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AnsTRACT. Polycrysta lline ice at the melting point h as been observed in the la boratory to conta in veins 
of water at the places where three gra ins meet. Under uniaxia l compression lenticular water inclusions 
a ppeared a t gra in boundaries perpendicula r to the stress, while the nearby vein bega n to freeze. A simi lar 
effect occurred in tension on grain bounda ries parallel to the stress . When the stress on the pla ne of the 
boundary was a pure shear stress, no effect was observed . The water lenses produced by stress increased in 
size a nd decreased in number after the stress was removed. The effect under compression is explained 
quantitatively by the combined effects of curvature a nd pressure on the melting point of an ice- water 
interface. The rate of forma tion of the lenses and of their coarsening is great ly reduced by the internal 
pressures se t up in the lenses as a result of expa nsion on freez ing a nd contraction on melting; transient c reep 
to accommodate volume changes is an essential part of the process. The effect in a grain boundary under 
tension may a rise from pressure caused by sliding on other grain boundaries; it was a bsen t in a bicrys ta l. 

It is concluded that internal melting and freezing at grain boundaries and veins will occur in tem perate 
glacier ice, with some effect, not discussed here, on its permeability to water. Any pure solid a t its m elting 
point which has a dihedra l angle for the liquid phase in contact with a grain boundary between oOa nd 60° 
should show simila r behaviour, in tha t non-hydrostatic stress should cause liquid to move away from t riple 
junctions between grains a nd in to grain boundaries. There may be implica tions for the Fra nk theory of 
the upwelling of melt Auid in the Earth 's upper ma ntle. 

R EsuME. Les ~/Jels des ~fforls non hydrostatiques sur les veilles et lenlilles d'eall illlergranulaires dans la glace. On a 
observe en la bora toire que la glace polycrista lline a u point de fusion contient des veines d 'eau a ux end roits 
ou trois gra ins se rencontrent. Sous une compression uniaxiale, des inclusions a queuses lenticula ires a ppar
a issent aux limites entre les grains, perpendiculairement a la direc tion de l'effort, a lors que les veines voisines 
com mencent a regeler. Un effe t analogue se produit sous un effort d e traction le long des limites des gra ins 
paralleles a I'effort. Lorsque I'effort sur le plan de la region frontii:re entre grains est un cisa ill ement pur, 
on n 'observe aucun effet. Les lentill es d'eau produites par un effort s'accroissent en dimension et diminuen t 
en nombre lorsque I'effort cesse. L'effet sous compression s'explique quantita tivement par les effets com
bines de la courbure et d e la pression au point d e fusion a une interface glace- eau. La vitesse de forma tion des 
lentilles et d e leur grossissemen t es t fortement reduite par les pressions internes da ns les len till es qui resulten t 
de l'augmentation de volume du au regel et de la contraction lors de la fusion ; Ies frottements tra nsitoires pour 
s'adapter aux changements de volume sont un e lement essentiel du processus. L'effet de la trac tion dans une 
zone limitee entre grains peut proven ir de la pression causee par le glissement sur d 'autres zones lim ites de 
grain; cet effet est absent dans un bicrista l. 

On en conclut que des fusions et regels internes aux limites des gra ins et des veines se produisent 
dans la glace d e g lacier tempere, avec quelques consequences qui ne sonl pas discutees ici, sur sa per
meabilitc a I'eau. Un sol ide pur a son poi nt de fusion qui a un angle diedre pour la phase liquide en contact 
avec une de g ra in entre 0° et 60° devra it montr<:r un comportemen t a nalogue, en ce sens qu'un effort non 
hydrosta tique d evra it pousser le liquide a s'eloigner d es zones triples de jonctions entre les gra ins pour 
s'introduire d ans les zones limites entre deux grains. Il peu t y avoir la des implica tions pour la theo ri e 
d e Frank pour le jaillissement de m a tieres en fusion d ans la pa rtie superieure de la croute terres tre. 

Z USAMMENFASSUNG . Die Wirkung nicht-kvdrostatischen Druckes my illtergranlllare Wasseradem 1I1ld Lillsen ill 
Eis. Bei Laborbeobachtungen wurde festges tellt, dass polykristallines Eis am Schmelzpunkt a n den 
Bertihrstellen zwischen je drei K ornern Wasseradern enthalt. Bei einachsiger Kompression t1'aten linsen
formige \ 'Vassereinschlusse an den Korngrenzen rechtwinklig zur Spannungsrichtung a uf, wahrend die 
benachbarte Ader zu gefri eren begann. Ein a hnlicher Effekt trat bei Zug an den K orngrenzen para llel zur 
Spa nnungsrichtung auf. Bei reiner Scherspa nnung auf der GrenzAache trat keinerl ei Wirkung ein. Di e 
durch Spannung erzeugten vVasserlinsen na hmen nach Spannungsentzug an Grosse zu und an Zahl a b. 
Die \Virkungen unter Kompression werden quantitativ durch gemeinsame EinAusse der Krummung und 
des Schmelzdruckes einer Eis-W asser-GrenzAache erklart. Die Geschwindigkeit der Linsenbildung und 
ihrer Vergrosserung wird weitgehend durch innere Spannungen verringert, die in den Linsen durch 
Ausdehnung beim Gefrieren und K ontraktion beim Schmelzen a uftreten ; zeitweiliges Kriechen zur 
Anpassung a n die Volumanderungen ist ein wcsentlicher Bestandte il di eses Prozcsses. Die \Virkung a n 
die Korngrenze bei Zugspa nnung kann durch Druck entstehen, d el' durch Gleiten a n a nderen K orngrenzen 
hervorgerufen wird ; bei Bikrista llen trat sie ni cht auf. 

Es wird a ngenommen, dass internes Schmelzen und Gefri eren a n den K orngrenzen und Adern in 
temperien em G letschereis vorkommt, wobei Auswirkungen, die hier nicht d iskutiert werden, auf seine 
Wasserdurchlassigkeit bestehen. J eder reine Korper, der einen spitzen Winkel zwischen 0° und 60° fur 
die flilssige Phase in K ontakt mit einer Korngrenze a ufweist, sollte am Schmelzpunkt a hnliches Verhalten 
zeigen; denn nicht-hydrostatischer Druck sollte Flilss igkeit veranlassen, sich von Tripelpunkten zwischen 
K orner weg und in Korngrenzen zu bewegen. Es konnten Verbindungen zur Fra nk'schen Theorie des 
Aufquellens von SchmelzAussigkeit im oberen Erdmantel bestehen . 

