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The Infimum in the Metric Mahler Measure

Charles L. Samuels

Abstract. Dubickas and Smyth defined the metric Mahler measure on the multiplicative group of non-

zero algebraic numbers. The definition involves taking an infimum over representations of an algebraic

number α by other algebraic numbers. We verify their conjecture that the infimum in its definition is

always achieved, and we establish its analog for the ultrametric Mahler measure.

1 Introduction

Let K be a number field, and let v be a place of K dividing the place p of Q . Let Kv

and Qp denote the respective completions. We write ‖ · ‖v for the unique absolute

value on Kv extending the p-adic absolute value on Qp and define

|α|v = ‖α‖
[Kv :Qp]/[K:Q]
v

for all α ∈ K. Define the Weil height of α ∈ K by

H(α) =
∏

v

max{1, |α|v},

where the product is taken over all places v of K. Given this normalization of our

absolute values, the above definition does not depend on K, and therefore, H is a

well-defined function on Q . Clearly H(α) ≥ 1, and by Kronecker’s Theorem, we

have equality precisely when α is zero or a root of unity. It is obvious that if ζ is a

root of unity, then

(1.1) H(α) = H(ζα),

and further, if n is an integer then it is well known that

(1.2) H(αn) = H(α)|n|.

Also, if α, β ∈ Q
×

, then H(αβ) ≤ H(α)H(β).

We further define the Mahler measure of an algebraic number α by M(α) =

H(α)[Q(α):Q]. Since H is invariant under Galois conjugation over Q , we obtain im-

mediately M(α) =

∏N
n=1 H(αn), where α1, . . . , αN are the conjugates of α over Q .

Further, it is well known that

(1.3) M(α) = |A| ·
N
∏

n=1

max{1, |αn|},
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where | · | denotes the usual absolute value on C. While the right hand side of (1.3)

appears initially to depend upon a particular embedding of Q into C, any change

of embedding simply permutes the images of the points {αn} so that (1.3) remains

unchanged.

It follows, again from Kronecker’s Theorem, that M(α) = 1 if and only if α is

zero or a root of unity. As part of an algorithm for computing large primes, D. H.

Lehmer ([5]) asked whether there exists a constant c > 1 such that M(α) ≥ c in all

other cases. The smallest known Mahler measure greater than 1 occurs at a root of

ℓ(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1,

which has Mahler measure 1.17 · · · . Although an affirmative answer to Lehmer’s

problem has been given in many special cases, the general case remains open. The

best known universal lower bound on M(α) is due to Dobrowolski ([1]), who proved

that

log M(α) ≫
( log log degα

log degα

) 3

whenever α is not a root of unity.

Recently, Dubickas, and Smyth ([2]) defined the metric Mahler measure of an al-

gebraic number α by

(1.4) M1(α) = inf
{ N
∏

n=1

M(αn) : N ∈ N, αn ∈ Q
×
, α =

N
∏

n=1

αn

}

.

Here, the infimum is taken over all ways to represent α as a product of elements

in Q
×

. It is easily verified that M1(αβ) ≤ M1(α)M1(β) for all α, β ∈ Q
×

, and

further, M1 is well defined on the quotient group G = Q
×
/Tor(Q

×
). This implies

that the map (α, β) 7→ log M1(αβ−1) defines a metric on G that induces the discrete

topology if and only if there is an affirmative answer to Lehmer’s problem.

Also in [2], Dubickas and Smyth conjecture that the infimum in the definition of

M1 is always achieved. We verify this conjecture as well as explicitly determine a set

in which the infimum must occur.

If K is any number field, let

Rad(K) =
{

α ∈ Q : αr ∈ K for some r ∈ N
}

,

the set of all roots of points in K. Also, we write Kα for the Galois closure of Q(α)

over Q .

Theorem 1.1 If α is a non-zero algebraic number, then there exist α1, . . . , αN ∈
Rad(Kα) such that α = α1 · · ·αN and M1(α) = M(α1) · · ·M(αN ).

Motivated by the work of Dubickas and Smyth, Fili and the author ([4]) defined

a non-Archimedean version of M1 by replacing the product in (1.4) by a maximum.

That is, define the ultrametric Mahler measure by

M∞(α) = inf
{

max
1≤n≤N

M(αn) : N ∈ N, αn ∈ Q
×
, α =

N
∏

n=1

αn

}

.
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It easily verified that M∞ satisfies the strong triangle inequality

M∞(αβ) ≤ max{M∞(α),M∞(β)}

for all non-zero algebraic numbers α and β. It is further shown in [4] that M∞ is

well defined on the quotient group G. We can now establish the obvious analog of

Theorem 1.1 for M∞.

