The Sylvester–Gallai theorem is a statement about configurations of points in
Rd in which there is a certain structure of collinear triples.

THEOREM 1.1 (Sylvester–Gallai). Suppose v1, . . . , vn ∈ Rd are such that for all
i 6= j ∈ [n] there is some k ∈ [n] \ {i, j} for which vi , v j , vk are on a line. Then
all the points v1, . . . , vn are on a single line.

This theorem takes local information about dependences between points and
concludes global information about the entire configuration. For more on the
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history and generalizations of this theorem we refer the reader to the survey [4].
A complex variant of this theorem was proved by Kelly:

THEOREM 1.2 [15]. Suppose v1, . . . , vn ∈ Cd are such that for all i 6= j ∈ [n]
there is some k ∈ [n] \ {i, j} for which vi , v j , vk are on a (complex) line. Then all
the points v1, . . . , vn lie on a single (complex) plane.

The global dimension bound given by Kelly’s theorem is tight since, over the
complex numbers, there are two-dimensional configurations of points satisfying
the condition on triples.

In a recent work, Barak et al. [2] proved quantitative (or fractional) analogs of
Kelly’s theorem in which the condition ‘for all i 6= j ∈ [n]’ is relaxed and we have
information only on a large subset of the pairs of points for which there exists a
third collinear point (the sets of points satisfying the conditions of the theorem
were called δ-SG configurations in [2]).

THEOREM 1.3 [2]. Suppose v1, . . . , vn ∈ Cd are such that for all i ∈ [n] there
exist at least δ(n−1) values of j ∈ [n] \ {i} for which there is k ∈ [n] \ {i, j} such
that vi , v j , vk are on a line. Then all the points v1, . . . , vn lie in an affine subspace
of dimension 13/δ2.

A more recent work [8] improves the dimension upper bound obtained in the
above theorem from O(1/δ2) to the asymptotically tight O(1/δ) and also gives a
new proof of Kelly’s theorem (when δ = 1 one gets an upper bound of 2 on the
dimension).

In this work we consider configurations of points in which there are many
triples that are ‘almost’ collinear, in the sense that there is a line close to all
three points (in the usual Euclidean metric on Cd). Equivalently, the points
are contained in a narrow tube. Our goal is to prove stable analogs of the
above theorems, where stable means that the conclusion of the theorem will
not change significantly upon perturbing the point set slightly. Clearly, in
such settings one can only hope to prove that there is a low dimensional
subspace that approximates the set of points. There are many technical issues
to discuss when defining approximate collinearity and there are some nontrivial
examples showing that word-to-word generalizations of the above theorems do
not hold in the approximate-collinearity setting (at least for some of the possible
definitions). Nonetheless, we are able to prove several theorems of this flavor
for configurations of points satisfying certain ‘niceness’ conditions. We also
study stable variants of error correcting codes (over the reals) which are locally
correctable, in which such approximately collinear tuples of points naturally arise
from the correcting procedure.
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In [2], a connection was made between the Sylvester–Gallai theorem and
special kinds of error correcting codes called locally correctable codes (LCCs).
In these codes, a receiver of a corrupted codeword can recover a single symbol of
the codeword correctly, making only a small number of queries to the corrupted
word. When studying linear LCCs over the real or complex numbers, one
encounters the same kinds of difficulties in trying to convert local dependences
into global dimension bounds. Building on this connection, and our ability to
analyze ‘approximate’ linear dependences, we define the notion of stable LCCs
and show that these do not exist for constant query complexity. Stable LCCs
correspond to configurations of points with many approximately dependent small
subsets and so our techniques can be used to analyze them.

We note here that understanding the possible intersection structure of tubes in
high dimensional real space comes up in connection to other geometric problems,
most notably the Euclidean Kakeya problem [18] (we do not, however, see a direct
connection between our results and this difficult problem).

Our proof techniques extend those of [2, 8] and rely on high rank properties of
sparse matrices whose support is a ‘design’. In this work we go a step further and,
instead of relying on rank alone, we need to bound the number of small singular
values of such matrices.

Organization. In Section 2 we formally state our results for point configu-
rations. The results are stated in several subsections, corresponding to different
variants of the problem that we consider. In Section 3 we define stable LCCs and
state our results in this scenario. The proofs are given in Sections 4–7.

Notation. We use big ‘O’ notation to suppress absolute constants only. For two
complex vectors u, v ∈ Cd we denote their inner product by 〈u, v〉 =

∑d
i=1 ui · vi

and use ‖v‖ =
√
〈v, v〉 to denote the `2 norm. For an m × n matrix A, we

denote by ‖A‖ the norm of A as a vector of length mn (that is, the Frobenius
norm). The distance between two points u, v ∈ Cd is defined to be ‖u − v‖
and is denoted as dist(u, v). For a set S ⊂ Cd and a point v ∈ Cd we define
dist(v, S) = infu∈S dist(u, v). We let Sd

⊂ Cd+1 denote the d-dimensional unit
sphere in complex d + 1-dimensional space. By fixing a basis we can identify
each v ∈ Sd with a d + 1-length complex vector of `2-norm equal to 1.

2. Point configurations

In this section we state our results concerning point configurations. The first
section, Section 2.1, deals with the most natural setting—the affine setting—in
which we consider sets of points in Cd with many almost-collinear triples. In

https://doi.org/10.1017/fms.2014.1 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2014.1


A. Ai, Z. Dvir, S. Saraf and A. Wigderson 4

Section 2.2 we consider the projective setting where the points are located on the
sphere and collinearity is replaced with linear dependence. Section 2.3 states a
more general theorem from which both the affine and the projective results follow.

2.1. The affine setting. We begin with the definition of an ε-line.

DEFINITION 2.1 (line, lineε). Let u 6= v ∈ Cd . We define line(u, v) = {αu +
(1 − α)v |α ∈ C} to be the complex line passing through u, v. We define
lineε(u, v) = {w ∈ Cd

|dist(w, line(u, v)) 6 ε}.

The following definition will be used to replace the notion of dimension with a
more stable definition.