8 1 

https://doi.org/10.3189/S0022143000022528 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000022528


82 JO U RNAL OF GLACIOLOGY 

I. I NTROD UCTION 

The geometry of the water phase in pure polycrystalline ice in equilibrium at the melting 
point has been deduced by Nye and Frank (in press) from considerations of surface energy 
and from measurem ents by K etcham and Hobbs (1969) of the dihedral angle of water at a 
grain boundary. Nye and Frank concluded that the water was situated in veins at the three
grain junctions, and that the veins join together in fours at the four-grain junctions to form 
tetrahedra with concave non-spherical faces and open corners. This conclusion was supported 
by observations of ice specimens in the laboratory, and they went on to propose that a 
temperate glacier is fill ed with a three-dimensional network of veins of water between the 
grains. The ice was therefore permeable to water wh ich , by draining downwards through 
the vein system , might provide an efficient means of flushing impurities into and out of the 
glacier. More recently Lliboutry (1971 ) has considered the important effects that soluble 
impurities will have on the p ermeability of temperate glacier ice and h e has given some 
consideration to the effect on liquid inclusions of plastic deformation and non-hydrostatic 
stresses . Some experimental evidence bearing on these questions has been provided by 
Barnes and Tabor (1968), who concluded from indentation tests on polycrystalline ice that 
pressure melting could occur under these conditions at grain boundaries. 

Before the present experiments began Professor F. C. Frank pointed out in discussion 
that a shear stress would tend to cause extremely high concentrations of stress at the (m ole
cularly) sharp edges of veins in temperate ice, and he discussed the possibility of water 
being forced out of the vei ns and into the grain boundaries by freezing and melting. In 
this paper we describe and interpret laboratory observations on the behaviour of veins in 
ice when they are subjected to non-hydrostatic stress. A flowing glacier is necessarily in a 
state of non-hydrostatic stress, and if this has an effect on the vein system it is one more 
factor to be considered in the current debate about the permeability of temperate glaciers. 

2. EXPERIMENTAL PROCEDURE 

2. I . T est specimens 
Cylindrical ice blocks (diameter 80 mm, length 1 20 mm) were grown from distilled 

water in a metal container , evacuated to avoid the formation of air bubbles. The conduc
tivity of the melt water of the grown ice was 7 X 10- 5 Q- I m - I at 0 ° C (this compares with 

weight weight 

Fig. I. Four-point bending apparatus. I : ice ;pecimen, M: microscope, W: water bath. 
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a ra nge of about ( I to 25) X 10- 4 0 - 1 m - I at 0° C for the melt wa ter of glacier ice) . T he 
ice consisted of clear candle-shaped grains, elongated in the g rowth direction, 5 to 20 mm 
in size, with c-axes roughly perpendicular to the growth direction ; thus many of the veins 
were roughl y perpendicular to the c-axes of the three adjacent grains. The tes t specimens 
cu t from the blocks were cubes (20 X 20 X 20 mm3) for the indentation experiments a nd 
rectangular bars ( 10 X 16 X 60 mm3) for the bending experiments. 

2. 2 . Methods of loading 
T hree kinds of loading were used : indentation, three-point bending and four-poin t 

bending . Indentation was chosen for the first experiment with the obj ect of producing a 
wide variety of stress conditions and thus discovering whether stress had a ny observable 
effect on the veins. An effect was found and we then wi hed to examine separately the 
effec ts of pure tension , pure compression and pure shear stress acting across a grain bounda ry. 
T he purpose of the three-poin t bending was to produce a shear stress unaccompa nied by 
any hydrosta ti c stress; this condition exists on the neutral axis of the specimen. The purpose 
of the four-point bending experiments was to produce pure tension on one side of the neutra l 
pla ne and pure compression on the other. 

The devices for producing these three kinds of loading were all made of perspex (poly
m eth yl methacrylate) . The four-point bending device is shown in Figure I ; the o thers 
were basicall y similar. In each case the ice specimen was immersed in a wa ter ba th which 
was kep t a t 0° C by adding ice, the whole apparatus being in a commercial deep-freeze 
cabinet regulated to 0° C. T he specimen was observed with a microscope through the free 
top surface of the water . In this way the optical effect of the unevenness of the top surface 
of the ice specimen is minimized because most of the refraction occurs a t the flat water- a ir 
interface and comparatively littl e at the more uneven ice- water interface. The heat radi a
tion from the microscope lamp was removed with a filter. 

3. O BSE R VATIO NS 

3. I. Indentation 
F igures 2a and b show the effect on a vein of indenting the specimen ; they a re typical 

of a n umber of similar observations. Figure 2a was ta ken before indenta tion . The vein is 
the centra l vertical line. The three da rk lines meeting a t the top are three ou t-of-focus 
gra in-boundary grooves in the top surface of the specimen . T he vein runs from their in ter
section down into the specimen a nd the plane of focus of the microscope passes thro ugh the 
vein a bout ha lf-way down the photograph . T he indenter was then pressed down with a 
screw device. Figure 2b shows the a ppearance 10 s la ter. The part of the vein below the 
plane of focus has disappeared and small water inclusions have appeared in the gra in 
boundary to the right of the vein. The indentation itself is outside the picture to the upper 
left (7 mm from the vein ) . 

T he la rge wa ter inclusions visible in the upper left corner of Figure 2b were formed 
inside a g rain rather than a t a g rain boundary. They represent a different type of pheno
menon from the one we a re conce rned with in this paper. C lo e to the indenter cracks 
parallel to the basal planes of the crys ta ls are seen to form ; at first ome parts of them a re 
fill ed w ith vapour, but after about one minute they a re completely fill ed with water, which 
coll ects in irregula rly shaped pa tches. 

3 . 2 . Shear stress 
H aving es tablished by the indentation experiments tha t a n applied stress could have a 

marked effect on a vein , we examined the effect of applying a shear stress parallel to a gra in 
boundary. This was done by using the three-point bending appara tus. In Figure 3, with 
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Fig. 2a. Bd"ore indentation. The vein is the central vertical line. 

Fig. 2b . 10 S after indentation. Water inclusions have appeared to the right oJ the vein. 

the axes shown, the stress at points on the plane y = 0, not close to the knife-edges, may be 
estimated by assuming isotropic elasticity as Txy = 3 W /8ac, with all other stress components 
zero, where a is the width of the specimen, 2C is its thickness and W is the load applied to 
the upper cen tral knife-edge. 