Theorem 1.2 If α is a non-zero algebraic number, then there exist α1, . . . , αN ∈
Rad(Kα) such that α = α1 · · ·αN and M∞(α) = max{M(α1), . . . ,M(αN )}.

The remainder of this paper is organized in the following way. Section 2 contains

the core of our argument in which we show that computing M1(α) and M∞(α) re-

quires only the use of elements in Rad(Kα). In Section 3, we finish the proofs of

Theorems 1.1 and 1.2 by showing, essentially, that there are only finitely many values

for the Mahler measure in Rad(Kα). Finally, Section 4 contains some applications of

these results, giving the location of the algebraic numbers M1(α) and M∞(α).

2 Reducing to Simpler Representations

The main idea in both proofs involves a method for replacing an arbitrary represen-

tation of α by a potentially smaller representation containing only points in Rad(Kα).

This technique is summarized by the following result.

Theorem 2.1 If α, α1, . . . , αN are non-zero algebraic numbers with α = α1 · · ·αN ,

then there exists a root of unity ζ and algebraic numbers β1, . . . , βN satisfying

(i) α = ζβ1 · · ·βN ,

(ii) βn ∈ Rad(Kα) for all n,

(iii) M(βn) ≤ M(αn) for all n.

The proof of Theorem 2.1 is based on the following lemma.

Lemma 2.2 Suppose that K is Galois over Q . If γ is an algebraic number, then

(2.1) [K(γ) : K] = [Q(γ) : K ∩ Q(γ)].

Moreover, we have that
∏N

n=1 γn ∈ K ∩ Q(γ), where γ1, . . . , γN are the conjugates of γ
over K.

Proof We see clearly that K(γ) is the compositum of K and Q(γ). Since K is Galois

over Q , it follows (see [3, p. 505, Prop. 19]) that [K(γ) : K] = [Q(γ) : K ∩ Q(γ)],

verifying (2.1). We also observe that

(K ∩ Q(γ))(γ) ⊆ (Q(γ))(γ) = Q(γ) ⊆ (K ∩ Q(γ))(γ),

so we conclude from (2.1) that

(2.2) [K(γ) : K] = [(K ∩ Q(γ))(γ) : K ∩ Q(γ)].
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Let f be the monic minimal polynomial of γ over K ∩ Q(γ) so that f has degree

D equal to both sides of (2.2). Now write f (x) = xD + · · · + a1x + a0 and note that

f is, of course, a polynomial over K. In fact, f is the monic minimal polynomial

of γ over K, because it vanishes at γ and has degree [K(γ) : K]. Since γ1, . . . , γN

are the conjugates of γ over K, we conclude that
∏N

n=1 γn = ±a0, which belongs to

K ∩ Q(γ).

It is worth observing that if Q(γ) is Galois over Q , then Lemma 2.2 becomes

trivial. Indeed, γ1 · · · γN certainly belongs to K by definition. But also, if Q(γ) is

Galois, then Q(γ) contains all conjugates of γ over Q . In particular, it contains γn

for all n, so it contains their product as well. Of course, the proof of Theorem 2.1

does not permit such a hypothesis, so we require the above lemma.

Additionally, we cannot omit the hypothesis that K be Galois over Q . For example,

let γ1, γ2, and γ3 be the roots of a third degree, irreducible polynomial over Q having

Galois group S3. This means that Q(γ1) ∩ Q(γ2) = Q . Further, we observe that

γ2 must have degree 2 over Q(γ1) implying that its conjugates over this field are γ2

and γ3. But if γ2 · γ3 ∈ Q(γ2), then γ1 ∈ Q(γ2), a contradiction.

Proof of Theorem 2.1 Suppose that α = α1 · · ·αN , and let E be a Galois extension

of Kα containing αn for all n. Let G = Gal(E/Kα), Gn = Gal(E/Kα(αn)) and Sn a set

of left coset representatives of Gn in G. We have that

α[E:Kα]
= NormE/Kα

(α) =
N
∏

n=1

NormE/Kα
(αn) =

N
∏

n=1

∏

σ∈G

σ(αn)

=

N
∏

n=1

∏

σ∈Sn

∏

τ∈Gn

σ(τ (αn)) =
N
∏

n=1

∏

σ∈Sn

σ(αn)|Gn|,

so we conclude that

(2.3) α[E:Kα]
=

N
∏

n=1

(

∏

σ∈Sn

σ(αn)
) [E:Kα(αn)]

.