DEFINITION 2.2 (dimε). For a set of points V ⊂ Cd and ε > 0 we denote by
dimε(V ) the minimal k such that there exists a k-dimensional subspace (the
difference of 1 between affine and linear dimension will not be significant in
this paper and so we use a linear subspace in the definition) L ⊂ Cd such that
dist(v, L) 6 ε for all v ∈ V .

To give an idea of the subtleties that arise when dealing with approximate
collinearity, take an orthonormal basis e1, . . . , ed in Cd and consider the set
V = {e1, e′1, . . . , ed, e′d} with e′i = (1+ ε)ei . Clearly, there is no low dimensional
subspace that approximates this set of points, even though there are many pairs
for which there is a third ε-collinear point (e′i is ε-close to the line passing
through ei and any other third point). An obvious solution to this problem is to
require that the minimal distance between each pair of points is bounded from
below (say by 1), so that the condition of ε-collinearity is meaningful. We now
describe another, less trivial, example which shows that this condition alone is not
sufficient in general.

EXAMPLE 2.3. Let e1, . . . , ed be an orthonormal basis in Cd . Let vi = Bei , ui =

(B − 1)ei for all i ∈ [d] and let V = {ei , ui , vi | i ∈ [d]} be a set of n = 3d
points. Then for all i, j ∈ [d] we have ui ∈ lineε(vi , e j) and vi ∈ lineε(ui , e j)

with ε = 1/B. Thus, there are many ε-collinear triples in V (as in the conditions
of Theorem 2 with δ = 1/3). However, for any subspace L of dimension o(n),
the distance of at least one of the points vi to L must be at least Ω(B) (this can
be shown, for example, using Lemma 4.3).

In this example, we had ε = 1/B, where B is roughly equal to the ratio between
the smallest and the largest distance, or the ‘aspect ratio’ of V . We will prevent
this scenario by requiring that ε will be sufficiently smaller than 1/B, where B
will be the aspect ratio. This motivates the following definition.
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DEFINITION 2.4 (B-balanced). A set V ⊂ Cd is said to be B-balanced if 1 6
dist(v, v′) 6 B for all v 6= v′ ∈ V .

The following theorem gives the most easy to state version of our results.

THEOREM 1. Let n, d > 0 be integers and let B, ε > 0 be real numbers with
ε < 1/16B. Let V = {v1, . . . , vn} ⊂ Cd be B-balanced and suppose that for
every i 6= j ∈ [n] there exists k ∈ [n] \ {i, j} such that vk ∈ lineε(vi , v j). Then,
dimε′(V ) 6 O(B6) with ε ′ 6 O(εB2.5).

Observe that a corollary of this theorem is that the number of points, n, is
bounded from above by a function of B. A priori, we did not have this bound
since a B-balanced configuration in Cd can have an unbounded number of points
when d grows.

Notice that our definition of ε-collinearity is not symmetric in that it depends
on the order of the triple. As is shown in Lemma 5.2, this is not an issue
for B-balanced configurations, as long as we are willing to replace ε with
ε B. For general (that is, nonbalanced) configurations the situation can be more
complicated and it is possible that using a stronger collinearity condition (for
example, requiring that any permutation of the triple satisfies our condition) is
sufficient for obtaining a global dimension bound.

Theorem 1 will be a special case of the following, more general theorem, in
which we only have the information of a subset of the pairs (i, j). Assuming that
V has many ε-collinear triples (for each point), we derive an upper bound on
dimε′(V ) for ε ′ which depends on the other parameters. We also derive a better
bound on ε ′ when restricting to a subset of the points.

THEOREM 2. Let n, d > 0 be integers. Let B, δ, ε > 0 be real numbers with
ε < 1/16B. Let V = {v1, . . . , vn} ⊂ Cd be B-balanced and suppose that for
every i ∈ [n] there are at least δ(n − 1) values of j ∈ [n] \ {i} for which there
exists k ∈ [n] \ {i, j} such that vk ∈ lineε(vi , v j). Then:

1. dimε′(V ) 6 O(B6/δ2) with ε ′ 6 O(εB2.5/δ0.5).

2. There exists a subset V ′ ⊂ V of size Ω(n) with dimε′′(V ′) 6 O(B6/δ2) and
ε ′′ 6 O(Bε).

In both of the above theorems, the parameter B appears in the resulting global
dimension bound. We suspect that this dependence can be removed so that the
bound on the dimension will be O(1) in Theorem 1 and O(1/δ2) (or even O(1/δ))
in Theorem 2. The blowup in ε ′ compared to ε is also likely to be suboptimal.

A stronger definition of collinearity, for which Example 2.3 fails, is to require
that each point in the triple is ε-close to the line spanned by the other two points.
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Let us call such triples strongly ε-collinear triples. It is easy to see that, in
Example 2.3, the triples do not satisfy this stronger definition. Thus, it is possible
that one could prove analogs of Theorem 2 for configurations that are not
B-balanced using this stronger definition of approximate collinearity.

We conclude this discussion with yet another example showing that, even for
the case δ = 1 (that is, the original Sylvester–Gallai condition), the weak defi-
nition of ε-collinearity requires some balancedness condition (though potentially
weaker).

EXAMPLE 2.5. Fix some large B > 0. Take an orthonormal basis e1, . . . , ed ∈ Cd

and define V = {0} ∪
⋃

i∈[d]

{
B i−1ei , (B i−1

+ 1)ei
}
. One can verify by induction

that for every u, v ∈ V there is a third point inside lineε(u, v)with ε ≈ 1/B. There
is also no low dimensional subspace that approximates V (like for the previous
examples).

2.2. The projective setting. Since the definition of ε-collinearity (that is, vk ∈

lineε(vi , v j)) is sensitive to scaling, a projective statement of Theorem 2, in
which these scaling issues do not arise, seems natural. In this setting we consider
points on a sphere, and lines are replaced by circles (two-dimensional subspaces
intersected with Sd).

DEFINITION 2.6 (circ,circε). Let u, v ∈ Sd . We define circ(u, v) = span{u, v}∩
Sd . We define circε(u, v) = {w ∈ Sd

|dist(w, circ(u, v)) 6 ε}.