We observed grain boundaries that lay close to the plane y = 0 and para llel to it, and 
which were therefore bounded by veins lying in various directions in the xz plane. On 
these grain boundaries, which were subject only to shear stress, no effect of the stress was 
observed, the maximum shear stress applied being 0.7 bar. We also observed , close to the 
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w 
f----10mm-1 I 

Fig. 3. Three-point bending. 

plane y = 0, other grain boundaries whose normals lay in various directions in the yz plane. 
The stress acting across these boundaries is also entirely tangential , there being no normal 
components either normal or parallel to the grain boundary. Again there was no observable 
effect. 

On the other hand, at the plane y = 0 grain boundaries having norma Is in the xy plane 
did show an effect. These grain boundaries are not subject to shear alone and the effect 
on them will be described in Section 3+ 

We conclude that a shear traction of up to 0.7 bar acting across a grain boundary has 
no observable effec t rega rdl ess of the angle it makes with a vein. 

3.3. Tensile and compressive stress 
The four-point bending apparatus gave the opportunity of examining the effect of pure 

tension and pure compression. It was found that, on the compression side of the specimen, 
lens-shaped water inclusions were formed in those grain boundaries that lay roughly per
pendicular to the stress axis (Fig. 4a) , while on the tensile side simi lar water inclusions 
appeared in those boundaries that lay rough ly parallel to the stress axis (Fig. 4b) ; we shall 
call them " lenses" from now on. Figure 5a shows an example. The plane of focus of the 
microscope is below the surface of the specimen. The blurred lines are out-of-focus grain
boundary grooves on the urface. Thus one of the grain boundaries starts at the nearly 

-----~~----

(a) ( b) 

Fig. 4. LellSesform in grain boulldaries (a ) perpendicular to a compressive stress or (b) parallel to a tensile stress. 
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horizontal grain -boundary groove running across the centre of the picture and dips down 
towards the bottom of the picture. The tensile stress resulting from the bending was parallel 
to this grain boundary (within 5°) and was appl ied for 2400 s. Lenses can be seen just 
below the grain-boundary groove. Very many more lenses were present than are vi sibl e 
in the photograph ; the depth of focus is such that on ly a few can be seen in fo cus at any 
one setting. By fo cusing up and down it could be seen that the lenses form ed preferentially 
near veins or near grain-boundary grooves. Figure 5b shows the sam e area, but the sign 
of the stress has been reversed : following the tension an equal compressive stress in the same 
direction has been applied for 600 s. Lenses have now appeared in th e grain boundary on 

1'Omm 

Fig. 5a. A tensile stress rif 2.6 bar was applied jar 40 min parallel to the central horizontal grain boundary. The /J/lOtogra/Jh 
was taken I mill later. Water lellses are seen just below the graill-bolllzda~y smjace groove. 

, 

1-0mm 

Fig . .ob. The same as Figure 5a . The tensile stress was replaced b), an equal cOlllpressive stress aptJiiedjor 1 0 mill. Water 
lenses have a/Jpeared in the grain boundary all the l~!t, perjJelldicular to the stress. 
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the left nearly perpendicular to the stress. Once again there were many other lenses lying 
out of the plane of fo cus that are not visible in the photograph . 

' '''hile the lenses were forming the neighbouring veins were seen to shrink, and some
times to disappear. They did not always shrink homogeneously. The time needed for the 
veins to disappear completely depended on the stress. With the very high but unmeasured 
stress produced by indentation the time was about 10 s; with a tensile or compressive stress 
of 1.3 bar produced by four-point bending the time was about 100 S. 
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Fig. 6. A ,~ap rif the water Lellses ill the graill boulldary showll ill the celltre of Figure 7a. AA is the pLalle of foc lIsfor Figure 
7a. 

The distribution of lenses in a particular grain boundary that has been subject to uni
axial compression is shown in Figure 6. They lie in a strip about 0.15 mm wide immediately 
under the surface groove and also in a rather wider strip, up to 0.6 mm wide, alongside the 
vein . The scarcity of lenses near the upper part of the vein is compensated by a comparative 
excess in one of the other two grain boundaries_ Figure 7a is a photograph of the grain 
boundary of Figure 6 with the plane of focus of the microscope at the depth marked AA. 
The dark out-of-focus patch is the outcrop of the vein on the surface; three out-of-focu 
grain-boundary grooves radiate from it ; the vein (barely visible) extends to the left and , 
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running slightly downwards in the picture, is a cluster of lenses that lie in the grain boundary 
mapped in Figure 6. Further lenses in a second grain boundary can be seen on the right 
of the vein. There are none in the third grain boundary, which is parallel to the com
pre sion axis, as expected. 

The times taken [or lenses to form in a given grain boundary near a vein and near the 
surface groove were not noticeably different. Compression perpendicular to a boundary 

'i 

O'5mm 

Fig. 7a. A compressive stress of 1 .3 bar was applied f or 100 s in the direction that appears vert ical in the photograph. The 
photograph was taken a few seconds after removal of the load. Water lenses appear ill the two roughly horizontal grain 
boundaries but /lot in the vertical one. 

O·5mm 

Fig. 7b. The same as Figurt 7a after annealing without load for one hour. 
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was more effective than tension parallel to a boundary, in the sense that for equal times of 
appli cation a compressive stress produced larger lenses and more of them than an equal 
tensile stress . 

3 -4- Combined tension and compression 
We have said already that in the three-point bending experiments no water lenses 

formed on grain boundaries that were subject only to shear stress. At the plane y = 0 (Fig. 
3) we a lso observed grain boundaries having normals in the xy plane and inclined both to 
the x and y axes. For example, a grain boundary inclined at 45° to the x axis would have 
either a compression acting across it and a tensile stress acting in its plane, or a tensile stress 
acting across it and a compressive stress acting in its plane. In the first case both the normal 
stress and the stress in the plane of the grain boundary would be expected, on the basis of 
the previous observations, to produce lenses. Lenses were in fact formed in such boundaries . 
In the second case neither of the two stresses should produce lenses, and in fact none was 
observed. 

Thus the conditions under which lenses are form ed at the grain boundaries are sum
marized by Figures 4a and b . 