For each n, we select an element βn ∈ Q such that

(2.4) β[Kα(αn):Kα]
n =

∏

σ∈Sn

σ(αn),

so that, in view of (2.3), we obtain α[E:Kα]
=

∏N
n=1 β

[E:Kα]
n . This implies the existence

of a root of unity ζ such that α = ζβ1 · · ·βN . Furthermore, the set {σ(αn) : σ ∈ Sn}
is precisely the set of conjugates of αn over Kα so that

∏

σ∈Sn
σ(αn) ∈ Kα. It then

follows from (2.4) that βn ∈ Rad(Kα) for each n as well.

It remains to show that M(βn) ≤ M(αn) for all n. To see this, we note that (2.4)

yields immediately

(2.5) deg(βn) ≤ [Kα(αn) : Kα] · deg
(

∏

σ∈Sn

σ(αn)
)

.
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Once again, the elements σ(αn) for σ ∈ Sn are precisely the conjugates of αn over Kα.

Hence, we may apply Lemma 2.2 to find that

∏

σ∈Sn

σ(αn) ∈ Kα ∩ Q(αn).

Combining this with (2.5), we obtain

deg(βn) ≤ [Kα(αn) : Kα] · [Kα ∩ Q(αn) : Q].

Then we find that

M(βn) ≤ H(βn)[Kα(αn):Kα]·[Kα∩Q(αn):Q]
= H

(

∏

σ∈Sn

σ(αn)
) [Kα∩Q(αn):Q]

≤ H(αn)[Kα(αn):Kα]·[Kα∩Q(αn):Q],

where the last inequality follows, since the Weil height is invariant under Galois con-

jugation and satisfies the triangle inequality. Also Kα(αn) is the compositum of Kα

and Q(αn), so that [Kα(αn) : Kα] = [Q(αn) : Kα ∩ Q(αn)] by (2.1). This yields

M(βn) ≤ H(αn)[Q(αn):Kα∩Q(αn)]·[Kα∩Q(αn):Q]
= M(αn),

which completes the proof.

3 Proofs of Theorems 1.1 and 1.2

In view of Theorem 2.1, it is enough, in the definitions of M1 and M∞, to consider

only representations α = α1 · · ·αN having αn ∈ Rad(Kα) for all n. Any repre-

sentation that fails to have this property may simply be replaced by a smaller rep-

resentation that does. The remainder of our proofs of both Theorem 1.1 and 1.2

require us to show that such representations yield only finitely many different values

for max1≤n≤N M(αn) and
∏N

n=1 M(αn). The following lemma provides the starting

point for this argument.

Lemma 3.1 Let K be a Galois extension of Q . If γ ∈ Rad(K), then there exists a root

of unity ζ and L, S ∈ N such that ζγL ∈ K and M(γ) = M(ζγL)S. In particular, the set

{M(γ) : γ ∈ Rad(K), M(γ) ≤ B} is finite for every B ≥ 1.

Proof Suppose that γr ∈ K, so that each conjugate of γ over K must be a root of

xr − γr ∈ K[x]. Therefore, we may assume that γ has conjugates ζ1γ, . . . , ζLγ over

K for some roots of unity ζ1, . . . , ζL. By Lemma 2.2 we conclude that

(3.1) ζ1 · · · ζLγ
L
= ζ1γ · · · ζLγ ∈ K ∩ Q(γ).

Since K is Galois, Lemma 2.2 also implies that L = [K(γ) : K] = [Q(γ) : K ∩Q(γ)].

Hence, we find that

M(γ) = H(γ)[Q(γ):Q]
= H(γ)[Q(γ):K∩Q(γ)]·[K∩Q(γ):Q]

= H(γ)L·[K∩Q(γ):Q].
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Since L is a positive integer and ζ1 · · · ζL is a root of unity, we conclude from (1.1)

and (1.2) that

(3.2) M(γ) = H(ζ1 · · · ζLγ
L)[K∩Q(γ):Q].

By (3.1) we know that there exists a positive integer S such that

[K ∩ Q(γ) : Q] = S · [Q(ζ1 · · · ζLγ
L) : Q],

and so (3.2) yields

M(γ) = H(ζ1 · · · ζLγ
L)S·[Q(ζ1···ζLγ

L):Q]
= M(ζ1 · · · ζLγ

L)S.