An instructive example in the projective case is the following:

EXAMPLE 2.7. Take V to be a maximal set in Sd with pairwise distances of
at least µ > 0 (so n ≈ (c/µ)d with c a constant). Since every point in Sd is
of distance at most µ from one of the points in V (otherwise we could add it)
we get that each set circµ(vi , v j) contains at least Ω(1/µ) > 2 points from V .
On the other hand, for any low dimensional subspace L (say, with dimension d ′

independent of n) almost all points in V will have distance at least 1/100 from L .

From this example we see that there needs to be some upper bound on ε as a
function of the minimal distance in the set. We will use the following definition
to replace B-balancedness.

DEFINITION 2.8 (µ-separated). A set V ⊂ Sd is said to be µ-separated if for
every u 6= v ∈ V we have min{dist(u, v),dist(u,−v)} > µ.

We now state our theorem for points on a sphere.

THEOREM 3. Let n, d > 0 be integers and let δ, µ, ε > 0 be real numbers with
ε < µ2/32. Let V = {v1, . . . , vn} ⊂ Sd be µ-separated and suppose that for every
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i ∈ [n] there are at least δ(n − 1) values of j ∈ [n] \ {i} for which there exists
k ∈ [n] \ {i, j} such that vk ∈ circε(vi , v j). Then

1. dimε′(V ) 6 O(1/δ2µ6) with ε ′ 6 O(ε/δ0.5µ2.5).

2. There exists a subset V ′ ⊂ V of sizeΩ(n) with dimε′′(V ′) 6 O(1/δ2µ6) and
ε ′′ 6 O(ε/µ).

Notice that, comparing with Theorem 3, the parameter µ corresponds to 1/B.
However, the condition on ε < µ2/32 is more restrictive in this case. We do not
know whether this condition can be improved to ε 6 O(µ). As is the case with
Theorem 3, we do not expect the dependence in the dimension bound and in ε ′ to
be tight.

2.3. The general statement. Both Theorem 2 and Theorem 3 will follow from
a more general statement requiring a set of points with a family of ε-dependent
triples satisfying certain conditions.

DEFINITION 2.9 ((ε, µ)-dependent). We say that a triple of points u, v, w ∈ Cd

is (ε, µ)-dependent if there exist complex numbers α, β, γ with |α|, |β|, |γ | ∈
[µ, 1] such that

‖αu + βv + γw‖ 6 ε.

DEFINITION 2.10 ((p, g)-design). Let T ⊂
(
[n]
3

)
be a family of triples in [n]. We

say that T is a (p, g)-design if:

1. For all i ∈ [n] there are at least p triples in T that contain i .

2. For all i 6= j ∈ [n] there are at most g triples in T containing both i and j .

The following theorem gives a low dimensional subspace that approximates
all points in a configuration in which there is a design of triples that are
(ε, µ)-dependent. Below we will also prove a slightly more refined statement (see
Theorem 4.1) giving better distance from L for many points in the configuration.

THEOREM 4. Let n, d > 0 be integers and p, g, δ, µ, ε > 0 be real numbers. Let
V = {v1, . . . , vn} ⊂ Cd , T ⊂

(
[n]
3

)
be such that T is a (p, g)-design, and for every

{i, j, k} ∈ T the triple vi , v j , vk is (ε, µ)-dependent. Then,

dimε′(V ) 6
2n2g2

p2µ4

with

ε ′ 6
5ε
√

g|T |
pµ2

.
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A setting of the parameters which will be most relevant to us is when |T | is
quadratic in n, p is linear in n and g and µ are constants. In this case we get a
constant upper bound on the dimension dimε′(V ) with ε ′ = O(ε).

The proof of Theorem 4 is given in the next section with the proofs of
Theorems 2 and 3 in Sections 5 and 6 respectively. We give a high level overview
of the proof below.

Proof overview. We place the points v1, . . . , vn as rows in a matrix A. We then
use the triple family T to construct a matrix M such that:

• M is a |T | × n matrix whose support is determined by T . More precisely, the
nonzero coordinates of the t th row of M , with t ∈ T , will be the three elements
in t .

• The values of the entries of M will be, in absolute value, between µ and 1.

• The product M · A will have small Frobenius norm.

We then observe that the matrix X = M∗M is diagonal dominant (its diagonal
elements are much larger than its off-diagonal elements). This implies, using the
Hoffman–Wielandt inequality, that M has only a few small singular values. From
this we get that the columns of A must have small distance (on average) to the
span of the small singular vectors of M and so can be approximated well by a
low dimensional space. We then show that the same statement holds when one
replaces the columns of A with the rows of A (a fact which generalizes the simple
fact that the row rank is equal to the column rank). Using the bound on the average
distance of rows we argue that there is a large subset that is approximated well by
a low dimensional subspace. We then extend this to all points using interpolation.

3. Stable locally correctable codes

Before discussing local correction, we briefly mention the exciting recent
developments regarding ‘standard’ (nonlocal) error correcting codes over the
reals. Like in the analogous theory over finite fields, one would like to encode
(typically via a linear transformation) a vector of entries from a given field F by
a longer one, such that the original message can be decoded even when some
entries of the codeword are corrupted. The breakthrough of ‘compressed sensing’
by Donoho and Candes-Tao, with subsequent developments [see for example
5, 6, 10, 11, 13, 17], has led to an understanding of codes over the reals that
is almost as good as in the finite-field case. In particular, there are real-valued
codes which achieve the gold-standard of coding theory of constant rate linear
codes with efficient encoding and decoding algorithms from a linear number of
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errors of arbitrary magnitude. Moreover, these codes have stable versions which
can recover a vector close to the original message even if small errors affect all
coordinates of the encoding. Our local variant may be viewed as one local analog
of such stable codes.

Informally, locally correctable codes (LCCs) are error correcting codes that
allow the transmission of information over a noisy channel, so the symbols of the
transmitted words have many local dependences between them. The most general
definition requires that one can reconstruct (with high probability) any coordinate
in a possibly corrupted codeword, using a small number of (randomly chosen)
queries to the other coordinates. The noise model is adversarial, meaning that
the corrupted positions are arbitrary (and not random) and one only has a bound
on the total number of errors (which is usually assumed to be a small constant
fraction). LCCs are closely related to codes of another type—locally decodable
codes (LDCs)—whose study was initiated in a work of Katz and Trevisan [14].
We refer the interested reader to [20] for the relevant background on LDCs and
LCCs and their applications in computer science.