3.5 . Annealing 
Figure 7b was taken I h after Figure 7a, no stress being applied during this time. As is 

apparent, the numbet· of lenses has decreased and those remaining are larger. There was 
no change in the total volume of the lenses during this process, to an accuracy of about 
5 %. Since ice contracts on melting we looked for any evidence for the formation of vapour 
caviti es while the water lenses were forming or annealing. No vapour cavities were seen. 

4. DISC USSION 

4. I . Effect of compression 
Figure 8a shows a lens-shaped water inclusion at a grain boundary near a vein, while 

Figure 8b shows a similar lens near a grain-boundary groove (it should be remembered 
that the ice specimens were immersed in water) . As discussed by Nye and Frank (1971 ) 
the three curved surfaces of the vein are taken to be parts of circular cylinders, while the 
surfaces of the lens are taken to be spherical. The geometry is fixed by the constant dihedral 
angle 2 (J in the water phase where it m ee ts a grain boundary. If one ignores the dependence 
of surface energy upon crystallographic orientation, the balance of surface energi es gives 

cos () = Ygb 
2Y' 

where Y gb and Y are the specific surface free energies of the grain boundary and the ice
water interface respectively. 

The ice- water interfaces will be at their respective melting points, and, in the absence 
of any stress, the melting point is determined by the curvature of the interface and by the 
impurity con centration. If we assume that the concentration of impurities is the sam e in the 
lens as in the vein or groove, the melting point at the lens, which has surfaces concave on 
the water side, will be higher than that at the vein or groove. H eat will therefore flow away 
from the lens, which will freeze, and a corresponding amount of ice will be melted at the 
vein or groove. So such lenses will not survive. If, however, a compressive stress P is applied 
perpendicular to the grain boundary the melting points will be different. Let us consider 
first the lens near the groove (Fig. 8b) . As a result of the applied stress a certain excess 
pressure will be set up in it and the temperature of the interface will be lower than before; 
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at the sam e time the pressure and therefore the temperature at the groove remains un
a ltered . Let the pressure in the lens be p. "Ve shall discuss the relation between P and p 
in d etail later; here we need only note that as P increases so will p, and, at a value of p 
determined by the curvature of the interfaces, the melting poin t of the lens will become 
lower than that of the groove, heat will flow towards it, and it will tend to grow. If the lens 
were very small, the curvature of its faces would be very high, and so the pressure required 
for growth would be very high . For a given applied pressure there will therefore be a 
critical size above which lenses will grow and below which they will shrink. We show in 

c water 

A B A B 

p p p . 
p 

p -

( a) (b) 

Fig. 8. A water lens (a) near a vein and (b) near a surface groove. A, Band C denote ice grains. 

Section 5.2 that the sizes of lenses observed are consisten t with the compressive stress actually 
applied. It may well be that the water lenses nucleate on impurities in the grain boundary, 
and if there is a relatively high concentration of impurities in the lenses of course they will 
grow more easily. 

If the lens is near a vein (Fig. Ba) rather than near a surface groove, the si tuation is 
d ifferent in at least two respects. First we have to consider what effect the applied stress P 
will have on the pressure of the water within the vein. In the experiments the veins were in 
communication with the surrounding water bath . If the pressure in the vein were to exceed 
atmospheric pressure, water would flow out of it towards the surface against viscous forces, 
but a calculation shows that in the experiments the viscous forces are quite insufficient to 
a llow a significant pressure difference to be set up in this way- and so the situation is the 
same as for a groove. On the other hand, if the path to the free surface were long enough 
(say lOO m ), as it could be in a glacier, the pressure in the vein could be raised by the applied 
stress a nd we discuss this possibili ty in Section 6. 
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The second point of difference in the case of the vein is that as a lens grows by melting 
the vein will shrink by freezing; its cross-section remains geometrically similar and so the 
curvature of its faces will increase. Its impurity concentration will also increase as it freezes. 
Both these effects will lower its melting point and hence its temperature, the temperature 
difference driving the hea t towards the lens will decrease, and the lens will eventually stop 
growing. This restriction is not present so acutely with the surface groove because there is 
much less tendency for freezing near the gl"Oove to accentuate its curvature or the local 
impurity concentration. 

The observation that a vein under stress can disappear from view does not, we believe, 
imply that the vein has actually frozen completely. The two effects just described, increase 
of both curvature and impurity concentration, will prevent complete freezing. It is there
fore most likely that the vein has simply shrunk below the size at which it is visible in the 
microscope. 

The fact that a 1 0% cha nge of volume occurs on melting or freezing is a major complica
tion in understanding and explaining all these phenomena. As a lens gI"OWS, the contraction 
on melting will tend to reduce the pressure within it. Further melting can only occur if 
this 10 % volume contraction is accommodated by plasti c deformation. The short times 
( ~ 100 s) involved mean that the plastic deformation process will be transient creep. The 
pressure jJ within the lens will be that which, acting in conjunction with the applied uni
ax ia l pressure P, is sufficient to produce the required plastic creep contraction around the 
lens (note that P tends to contract the liquid-filled cavity, while p, being greater than 
atmospheric pressure, tends to expand it ). The implied plastic deformation pl"Oblem, the 
deformation of a melting cavity with sharp edges under a simultaneous internal pressure 
and external uniaxial compress ive stres , is a very difficult one, even more so since transient 
creep is involved. Fortunately, as we shall see in Section 5.3, it is possible to draw con
clusions about the relation between P and p without solving it, by considering the thermal 
half of the problem rather than the plastic deformation half of it. 

4.2. Annealing 

The effect shown in Figures 7a and b and described in Section 3.5 may be explained as 
follow s. The dihedral angle being fixed, all the lenses are the same shape, differing only in 
scale. The interfaces are at their respective melting points cOlTesponding to their different 
curvatures. A lens that is smaller than average will be hotter than average, and will there
fore lose heat to the others. It will then contract by freezing, while the others grow a littl e 
by melting. This will continue until it disappears. 

Because of the change in volume that necessarily occurs on freezing, the pressure in the 
contracting lens will be greater than that of its surl"Oundings (we shall show in Section 5.4 
that the surroundings are at a pressure greater than atmospheric) and this will have the 
effect of making it less hot than it would otherwise be; it will slow down the transfer of 
heat. 