Taking ζ = ζ1 · · · ζL, we have that ζγL ∈ K by (3.1) and M(γ) = M(ζγL)S, which

establishes the first statement of the lemma.

Further, we note that (3.2) implies that M(γ) = H((ζγL)[K∩Q(γ):Q]), but

(ζγL)[K∩Q(γ):Q] ∈ K, implying that

(3.3) {M(γ) : γ ∈ Rad(K), M(γ) ≤ B} ⊆ {H(α) : α ∈ K×, H(α) ≤ B}.

It follows from Northcott’s Theorem ([6]) that the right-hand side of (3.3) is finite,

completing the proof.

The proof of Theorem 1.2 is somewhat simpler than that of Theorem 1.1, so we

include it here first.

Proof of Theorem 1.2 There exists ε > 0 such that if α = α1 · · ·αN with αn ∈
Rad(Kα) and

M∞(α) ≤ max{M(α1), . . . ,M(αN )} ≤ M∞(α) + ε,

then M∞(α) = max{M(α1), . . . ,M(αN )}. Otherwise, we get a sequence {xm} ⊆
Rad(Kα) such that {M(xm)} is strictly decreasing, contradicting Lemma 3.1.

By definition, there exists a representation α = γ1 · · · γN with

M∞(α) ≤ max{M(γ1), . . . ,M(γN )} ≤ M∞(α) + ε.

By Theorem 2.1, there exists a representation α = ζα1 · · ·αN such that ζ is a root of

unity, αn ∈ Rad(Kα) and M(αn) ≤ M(γn) for all n. This yields

M∞(α) ≤ max{M(α1), . . . ,M(αN )} ≤ M∞(α) + ε,

so that M∞(α) = max{M(α1), . . . ,M(αN )} by our earlier remarks.

We note that the above proof is not sufficient to establish Theorem 1.1. Indeed,

Lemma 3.1 does not prevent the product M(α1) · · ·M(αN ) from having infinitely

many values between M1(α) and M1(α) + ε unless we can bound N uniformly from

above by a function of α.

In order to do this, we introduce an additional definition. For B ≥ 1, we say that

a representation α = α1 · · ·αN is B-restricted if the following three conditions hold:
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(i) M(α1) · · ·M(αN ) ≤ B,

(ii) αn ∈ Rad(Kα) for all n,

(iii) At most one element αn is a root of unity.

We write RB(α) to denote the set of all N-tuples, for all N ∈ N, of non-zero algebraic

numbers that form B-restricted representations of α. Further, set

q(α) = inf
{

H(x) : x ∈ K×
α \ Tor(Q

×
)
}

and note that, by Northcott’s Theorem ([6]), this quantity is always strictly greater

than 1. Using these definitions, we obtain the result we need to finish the proof of

Theorem 1.1.

Lemma 3.2 Let α be a non-zero algebraic number and B ≥ 1. If α = α1 · · ·αN is an

B-restricted representation of α, then N ≤ 1 +
log B

log q(α)
. Moreover, the set

{ N
∏

n=1

M(αn) : N ∈ N, (α1, . . . , αN ) ∈ RB(α)
}

is finite.

Proof Suppose that α = α1 · · ·αN is a B-restricted representation. By assumption,

at least N − 1 of the terms αn in our representation are not roots of unity. Assume

αn is one such element. Lemma 3.1 implies that there exists a point γn ∈ Kα, not a

root of unity, such that

M(αn) ≥ H(γn).

Therefore, we find that M(αn) ≥ q(α) for N − 1 of the terms belonging to

{α1, . . . , αN}. This yields

B ≥ M(α1) · · ·M(αN ) ≥ q(α)N−1.

We know that q(α) > 1, so that we may divide by log q(α) to obtain N ≤ 1 +
log B

log q(α)
,

verifying the first statement of the lemma. We now find that

{ N
∏

n=1

M(αn) : N ∈ N, (α1, . . . , αN ) ∈ RB(α)
}

=

{ N
∏

n=1

M(αn) : (α1, . . . , αN ) ∈ RB(α),N ≤ 1 +
log B

log q(α)

}

⊆
{ N
∏

n=1

M(αn) : N ≤ 1 +
log B

log q(α)
,M(αn) ≤ B, αn ∈ Rad(Kα)

}

,

which is finite by Lemma 3.1.
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Proof of Theorem 1.1 By Lemma 3.2, we may select B > M1(α) such that

(M1(α),B) ∩
{ N
∏

n=1

M(αn) : N ∈ N, (α1, . . . , αN ) ∈ RM1(α)+1(α)
}

= ∅.