The connection between LCCs and the Sylvester–Gallai theorem was first
observed in [2]. When studying the special case of linear LCCs (that is, LCCs
that are given by linear mappings over a field), one can easily show that LCCs are
equivalent to point configurations with many linearly dependent small subsets.
The general definition of linear LCCs is as follows (we fix the field to be C but
the same definition works for any field). We use w(v) to denote the number of
nonzero elements in a vector v ∈ Cn .

DEFINITION 3.1 (Linear LCC—first definition). A (q, δ)-LCC over C is a linear
subspace U ⊂ Cm such that there exists a randomized decoding procedure D :
Cm
× [m] 7→ C with the following properties:

1. For all x ∈ U , for all i ∈ [m] and for all v ∈ Cm with w(v) 6 δm we have
that D (x + v, i) = xi with probability at least 3/4 (the probability is taken
only over the internal randomness of D).

2. For every y ∈ Cm and i ∈ [m], the decoder D(y, i) reads at most q positions
in y.

The dimension of an LCC is simply its dimension as a subspace of Cm .

It is shown in [2] that, without loss of generality. the decoding procedure is
linear, in the sense that it first picks a set of at most q coordinates to read and then
outputs a linear combination of them (with coefficients in C). This linearity of the
decoder implies that, for each coordinate in the code, there are many small subsets
of the other coordinates that span it. Since each coordinate corresponds to a row
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of the generating matrix of the code, we obtain a configuration of points with
many dependent small subsets. We will make this formal in the next definition,
which is equivalent to the first definition, if one replaces δ with the slightly less
good bound of δ/q (when q is constant this change is negligible).

DEFINITION 3.2 (Linear LCC—second definition). We say that a finite set V =
{v1, . . . , vn} ⊂ Cd is a (q, δ)-LCC if for every i ∈ [n] and every set S ⊂ [n] of size
|S|6 δn there exists a set J ⊂ [n]\S with |J |6 q such that vi ∈ span(v j | j ∈ J ).

The main open problem regarding LCCs is that of determining the maximum
dimension (as a function of n) when we fix q, δ to be constants. Intuitively, the
larger d is, the more ‘information’ we can transmit using the code (the rate of
the code if d/n). While the case of q = 2 is understood quite well (d is at most
logarithmic over finite fields and constant over characteristic zero [2, 3]), it is
an open problem to determine the maximum dimension of a q-query LCC when
q > 2. There are exponential gaps between the known lower and upper bound.
For example, when q = 3, the best upper bound is d 6 O(

√
n) [16, 19] while

the best constructions give polylogarithmic d over finite fields and constant d
over characteristic zero. We refer the reader to the survey article [7] for more
background on LCCs and for an overview of the known constructions.

Due to their roots in coding theory, LCCs were traditionally studied exclusively
over finite fields. The study of LCCs over arbitrary fields was initiated in
[2] and was motivated by its connection to the Sylvester–Gallai theorem.
Further motivation comes from a work connecting LCCs with an approach for
constructing rigid matrices over infinite fields [9]. We note here that for q > 2, the
best upper bounds on the dimensions of LCCs are the same, no matter what the
field is. This also motivates the study of LCCs over infinite fields as a potentially
easier scenario to tackle first, before proceeding to codes over finite fields (where
we have fewer techniques).

Our methods enable us to prove strong upper bounds on the dimension of codes
that we call stable LCCs. Before discussing the relationship between stable and
nonstable LCCs we give the formal definition.

DEFINITION 3.3 (spanB). Let v, u1, . . . , um ∈ Cd . We say that v ∈ spanB(u1,

. . . , um) if there exist a1, . . . , am ∈ C with |ai | 6 B for all i and v =
∑m

i=1 ai ui .

DEFINITION 3.4 (Stable LCC). We say that a finite set V = {v1, . . . , vn} ⊂ Cd

is a (q, δ, B, ε)-stable LCC if for every i ∈ [n] and every set S ⊂ [n] of
size |S| 6 δn there exists a set J ⊂ [n] \ S with |J | 6 q such that dist(vi ,

spanB(v j | j ∈ J )) 6 ε.

Notice that this definition is not comparable to Definition 3.2. On the one
hand, we restrict the linear dependences to use only coefficients of bounded

https://doi.org/10.1017/fms.2014.1 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2014.1


Sylvester–Gallai type theorems for approximate collinearity 11

magnitude. On the other hand, we allow the linear combinations to result in an
‘approximate’ vector, instead of the exact one. To see why the bound on the
coefficients is natural (once you allow approximate recovery), notice that the
decoder can handle small perturbations even in the ‘correct positions’. Stated
in the scenario of Definition 3.1, suppose that in a received codeword at most
δ fraction of the positions are completely changed (to arbitrary values) and,
in addition, all other coordinates are perturbed by some small α in Euclidean
distance. Then, the decoder can still recover (approximately) the value of a given
codeword coordinate by reading at most q other positions, as long as α � ε/q B.
Since each of the read coordinates is multiplied by a coefficient that can be as
large as B and the errors sum over q positions, we get at most α · q B resulting
error in the output of the decoder. (One can potentially define stable LCCs in this
sense (as in Definition 3.1) and then prove (similarly to [2]) that, up to constants,
it is equivalent to Definition 3.4 (we did not verify the details).)

The next simple claim shows that Definition 3.4 is also stable in the sense that,
perturbing the elements in a stable LCC gives another stable LCC (with slightly
less good parameters).

CLAIM 3.5. Let V = {v1, . . . , vn} ⊂ Cd be a (q, δ, B, ε)-stable LCC and let
V = {v′1, . . . , v

′

n} ⊂ Cd be such that dist(vi , v
′

i) 6 α for all i ∈ [n]. Then V ′ is a
(q, δ, B, ε ′)-stable LCC with ε ′ 6 ε + (q B + 1)α.