The pressures thus set up in the lenses will be those that produce transient creep rates 
that are just sufficient to accommodate the volume changes d emanded by the heat flow. 
The differential pressures may be calculated by considering the heat flow problem (rather 
than the creep problem ). "Ve show in Section 5.5 that, if the differential pressure is assumed 
negligible, 0 that the need for plastic creep offers no appreciable obstacle to the annealing 
process, annealing should proceed 103 times faster than is actually observed. However, a 
differential pressure of only about 0.03 bar is enough to slow down the annealing rate 
to the value observed. \lVe conclude that this small differential pressure is present, and 
that it causes the amount of plastic deformation needed to accommodate the volume 
changes. 
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4.3. Effect of tension 

The effect of tension in producing lenses (Fig. 4b) is more difficult to explain than the 
effect of compression (Fig. 4a) . Consider, for example, the lenses produced under tension 
near a grain-boundary groove at the surface of the specimen. There is no question here 
about what is the pressure in the groove; it is atmospheric. The water lens must have a 
lower melting point, in spite of its curvature which gives it a high melting point relative to 
the groove. The only way in which this low melting point can be produced is by a pressure 
within the water (the effect is produced by applied stress, so although impurities may help 
they are not primarily responsible) . A tension in the manner of Figure 4b may tend to 
close up a lens-shaped inclusion and thus set up a pressure in it. We at first believed that 
this was the reason for the melting, but the following rather different explanation now seems 
to us more plausible, although we still remain a little sceptical of it. 

FcotcjJ 

F 2tjJ F 

Fig. 9. Model where longitudinal tension produces transverse compression. 

The problem is to explain how a tension parallel to a boundary can produce a com
pressive stress perpendicular to it. Consider the specimen in Figure 9, where the lines are 
grain boundaries, and suppose, as an extreme case, that slip can occur quite freely along the 
grain boundaries, so that they can sustain normal tractions but not tangential tractions. 
Statical considerations then show that the forces F applied to the ends will produce a com
pressive force F cot <p across the central grain boundary, where <p is the angle shown; the tri
angular end grains act as wedges, but in reverse. If the grain boundaries are endowed with 
some resistance to shear the compressive force is reduced; F cot <p is the maximum possible . 
In this model the lateral surfaces of the specimen are free; a model more appropriate to a 
specimen with a smaller grain size is illustrated in Figure 10. If this specimen is under 
horizontal tensile stress a and the grain boundaries are weak in shear, there will be com
pression across AB and, by a similar mechanism, tension across the line CD in the grain 
interior. For a calculation assume that the grains are regular hexagonal prisms, that the 
grain boundaries can carry shear traction k and that the average tensile stress across CD 
is one half of the average compressive stress Po across AB (since CD = 2AB and all grains 
are alike, this ensures that the total lateral force acting across the longitudinal line of which 
AB is a part is zero) . Simple statics gives 

2 
Po = la - V3 k. 

Thus the maximum possible lateral compression across the grain boundaries, when k = 0, 

is t a. 
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To tes t whether the effect observed was caused in this way we prepared a bicrystal with 
the grain boundary running down its full length. It was subjected to four-point bending 
and observed on the tensile side. No lenses could be seen near the grain-boundary groove. 
Two similar specimens gave the same result. We are therefore inclined to attribute the 
lenses seen under tension in Figure 5a beneath the horizontal grain-boundary groove to the 
presence of the two grains lying to the left and right. 

Po 

A }---+---<B 

C D CJ'_ ----f-------------------- -- -}--- -

Fig. [ 0 . The same as Figure 9 but with a smaller grain size. 

5. D ETAILED CALCULATIONS 

5. I. Geometrical relations 

_CJ' 

The cross-sections of the veins and lenses are fixed by the dihedral angle '2 () and there 
are certain geometrical relations that we shall need. The volume Vv of unit length of a 
vein is given by 

Vv = hl3 sin2 ( t7T-8)+ ~ sin '2 (i7T-8)-3(t7T - 8)}rv2 = arv2, 

and the volume VI of a lens is given by 

VI = i 7T (cos 3 (}-3 cos (} + '2 )rI3 = f3rl \ say, 

(I) 

where rv is the radius of curvature of a cylindrical face of the vein and rl is the radius of 
curvature of the spherical faces of a lens. 

In evaluating the constants a and f3 numerically we do not adopt the value 2 (J = 20° ± 10° 
reported by Ketcham and Hobbs (1969) , for the following reason. A vein becom es consider
ably enlarged very near the surface so that it appears as shown in Figure I I. It is funnel
shaped rather than having a uniform cross-section. Ketcham and Hobbs m easured the 
angles of the cross-section at the surface as seen in the microscope ; but since the edges of the 
vein are not parallel to the line of sight the angle measured in this way will necessarily be 
less than the true dihedral angle. We conclude from their observations that 28 > 20°. On 
the other hand, the existence of veins within the specimen implies that 2(J < 60° as discussed 
by Nye and Frank (in press) . 
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The fact that the water inclusions produced in the present experiments are lens-shaped, 
and therefore have a focal length, provides a way of measuring '2e. Our colleague Dr 
M. E. R. Walford has observed the optical focusing effect of the water lenses and reports 
as a preliminary result '28 = 3'2 ° (±3°) . We shall use this value in what follows ; it gives 
et. = 0.07'25, f3 = 0.0093 I . (A change in '2 e from '20° to 3'2 ° means that the value of the 
surface energy y derived by K etcham and Hobbs should be changed from 33 to 34 m] m - 2 , 

and we shall therefore use this latter figure for calculation. ) 
rv and rl are related to the quantities observed in the experiments, namely the distance 

dv between any two edges of a vein and the diameter d] of a lens, as follows : 

rv = dv /'2 sin (i 1T - e), 

rl = d1/ '2 sin 8. 

0-5mm 

Fig. /1 . The outcrop oJ a vein at the surface oJ a specimen. Three grain-boundary grooves radiate J rom it. 

5 .'2. Critical pressure for the growth of a lens 

Consider the configuration of Figure Sa. The combined effect of pressure and curvature 
is to change the melting point of the surface of a lens to Tl where 

(5) 

To is the normal melting point, for pressure Po and zero curvature, Vw , Vi and s w , Si are the 
specific volumes and entropies of water and ice respectively, KJ = ri - I (taken positive) is the 
curvature and P is the pressure in the water. (The stress component Pi in the ice normal to 
the surface is less than P by an amount '2yK[ because of surface tension. vVhen written in 
terms of Pi rather than p Equation (5) becomes 
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The difference between P and Pi in the present application is at most 2 X 10- 2 bar and can 
usually be ignored .) W e have omitted from Equation (5) terms quadra ti c in the stress com 
ponents, arising from the elastic energy, as being negligible at the stresses we are using. 