Of course, we may choose B ≤ M1(α) + 1, which gives

{ N
∏

n=1

M(αn) : N ∈ N, (α1, . . . , αN ) ∈ RB(α)
}

⊆

{ N
∏

n=1

M(αn) : N ∈ N, (α1, . . . , αN ) ∈ RM1(α)+1(α)
}

,

and therefore,

(3.4) (M1(α),B) ∩
{ N
∏

n=1

M(αn) : N ∈ N, (α1, . . . , αN ) ∈ RB(α)
}

= ∅.

By the definition of M1, there exists a representation α = γ1 · · · γL such that

M1(α) ≤ M(γ1) · · ·M(γL) < B.

Theorem 2.1 implies that there exists a representation α = ζβ1 · · ·βL with ζ a root

of unity, each element βℓ belonging to Rad(Kα) and M(βℓ) ≤ M(γℓ) for all ℓ. This

yields

M1(α) ≤ M(ζ)M(β1) · · ·M(βL) < B.

By combining all roots of unity in the representation into a single element, we obtain

a new representation α = α1 · · ·αN having αn ∈ Rad(Kα), at most one root of unity,

and

M(α1) · · ·M(αN ) = M(β1) · · ·M(βL).

Therefore, we see that

(3.5) M1(α) ≤ M(α1) · · ·M(αN ) < B,

which implies, in particular, that (α1, . . . , αN ) ∈ RB(α). Then by (3.4) we get that

(3.6) M(α1) · · ·M(αN ) 6∈ (M1(α),B).

Finally, combining (3.5) and (3.6) we obtain M1(α) = M(α1) · · ·M(αN ).

4 The Location of M1(α) and M∞(α)

We now apply Theorems 1.1 and 1.2 in order to show that M1(α) and M∞(α) belong

to Kα. We begin with M∞ in which case we are able to prove a slightly stronger result.

Theorem 4.1 If α is an algebraic number, then there exists β ∈ Kα such that

M∞(α) = M(β). In particular, M∞(α) ∈ Kα.
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Proof By Theorem 1.2 there exist α1, . . . , αN ∈ Rad(Kα) such that α = α1 · · ·αN

and M∞(α) = max{M(α1), . . . ,M(αN )}. For each n, Lemma 3.1 implies that there

exists a root of unity ζn and Ln, Sn ∈ N such that M(αn) = M(ζnα
Ln
n )Sn and ζnα

Ln
n ∈

Kα. For simplicity, we write L =

∏N
n=1 Ln and Jn =

∏

k 6=n Lk, so that L = Ln Jn for

all n. Then we obtain immediately αL
=

∏N
n=1 α

Ln Jn
n , so there exists a root of unity ζ

such that ζαL
=

∏N
n=1(ζnα

Ln
n ) Jn . By [4, Theorem 1.3] we obtain that

M∞(α) = M∞(ζαL) ≤ max
1≤n≤N

{M(ζnα
Ln
n )} ≤ max

1≤n≤N
{M(ζnα

Ln
n )Sn}

= max
1≤n≤N

{M(αn)} = M∞(α).

Therefore, we have that M∞(α) = max1≤n≤N{M(ζnα
Ln
n )}. As we have noted, each

element ζnα
Ln
n belongs to Kα completing the proof of the first statement.

Now we have that M∞(α) = M(β) for some β ∈ Kα. Since Kα is Galois, it must

contain all conjugates of β over Q , and therefore, it contains the product of all roots

outside the unit circle. This product is a real number, so Kα must contain its absolute

value. Hence we get that M∞(α) ∈ Kα.

In the case of M1, we cannot establish a result as strong as Theorem 4.1, but we

can prove an analog of its second statement.

Theorem 4.2 If α is an algebraic number, then M1(α) ∈ Kα.

Proof By Theorem 1.1, we know that there exist α1, . . . , αN ∈ Rad(Kα) such that

α = α1 · · ·αN and M1(α) = M(α1) · · ·M(αN ). According to Lemma 3.1, for each n

there exists an algebraic number γn ∈ Kα and a positive integer Sn such that M(αn) =

M(γn)Sn . Each conjugate of γ over Q must belong to the Galois extension Kα, which

implies that M(γn) ∈ Kα for all n. It follows that M1(α) ∈ Kα.
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