Proof. Take some vi ∈ V and a set J ⊂ [n] of size |J | 6 q such that dist(vi ,

spanB(v j | j ∈ J )) 6 ε. Then, there exist coefficients b j , j ∈ J , with |b j | 6 B
and such that ∥∥∥∥∥vi −

∑
j∈J

b jv j

∥∥∥∥∥ 6 ε.

Replacing vi with v′i we get that∥∥∥∥∥v′i −∑
j∈J

b jv
′

j

∥∥∥∥∥ 6 ε + ‖vi − v
′

i‖ +
∑
j∈J

b j‖v j − v
′

j‖ 6 ε + (q B + 1)α.

Notice that, if we did not have the bound on the coefficients in the span, the
small perturbations would have resulted in large errors in the linear combinations.
Intuitively, if u is not in spanB(u1, . . . , um) then a small perturbation to the ui

may result in u being very far from span(u1, . . . , um). This explains the need for
two separate stability parameters, ε and B.

Our main result regarding stable LCCs is the following theorem:

THEOREM 5. Let V = {v1, . . . , vn} ⊂ Cd be a (q, δ, B, ε)-stable LCC. Then,

dimε′(V ) 6 O((q B/δ)4)
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with
ε ′ = O(q2 Bε/δ1.5).

In particular, when q is a constant and B and δ are fixed, the upper bound on
dimε′ can be interpreted as saying that there do not exist stable q-query LCCs,
where ‘do not exist’ means that the amount of information that one can transmit
is constant, regardless of the codeword length. The proof of Theorem 5, which
follows the same lines as the proof of the Sylvester–Gallai type theorems, works
also for the more general setting where V is allowed to be an ordered multiset
(that is, when different vi can repeat several times).

If one sets ε = 0, the definition of stable LCC changes into a definition of
an LCC with bounded coefficients. That is, the linear dependences are required
to be exact (as in the usual definition of an LCC) and, in addition, need to use
bounded coefficients. Applying Theorem 5 to this special case, one gets ε ′ = 0
and so obtains the stronger conclusion that the set V is actually contained in a
low dimensional space. Stated more formally, we have:

COROLLARY 3.6. Let V = {v1, . . . , vn} ⊂ Cd be a (q, δ, B, 0)-stable LCC.
Then,

dim(V ) 6 O((q B/δ)4).

4. Proof of Theorem 4

We will derive Theorem 4 from the following, more refined, statement.

THEOREM 4.1. Under the same conditions as in Theorem 4, there exists a
subspace L ⊂ Cd with

dim(L) 6
2n2g2

p2µ4

and such that
n∑

i=1

dist(vi , L)2 6
4|T |ε2

µ2 p
.

Proof. First, observe that, for convenience, we can take d = n, so that the vectors
vi are in Cn . The case d > n is not interesting since we can restrict our attention
to the span of the n vectors. The case d < n can be similarly handled by padding
each vector with zeros.

Let m = |T |. We use T to construct an m × n matrix M such that there is
a one-to-one correspondence between rows of M and elements of T . By our
assumptions, for each triple t = {i, j, k} ∈ T there are complex numbers α, β,
γ such that ‖αvi + βv j + γ vk‖ 6 ε and such that µ 6 |α|, |β|, |γ | 6 1. Let st
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denote the row vector in Cn with the value α in position i , the value β in position
j , the value γ in position k and zeros everywhere else. We define M to be the
matrix with rows st where t goes over all triples in T (in some order).

Next, let A be a complex n × n matrix whose i th row is the vector vi . Then,
from our definition of the rows of M , we have that the rows of the m × n matrix

E = M A (4.1)

all have norm at most ε.
The next claim summarizes some of the properties of M that we will use. All

three items follow immediately from the fact that T is a (p, g)-design and the
bounds on the entries of M .

CLAIM 4.2. Let M be as above and let M j ∈ Cm , j ∈ [n] denote the j th column
of M . Then:

1. Each entry of M has absolute value at least µ and at most 1.

2. For each j ∈ [n], ‖M j‖
2 > pµ2.

3. For each j 6= j ′ ∈ [n],
∣∣〈M j ,M j ′〉

∣∣ 6 g.

The main technical ingredient in the proof is the following simple observation
regarding the eigenvalues of diagonal dominant matrices, that is, matrices in
which the diagonal elements are much larger than the off-diagonal elements. This
lemma can be viewed as an extension of a folklore result regarding the rank
of such matrices [see for example 1]. The proof is a simple application of the
Hoffman–Wielandt inequality.

LEMMA 4.3. Let X = (X i j)i, j∈[n] be an n × n complex Hermitian matrix with
eigenvalues λ1, . . . , λn . Suppose that for all i ∈ [n] we have X i i > K , where K
is some positive real number. Then,

|{i ∈ [n] | λi 6 K/4}| 6
2

K 2

∑
i 6= j

|X i j |
2.

Proof. Let D be an n × n diagonal matrix with Di i = X i i for all i ∈ [n]. Clearly,
the eigenvalues of D are D11, . . . , Dnn . The Hoffman–Wielandt inequality [12]
states that, under some ordering of the eigenvalues of X (without loss of
generality, the one that we have chosen) we have∑

i∈[n]

|λi − Di i |
2 6 ‖X − D‖2

=

∑
i 6= j

|X i j |
2.

Using the fact that all Di i are at least K , we get the required bound.
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Let σ1, . . . , σn be the singular values of the matrix M (recall that these are the
square roots of the eigenvalues of the PSD matrix M∗M). Let r1, . . . , rn be the
corresponding right singular vectors (that is, the corresponding eigenvectors of
M∗M). We thus have:

1. r1, . . . , rn form an orthonormal basis of Cn .

2. For each j ∈ [n], ‖Mr j‖ = σ j .

3. The vectors Mr1, . . . ,Mrn are orthogonal (that is, 〈Mri ,Mr j 〉 = 0 for
i 6= j).

Let
J = { j ∈ [n] | σ j 6 µ

√
p/2}

and let
L = span{r j | j ∈ J }.

We will now show that L is of small dimension and that most columns of A are
close to L . We start by bounding the dimension of L .

CLAIM 4.4. Let L be as above. Then |J | = dim(L) 6 ((2n2g2)/(p2µ4)).