The melting point Tv for the surface of a vein is given in a similar way by 

(6) 

where Kv = rv - I (taken positive) is the curvature and where we have taken the excess 
pressure in the vein as zero, as discussed in Section 4.1. 

The condition for growth of the lenses at the expense of the vein is TJ < T v or, since 
Vw -Vi is negative, 

L et us estimate Kl and K v, taking Figure 7a as an example. The smallest visible lens has a 
di ameter of 20 /l-m , which corresponds to KI = 28 mm - I. The size of the vein was m easured 
as dv = 19/1-m before the external load was applied , but a value of 2 3 /l-m would be need ed 
to account for the volume of water later seen in the lenses. We suspect a systematic error 
in the m easurement and adopt dv = 23 /l-m , which corresponds to K v = 21 mm- I. The 
theoretical overpressure P- Po needed to prevent a 20/l-m lens freezing is then calculated 
fro m Equation (7) as 0.31 bar (taking Vi = LOg m 3 Mg- I, VI -Vw = O.Ogl m 3 M g- I, 
y = 34 m] m - 2) . Under this pressure lenses larger than 20 /l-m in diameter wi ll grow. 
This is the excess pressure P- Po in the water lens rather than the applied uniaxial pressure 
P. P- Po is unlikely to be greater than P ; it would be expected to be rather less because 
while a lens is growing the 10% d ecrease of specific volume on m elting tends to relieve the 
pressure. In the experiment quoted P was in fact 1.3 bar inclined at 20 ° to the grain
boundary normal , and it is satisfactory that this is not less than the value of P- Po calcula ted 
as necessary to make the visible inclusions grow. 

5·3· T imefor formation of lenses 

W e now calculate the rate at which the water lenses in a grain boundary might be 
expected to form under an appli ed stress. In Figure 7a many lenses, in two grain boundaries, 
form from a single vein. The main feature of the heat-Row problem is that heat is Rowing 
outwards from a linear source into surroundings at a lower temperature. As a simple model , 
regard the vein as a cylinder of radius ro and replace the lenses by a larger concentric cylinder 
of radius Ro, with the temperatures of bo th cylinders given by Equations (6) and (5) . Thi 
may seem an excessively crude way of representing the water lenses in the two grain 
boundaries but, so far as extraction of h eat from the vein is concerned , the main function 
of the lenses is to provide surroundings at a certain definite lower temperature. The solution 
to the problem is in fact insensitive to the va lue of R o, as we shall see. 

The (quasi-steady) temperature distribution around the vein is then 

dq fdt Ro 
T - TI = --In-

27Tk r ' 

where dq fdt is the rate of loss of heat from unit leng th of the vein, and k IS the thermal 
conductivity. Putting T = Tv at r = ro we have 
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dq/dt is related to the volume decrease of the vein and hence to the volume increase of the 
lenses, thus 

dq dVv dVIt 
dt - - L dt = L Tt, 

where L is the latent heat per unit volume of water, Vv is the volume of unit length of the 
vein and Vlt is the tota l volume of lenses associated with unit length of the vein. (As the 
vein shrinks it will cool and there is thus a component of dq/dt due to specific heat, but a 
short calculation shows that this only becomes important when To is of atomic size, when 
the continuum approximation has broken down anyway.) Using Equations (5) and (6) for 
the temperatures, we then have 

dVlt 27Tk 

dt - L (sw - sj ) In (Ro/ro) {(Vj - vw )(p - Po)-ViY(Kv+ 2Kj)}. (8) 

In (Rolro) is insensitive to the precise values of Ro and To. The width of the vein, and there
fore 1"0 ' varies by a factor of 3 during the growth of the lenses. Mean values are Ro = 300 fLm 
a nd To = 8 fLm , which give In (Ro/ro) = 3.6. W e shall regard In (Ro/To) as constant. 

The term (Vj-vw)(p-po) in Equation (8) promotes growth of the lenses while the term 
VjY(Kv+ 2Kj ) tends to diminish it. Let the lenses all be of equal volumes VI = Vlt/n, where 
n is the number per unit length of vein. As VI increases Kj decreases and Kv increases. P 
may also change, even though the applied stress is held constant, because of the change in 
volume associated with melting. The resulting time development of VI is therefore not 
quite straightforward ; it could be analysed exactly for the case where p is artificially held 
constant and is shown schematically in Figure 12. 

stable 

unstable 

stable 
o 

t 
Fig. [ 2 . The volume VI DJ a water lens as a filllction oJtime tJor various initial conditions with the pressure p within the lens 

held constant. 
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For VI less than a critical size V" KI is large enough to make dVI /dt negative ; the lense 
freeze a nd disappear. For VI rather greater than V" the curvature term is less than the 
pressure term and dVI/dt is positive. But as the lenses grow the vein becomes smaller and 
Ky increases. Eventually growth stops at VI = V2 • If the lenses started with a volume rather 
greater than this they would shrink because of the associated high value of Ky. If all the 
water were in the lenses VI would equal V3 ; the vein, being of vanishingly small size, has a 
very high curvature and the rate of decrease of VI i correspondingly high (in spite of the 
logarithmic factor) . Thus the three equilibrium configurations are VI = 0 (stable), VI = VI 
(unstable) and VI = V2 (stable) . VI is the critical volume for nucleation of a lens . 

To compare the time behaviour predicted by this model with that observed we can not 
integrate Equation (8) because we are not sure at this stage what values of p should be 
used . Instead write the right-hand side of Equation (8) as the difference of two term 
arising from pressure and curvature, thus 

d VIt = ( d VIt) _ (d VIt) , 
dt dt p dt K 

(9) 

where 

( 10 ) 

and 

(
dVIt) 

dt K 

and let us estimate (dVlt /dt )K' The first factor 27Tkvry/L (sw -s j) In (Ro/ro) is constant with 
the value 350 fLm 3 S- I (taking k = 2 .2 Vv m - I deg- I, L = 330 MJ m - 3, Sw - Sj = 1.22 kJ 
kg- I deg- I) . The second factor (Ky + 2K l) varies during growth. It is large at the beginning 
( KI large) and end ( Ky large) a nd smallest in between. To estima te its value during active 
growth of the lenses we have imagined first that all the lenses associated with the vein in 
Figure 6 are the same size, the average volume, and we have then calculated KI at the time 
when they had achieved half this final volume; thus KI = 16 mm- I. If there is an eq ua l 
volume of lenses in the second grain boundary and the total volume of water in vein and 
lenses is conserved, it follows that Ky = 25 mm- I, whence (dVlt /dt )K = 20 fLm2 S - I. VIt 

grows from a negligible value to 180 fLm2 in about roo s, giving an average value of dVlt/ 
dt = 1.8 fLm2 S- I. Then from Equation (9) we deduce that (dVlt/dt ) p = 22 fLm2 S- I. This 
enables us to calculate P- Po from Equation ( 10) as 0.26 bar. It will be seen that the pressure 
term in Equation (8) exceeds the curvature term by only ro % . If they were equal, so that 
the growth rate were zero, P- Po would be calculated as 0.23 bar. 