Proof. Consider the n × n matrix X = M∗M with eigenvalues σ 2
1 , . . . , σ

2
n . By

Claim 4.2 the diagonal elements of X are all lower bounded by pµ2 and the
off-diagonal elements of X are all upper bounded by g in absolute value. Using
Lemma 4.3, and these bounds on the entries of X , we get that∣∣{i ∈ [n] | σ 2

i 6 pµ2/4
}∣∣ 6 2n2g2

p2µ4
.

Taking square roots completes the proof.

Let u1, . . . , un denote the columns of A. We can write each u j in the ortho-
normal basis r1, . . . , rn in a unique way as

u j =

n∑
k=1

α jkrk .

Observe that
dist(u j , L)2 =

∑
k 6∈J

|α jk |
2. (4.2)

Denote the rows of the matrix E = M A by ei , i ∈ [m], such that ‖ei‖ 6 ε for
all i ∈ [m]. Let f1, . . . , fn be the columns of E and observe that∑

j∈[n]

‖ f j‖
2
=

∑
i∈[m]

‖ei‖
2 6 mε2. (4.3)
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The next claim bounds the sum of distances of the vectors u j to the subspace L .

CLAIM 4.5. With the above notation, we have
n∑

j=1

dist(u j , L)2 6
4mε2

µ2 p
.

Proof. Using (2) and (3), the orthogonality of the Mr j and the fact that σ j >

((µ
√

p)/2) for all j 6∈ J , we have

mε2 >
∑
j∈[n]

‖ f j‖
2
=

∑
j∈[n]

‖Mu j‖
2

=

∑
j∈[n]

∥∥∥∥∥∑
k∈[n]

α jk Mrk

∥∥∥∥∥
2

=

∑
j∈[n]

∑
k∈[n]

|α jk |
2σ 2

k

>
µ2 p

4

∑
j∈[n]

∑
k 6∈J

|α jk |
2

=
µ2 p

4

∑
j∈[n]

dist(u j , L)2.

This proves the claim.

We now use Claim 4.5 to deduce that many rows of A are close to a low
dimensional subspace.

CLAIM 4.6. There exists a subspace L ′ ⊂ Cn with dim(L ′) 6 ((2n2g2)/(p2µ4))

and such that
n∑

j=1

dist(v j , L ′)2 6
4mε2

µ2 p
.

Proof. Let Y be an n×n matrix such that the j th column of Y is the element of L
closest to u j . If we let L ′ be the span of the rows of Y we have dim(L ′) 6 dim(L)
and, using Claim 4.5,∑

j∈[n]

dist(v j , L ′)2 6 ‖Y − A‖2
=

∑
j∈[n]

dist(u j , L)2 6
4mε2

µ2 p
.

This claim completes the proof of Theorem 4.1.

Proof of Theorem 4 using Theorem 4.1. From Theorem 4.1 we can get a
large subset of V that is ε ′-close to a low dimensional subspace L . To derive
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the conclusion of Theorem 4, we will show that the rest of the points in V are
also close to L , though with a slightly less good bound on the distance. This will
follow from showing that, for every point v ∈ V , there are two points u, w ∈ V
that are close to L and such that v is close to the line passing through them. This
will imply that v is also close to L . The details follow.

First, apply Theorem 4.1 to get a subspace L such that

dim(L) 6
2n2g2

p2µ4

and such that
n∑

i=1

dist(vi , L)2 6
4mε2

µ2 p
.

Let

I =
{

i ∈ [n]
∣∣∣∣dist(vi , L)2 >

4gmε2

µ2 p2

}
and observe that |I | < p/g. Our final step is to argue that the points vi , i ∈ I , are
also close to L ′ since they are close to the span of two points v j , vk with j, k 6∈ I
(using the design properties of T ).

CLAIM 4.7. For each i ∈ I there are indices j, k ∈ [n] \ I such that {i, j, k} ∈ T .

Proof. Fix some i ∈ I . If the claim is false then every triple in T that contains
i must have some other element in I . By a pigeonhole argument, there must be
an element j ∈ I \ {i} and at least p/|I | > g triples containing both i and j ,
contradicting the design property of T .

We will need the following simple lemma:

LEMMA 4.8. Let u, v, w ∈ Cd be an (ε, µ)-dependent triple. Let L ⊂ Cd be a
subspace with dist(v, L),dist(u, L) 6 ρ for some ρ > 0. Then dist(w, L) 6
(ε + 2ρ)/µ.

Proof. Let α, β, γ be such that |α|, |β|, |γ | ∈ [µ, 1] and ‖αu + βv + γw‖ 6 ε.
Let v′, u ′ ∈ L be such that ‖v − v′‖, ‖u − u ′‖ 6 ρ. Then

dist(w, L) 6 ‖w + (α/γ )v′ + (β/γ )u ′‖
6 ‖w + (α/γ )v + (β/γ )u‖ + ‖(α/γ )v − (α/γ )v′‖
+‖(β/γ )u − (β/γ )u ′‖

6 ε/|γ | + |α/γ |ρ + |β/γ |ρ

6 (ε + 2ρ)/µ.
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Combining Claim 4.7 with Lemma 4.8 we have that each vi , i ∈ [n] is ε ′ close
to L with ε ′ 6 (ε + 2ρ)/µ, where ρ = ((2ε

√
gm)/(pµ)). Simplifying, we get

ε ′ 6
5ε
√

gm
pµ2

as was required. This completes the proof of Theorem 4.

5. Proof of Theorem 2

We start with some preliminary lemmas.

LEMMA 5.1. Let {u, v, w} ∈ Cd be B-balanced. If w ∈ lineε(u, v) with ε <
1/2 then the triple u, v, w is (ε, 1/4B)-dependent. Furthermore, there exists a
complex α with |α| > 1/4B such that ‖w − αu − (1− α)v‖ 6 ε.

Proof. By shiftingw to zero we can assume that both u and v have norm bounded
by B. By definition, there exists α ∈ C such that ‖w − αu − (1− α)v‖ 6 ε and
so we only need to show that |α| > 1/4B (the same argument will apply to 1− α
by symmetry). Observe that

1 6 ‖w − v‖

6 ‖w − αu − (1− α)v‖ + ‖αu‖ + ‖αv‖
6 ε + 2αB,

which proves the lemma.

LEMMA 5.2. Let {u, v, w} ∈ Cd be B-balanced and let 0 < ε 6 1/2 be a real
number such that w ∈ lineε(u, v). Then v ∈ lineε′(w, u) with ε ′ = 4εB.

Proof. By Lemma 5.1 there exists a complex α with |α| > 1/4B such that

‖w − αv − (1− α)u‖ 6 ε.

Then
‖v − (1/α)w + (1/α − 1)v‖ 6 ε/α 6 4εB.

This completes the proof.

LEMMA 5.3. Let u, v ∈ Cd be two distinct points. Let k be the maximum size of
a B-balanced set contained in lineε(u, v). If ε < 1/4, then k 6 5B.

Proof. Suppose k > 5B and let V = {v1, . . . , vk} be a B-balanced set contained
in lineε(u, v). For each vi let ui ∈ line(u, v) be a point of distance at most ε from
it. Since the k points u1, . . . , uk are all on a line segment of length at most 2B,
we can apply a pigeonhole argument to conclude that there must be i 6= j with
dist(ui , u j) 6 2B/(k − 1). This implies dist(vi , v j) 6 2ε + 2B/(k − 1) < 1,
which is a contradiction.
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Proof of Theorem 2. We define T ⊂
(
[n]
3

)
to be the set of triples {i, j, k} ⊂

[n] (with three distinct indices) for which vk ∈ lineε(vi , v j). By Lemma 5.1 we
have that for each triple {i, j, k} in T , the corresponding triple vi , v j , vk ∈ Cd is
(ε, 1/4B)-dependent.

CLAIM 5.4. T as defined above is a (p, g) design with p = δ(n−1) and g < 5B.

Proof. By the conditions of the theorem, each vi is contained in at least δ(n − 1)
triples that are in T and so the bound on p holds. To prove the bound on g,
fix i 6= j ∈ [n]. If the triple {i, j, k} appears in T . Then either vk ∈ lineε(vi ,

v j), vi ∈ lineε(v j , vk) or v j ∈ lineε(vi , vk). In all three cases, we have, using
Lemma 5.2, that vk ∈ lineε′(vi , v j) with ε ′ = 4εB. Since ε < 1/16B we have
ε ′ < 1/4 and we can apply Lemma 5.3 to conclude that there could be at most 5B
such triples.

Observe that we can discard some of the triples in T such that |T | 6 δn2 and
such that T is still a (p, g)-design (simply keep for each i only δ(n−1)-dependent
triples).

Plugging the bounds obtained in the above claims and the bound |T | 6 δn2 into
Theorem 4, we get a subspace L with dim(L) 6 O(B6/δ2) and such that dist(vi ,

L) 6 O(εB2.5/
√
δ) for all i ∈ [n]. The second part of the theorem follows from

applying Theorem 4.1.

6. Proof of Theorem 3

We first prove some preliminary lemmas.

LEMMA 6.1. Suppose u, v ∈ Sd are such that min{dist(u, v),dist(u,−v)} = µ.
Then, for all complex β, dist(u, βv) > µ/4.

Proof. Suppose without loss of generality that dist(u, v) = µ 6
√

2. We have

µ =
√
〈u − v, u − v〉 =

√
2− 2〈u, v〉,

which gives 〈u, v〉 = 1 − µ2/2. Since dist(u, γ v) is minimized for γ = 〈u, v〉
we have dist(u, βv) > dist(u, (1− µ2/2)v) = ‖u − v + (µ2/2)v‖ > ‖u − v‖ −
‖(µ2/2)v‖ > µ− µ2/2 > µ/4 (for µ 6

√
2).

LEMMA 6.2. Let u, v, w ∈ Sd be distinct and let ε, µ > 0 be real numbers such
that ε < µ/8. Suppose that ‖w− αu− βv‖ 6 ε for some complex numbers α, β.
If min{dist(w, v),dist(w,−v)} > µ, then |α| > µ/8.

Proof. By the triangle inequality,

‖w − βv‖ 6 ‖αu‖ + ε = |α| + ε.
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Using Lemma 6.1 we have dist(w, βv) > µ/4 which gives |α| > µ/4 − ε >
µ/8.

LEMMA 6.3. Let u, v, w ∈ Sd be µ-separated and suppose ε < µ/8. Suppose
w ∈ circε(u, v). Then, there exist complex numbers α, β, γ with ‖αu + βv +
γw‖ 6 ε and such that µ/8 6 |α|, |β|, |γ | 6 1.

Proof. By the assumption, there are α′, β ′ with ‖w − α′u − β ′v‖ 6 ε. If |α′|
and |β ′| are at most 1 then we are done using Lemma 6.2. If not, suppose that
|α′| = max{|α′|, |β ′|} > 1 and divide the equation by α′ to obtain ‖(1/α′)w−u−
(β ′/α′)v‖ 6 ε/|α′| < ε. Now, all three coefficients are at most 1 in absolute value
and, using Lemma 6.2, we have the lower bound µ/8 on |1/α′|, |β ′/α′|.

LEMMA 6.4. Let u, v, w ∈ Sd be distinct. Let ε, µ > 0 be real numbers such that
ε < µ/8. Suppose w ∈ circε(u, v) and min{dist(w, v),dist(w,−v)} > µ. Then
u ∈ circε′(w, v) with ε ′ = 8ε/µ.

Proof. By our assumption, there exist complex numbers α, β such that

‖w − αu − βv‖ 6 ε.

By Lemma 6.2 we have |α| > µ/8 and so

‖u − (1/α)w + (β/α)v‖ 6 8ε/µ.

This implies that u ∈ circε′(w, v) as was required.

LEMMA 6.5. Let u, v ∈ Sd be two distinct points. Let k be the maximum size of
a µ-separated set contained in circε(u, v). If ε < µ/4, then k 6 8/µ.

Proof. Suppose that k > 8/µ and let V = {v1, . . . , vk} be a µ-separated set
contained in circε(u, v). For each vi let ui ∈ circ(u, v) be a point of distance at
most ε from it. By a pigeonhole argument, there must be i 6= j with min{dist(ui ,

u j),dist(ui ,−u j)} 6 π/k 6 µ/2. This implies that min{dist(vi , v j),dist(vi ,

−v j)} 6 2ε + µ/2 < µ, which is a contradiction.