\lVe have found that the over-pre sure P- Po needed to make the smallest visib le lens 
grow is 0.30 bar while the over-pressure needed to explain the observed growth rate is 
0.26 bar. In this example, as a lready mentioned, the applied compressive stress was 1.3 bar 
inclined at 20° to the grain-boundary normal. Our estimates of P- Po are accurate enough 
to say that the over-pressure in the lenses is significantly less than the applied pressure. \lVe 
have pointed out that as the lenses grow they and their immediate surroundings undergo a 
net decrease in volume, which to some extent relieves the over-pressure in them. If it were 
relieved so much that the over-pressure were reduced to the critical value (0.23 bar in the 
example) heat would cease to flow and growth would stop. The pressure could then bui ld 
up again by creep in the surrounding ice. What actually happens is that the pressure i 
relieved to a slightly lesser extent than this. The process is self-regulating. The over
pressure exceeds the critical val ue, perhaps by about 10%; this produces a certain heat 
flow and hence a certain m elting rate; at the same time the app li ed uniaxial stress, hindered 
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by the over-pressure in the cavities, produces a rate of creep that is just sufficient to make 
the decrease of volume required by melting. 

Let us look in a little more detail at the state of stress around the lenses. The circular 
edge of each lens, being of molecular sharpness, will tend to set up extremely high stress 
concentrations which must be relieved by creep. But the balance of surface energies does 
not allow the edge to be blunted by plastic flow (as would occur if it were not at a grain 
boundary). Presumably the only way in which the stress concentration can be relieved is 
by the stress in the ice immediately around the edge becoming biaxially hydrostati c, the 
two components in the plane normal to the edge being equal to the pressure in the lens. 
Since the lenses are fairly close together it seems likely that the over-pressure of about 
0.3 bar calculated above is not confined to the immediate neighbourhood of each lens but 
extends throughout a region that embraces them all. 

It is worth noticing that the applied stress will also cause transient creep in the vein. 
By the sam~ argument the edges of the vein must remain sharp, and therefore the stress in 
their immediate vicinity must become biaxially hydrostatic. In ice under non-hydrostatic 
stress we must imagine tubes of biaxially hydrostati c stress surrounding all sharp edges 
where two grains meet a water phase. 

This leads to a further point of interest. If one assumes, as we have done, that the two 
curved surfaces of a lens or the three curved surfaces of a vein constitute an isothermal , 
there is a problem, because the isothermal has infinite curvature at the sharp edges and this 
would lead to an infinite divergence of heat flow. The problem does not arise when the whole 
body is isothermal ; it only appears when we begin to consider heat flow. In fact during 
freezing or melting the interface will not be exactly an isothermal, and the isothermals are 
presumably smoothly curved even at the sharp edge. The stress problem and the thermal 
problem at the edge are clearly closely connected. 

5+ Absence of vein melting after the load is removed 

When the stress in Figure 7a is removed should we not expect the lenses to freeze and 
the vein to melt? In fact what happens is annealing: growth of the larger inclusions over a 
time of about 4000 s with almost constant volume of water in the inclusions. Thus, if the 
original state is eventually restored (which was not observed) the process clearly goes very 
lowly. From Equation (9), if the pressure term were absent we should have dVlt /dt = 
-(dVlt/dt )K' and the curvature term would drive the heat back to the vein in about 9 s. 
The fact that this does not happen must mean that, even though the external uniaxial 
stress is removed, there is nevertheless an over-pressure in and around the lenses of about 
P-Po = 0·3 bar because this is the value calculated above as necessary to bring the melting 
point of the lenses down to that of the vein. The source of this pressure must be the plastic 
deformation that took place while the lenses were forming to accommodate the 10% collapse 
of volume on the grain boundary. Nevertheless, the situation remains a little puzzling, 
because veins have lenses as close to them as the lens-to-Iens distance, and our explanation 
therefore required a rather steep stress gradient around a vein. 

A further point that we do not fully understand is that, when the load is removed, the 
lenses are cold because of over-pressure, and the vein is cold because of curvature; so heat 
should flow to both from the surface. This should tend to melt the lenses and so tend to 
relieve the over-pressure in them. It should also tend to melt the vein, without setting up 
additional pressure effects. The latter process is ob erved as a "rotting" of the veins when 
unstressed ice specimens are kept for long periods (weeks) at the melting point (private 
communication from M. E. R. Walford) . It takes place surprisingly slowly in view of the 
upposed temperature differences. 
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5.5. Annealing time 

Our model for calculation up to this point has taken all the lenses the same size. \Ne 
now relax this condition to calculate the rate at which the lenses might be expected to 
coarsen by the process d escribed in Section 4.2. 

Anyone lens melts or freezes in the temperature (and stress ) field of it and all the 
others. (For the reason given in the last Section the temperature of the vein is thought 
to be virtually the same as the average temperature of the lenses and so may b e ignored in 
considering annealing. ) This suggests that we should examine the behaviour of a single 
lens at temperature Tl in surroundings that are at the average temperature T m of the whole 
assembly of lenses. If Tl > Tm the lens will freeze at an increasing rate while the remaining 
lenses melt slightly. Thus Tm will decrease a little during the process, but for our purpose 
of estimating the rate at which the single lens freezes it is sufficient to take T m constant. 

If the lenses were a ll equal we suppose they would have KI = Km , say, and P = Pm, say; 
thu , from Equation (5) 

and , by subtraction of this equation from Equation (5), 

If the lens is approximated as a sphere the temperature distribution around it is 

T _ T _ dQj dt . .: 
m - 41Tk r ' 

where dQ/dt is the rate of loss of heat. On the surface of the sphere r = r" say, T = TJ 
and so 

dQ 
di = 41Tkr, (T 1- Tm ). 