Proof of Theorem 3. To reduce to Theorem 4 we will define T ⊂
(
[n]
3

)
to be the

set of triples {i, j, k} ⊂ [n] for which vk ∈ circε(vi , v j).

CLAIM 6.6. Let {i, j, k} ∈ T . Then the triple vi , v j , vk ∈ Cd is (ε, µ/8)-
dependent.

Proof. This is immediate from Lemma 6.3.

CLAIM 6.7. T as defined above is a (p, g) design with p = δ(n−1) and g < 8/µ.
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Proof. By the conditions of the theorem, each vi is contained in at least δ(n − 1)
triples that are in T and so the bound on p holds. To prove the bound on g, fix
i 6= j ∈ [n]. If the triple {i, j, k} appears in T , then vk ∈ circε(vi , v j), vi ∈

circε(v j , vk) or v j ∈ circε(vi , vk). In all three cases, we have, using Lemma 6.4,
that vk ∈ circε′(vi , v j) with ε ′ = 8ε/µ. Since ε < µ2/32 we have ε ′ < µ/4
and we can apply Lemma 6.5 to conclude that there could be at most 8/µ such
triples.

Plugging the bounds obtained in the above claims and the bound |T | 6 δn2

(which can be obtained by discarding some of the triples in T , as before) into
Theorem 4 and into Theorem 4.1 completes the proof.

7. Proof of Theorem 5

Since the proof follows the same lines as the proof of Theorem 4, we will
assume familiarity with the proof of that theorem and only give details where the
proofs differ.

We will use the following definition:

DEFINITION 7.1 (LCC matrix). Let M be an nk × n matrix over C and let M1,

. . . ,Mn be k × n matrices such that M is the concatenation of the blocks M1,

. . . ,Mn placed on top of each other (so M` contains the rows of M numbered
k(`− 1)+ 1, . . . , k`). We say that M is a (k, q)-LCC matrix if, for each i ∈ [n],
the block Mi satisfies the following conditions:

• Each row of Mi has support size at most q + 1.

• All rows in Mi have the value 1 in position i .

• The supports of two distinct rows in Mi intersect only in position i .

Let V = {v1, . . . , vn} ⊂ Cd be a (q, δ, B, ε)-stable LCC and assume without
loss of generality that d = n (that is, pad the vectors vi with zeros so that we can
think of them as vectors in Cn). Let A be the n × n matrix with rows vi .

CLAIM 7.2. There exists a (k, q)-LCC matrix M with dimensions nk × n and
with k = Ω(δn/q) such that all entries of M have absolute values at most B and
such that

‖M A‖2 6 n2ε2.

Proof. We will show how to construct the k×n block Mi of M (see Definition 7.1)
row by row. Using the definition of stable LCC, there exists a family Qi of k =
Ω(δn/q) disjoint q-tuples of elements of V such that, for each q-tuple J ∈ Qi ,
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we have dist(vi , spanB(J )) 6 ε. Each of these q-tuples, J , defines a row vector
wJ with 1 in the i th position, B-bounded entries in positions indexed by J , and
zeros everywhere else in the following manner: suppose that vi =

∑
j∈J b jv j + e

with |b j | 6 B for all j ∈ J and ‖e‖ 6 ε; then we define w j to have 1 in position
i and values −b j in positions j ∈ J (with zeros in all other positions). Then, we
have ‖wJ A‖ = ‖e‖ 6 ε. Taking all these row vectors to construct Mi we get the
required bound on ‖M A‖2.

Let E = M A, such that ‖E‖2 6 n2ε2. We now construct another nk×n matrix
R such that RT M will be diagonal dominant. R will be comprised of n blocks,
R1, . . . , Rn , each of dimensions k×n, such that Ri has entries 1 in the i th column
and zeros everywhere else. Notice that the i th row of RT M is the sum of the rows
in the block Mi of M .

Let M̂ = RT M and Ê = RT E , such that Ê = M̂ A. An application of the
Cauchy–Schwarz inequality shows that

‖RT E‖2 6 n‖E‖2 6 n3ε2.

Observe that the diagonal elements of M̂ are all equal to k and that the off-
diagonal elements of M̂ are all of absolute value at most B (since the supports
of rows in Mi are disjoint except for the i th coordinate).

We proceed with analyzing the spectrum of M̂ . Let r1, . . . , rn be the right
singular vectors and σ1, . . . , σn the corresponding singular values. If we take
X = M̂∗M̂ , then the diagonal elements of X are all at least K 2 > k2 and the
off-diagonal elements can be bounded by 2k B + nB2 6 O(nB2). If we define

L = span{r j | σ j < K/2}

we get, using Lemma 4.3, that

dim(L) 6 O(n4 B4/K 4) = O((q B/δ)4).

As in the proof of Theorem 4, we consider the columns u1, . . . , un of A and
obtain the bound

n∑
j=1

dist(u j , L)2 6 4‖Ê‖2/K 2
= O(n3ε2/K 2).

This means that there is a subspace L ′ with the same dimension as L such that

n∑
i=1

dist(v j , L ′)2 6 O(n3ε2/K 2).

https://doi.org/10.1017/fms.2014.1 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2014.1


A. Ai, Z. Dvir, S. Saraf and A. Wigderson 22

Thus, there is a set V ′ ⊂ V of size n′ > (1 − δ/2)n such that for all v′ ∈ V ′ we
have dist(v′, L ′)2 6 O(n2ε2/δK 2) = O(q2ε2/δ3). To finish the proof we observe,
using the definition of a stable LCC, that for every v ∈ V there is a q-tuple J ⊂ V ′

with dist(vi , spanB(J )) 6 ε. Using the bound on the distances of elements of V ′

to L ′ and the bound B on the coefficients in the linear combinations in spanB(J ),
we get that dist(v, L ′) 6 ε+ O(q B · (qε/δ1.5)) = O(q2 Bε/δ1.5). This completes
the proof of Theorem 5.
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