If V is the volume of the lens, dQ /dt = - LdV/dt ; hence using Equation (12) 

dV 41Tkr, 
di = - L (Sw - Si) {2ViY(KI - Km)-(Vi- Vw)(p-Pm)}. (13) 

Let us ignore, for the moment, any pressure difference p - pm and in representing the lens
shaped inclusion by a sphere put r, = tKJ- ', roughly. Then 

dV 

dt 

The variable term ( I - Km /Kl ) is zero if Kl = Km and approaches 1 as Iq --+ 00 . An average 
value of dV/dt is therefore 

21TkviY 
L (Sw-Si )' 

So lenses that are smaller than average might be expected to disappear in a time of about 

L (S w- Si ) VI 

'2 1TkviY 

The mean volume VI of a lens in Figure 7a is 4400/Lm3, which gives a time of 3 s. This is 
m uch less than the observed t ime of 4 X 103 S for the coarsening of the lens pattern . 
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The slowness of the observed ra te must be due to pressure differences between the la rger 
a nd smaller lenses, which were ignored in the calculation. T o reduce the rate by the necessary 
factor of 103 the tempera ture difference must be reduced by the same factor . This m eans 
tha t the difference in m elting poin t arising from curvature must be almos t (99.9 %) balanced 
ou t by the effect of differential pressure. Thus, from Equation (13) 

In the example of Figure 7a, K m = 13 mm- I a nd a typical value of KJ IS 17 mm - I, glVll1g 
p- j:m = 0.03 ba r. This quite sm all pressure difference is enough to slow annealing down 
by the necessary factor of 10 3. 

W e concluded in Section 5.4 that the average over-pressure in the lenses after removal 
of the external load was pm- po = 0.3 bar. Therefore, our picture now is tha t the over
pressures P- Po in the individual lenses a re in the range 0.3 ± 0 .03 ba r. The ma teria l in 
the genera l neighbourhood of the lenses is under a pressure Pm from the plas tic constrain t 
of its surroundings. The individual lenses have pressures P slightly greater a nd less tha n this, 
and they undergo plas ti c expansion a nd contraction accordingly, of amoun ts just suffi cient 
to accommodate the volume cha nges. It is understa ndable that the differenti a l pressures 
in the caviti es a re quite small : a sm all over- or under-pressure is very effecti ve in causing 
volume change, because, on the one hand, the cavity tends m ore to a disk-shape than a 
sphere a nd , on the o ther hand , it has a sharp edge tha t promotes plas tic deforma tion . The 
situa tion is very different for a single water lens a nd fOI" a whole g roup of them , for we have 
seen tha t a whole group can exert an over-pressure of 0.3 ba r in their genera l neighbourhood 
wi thout causing a noticeable creep rate. 

The fact that the pressure even in the la rgest lenses is som e 1.3 ba r (a tmospheric plus 
0 . 3 bar) is consisten t with the observa tion that they conta ined no wa ter va pour. 

6. FORMATION OF WATE R L ENSES I N A FLOWING GLAC IE R 

,,ye may ask whether such wa ter lenses will form in a temperate g lacier, with con"es
ponding constriction of the veins. If the process we have discussed is to opera te there must 
be, of course, a depa rture from hydrostatic pressure. The ambient pressure Po in the experi
m ents happens to be a tmospheric, but one could equall y well contemplate the effect under 
a ny greater ambient pressure. The departures from hydrosta tic pressure presen t in a glacier 
by reason of its weight a re of the same order of m agnitude ( I bar) as those used in the 
experiments. The mos t signifi cant difference from our experimental conditions probably 
occurs in the d eepes t layers of tempera te glaciers where the veins are in communication 
with the atmosphere onl y through leng ths of 100 m or more. As we have already no ted in 
Section 4. I this m eans tha t the pressure in them could be raised by a uniaxia l compressive 
stress, in contrast to our experiments where the veins a re close enough to the surface for the 
pressure in them to rem a in uncha nged . The impor tant ques tion then is whether a uniaxial 
compressive stress ra ises the pressure in a grain-bounda ry lens more tha n it does in a vein ; 
for , if it creates an equa l pressure in both , the process we have discussed will not opera te. 
It is a very difficul t problem in plas tic creep, as we have sugges ted, to cal cula te these over
pressures, especially because of the changes in volume tha t accompany m elting and freezing. 

evertheless, in order simply to decide whether the process opera tes or not we might a rgue 
as follows. 

Suppose a lens and a vein existed as in Figure 8a, initia lly qui te free from in tem a l stresses, 
a nd suppose a uniaxial compressive stress P were then applied . The over-pressure in the lens, 
whose faces a re nearly perpendicular to the stress axis, would presuma bly become P, to a 
good approximation. The over-pressure in the vein , though t of now as being closed , is 
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less easily es timated , but a reasonable guess wou ld be the mean of the three principal applied 
stresses (P, 0, 0) that is ~}P, or possibly t P. It would be unreasonable to think it would be as 
high as P, because this is the value it would take if the a pplied stress were (P, P, P ) with two 
additional components. Therefore there would initiall y be a greater over-pressure in the 
lens than in the vein. If P were high enough the lens would begin to grow, but, at once, the 
volume changes produced by melting and freez ing would relax the over-pressures in such a 
way as to slow down the process. W e cannot calculate how much the pressures would relax , 
but the essential point we may infer from our previous discussion is that although this relaxa
tion will slow the growth it will not stop it entirely. 

We conclude that the effect seen in the laboratory will a lso occur in a temperate glacier. 
T he lenses may grow slightl y more slowly, but in a glacier there is plenty of tim e ava il ah le. 

7. SUBSTANCES OTHER THAN ICE 

The sign of the pressure-melting point relation in ice is of course abnormal, but there 
seems no reason why the effect discussed in this paper should not exi t as the general r ul e 
for a ll pure polycrys talline solids at their melting points, when the dihedral angle 'le in the 
liquid phase lies in the appropria te range 0° to 60°, provided that pl~ess u re is replaced by 
tension and vice versa. Thu liquid lenses ought to be expected in gra in boundaries at right 
angles to an applied tension and in boundaries parallel to an applied compression. This 
may have geophysical implications when taken in conjunction with the Frank (1968) theory 
of the up-welling of the liquid phase in the rocks of the Earth's mantle. 
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