
BULL. AUSTRAL. MATH. SOC. 60F05

VOL. 18 (1978) , 13-19. ( 60G05 )

A martingale central limit theorem
without negligibility conditions

Robert J. Adler

We obtain sufficient conditions for the convergence of martingale

triangular arrays to infinitely divisible laws with finite

variances, without making the usual assumptions of uniform

asymptotic negligibility. Our results generalise known results

for both the martingale case under a negligibility assumption and

the classical (independence) case without such assumptions.

1. Introduction

The theory of convergence in law of sums of independent random

variables has recently been enlarged to include the situation when the

summands do not satisfy asymptotic negligibility conditions. In [4]

Ovoretzky raised the problem of how these results carry over to the

situation when the summands are no longer independent. In [/] this problem

was solved for the case when the summands form a martingale difference

sequence and the limit law is gaussian, and we now consider the same

problem when the limit law is infinitely divisible with finite variance.

Our result generalises the martingale results of Brown and Eagleson [3] and

Dvoretzky [4] (Theorem 2 ) , as well as the sufficiency part of a result of

Machis [6] for the independence case without negligibility assumptions.

2. The limit theorem

Following [3], consider a double array of random variables, which we

take without loss of generality to be a triangular array, whose rows are

martingale difference sequencesj that is to say, for each n = 1, 2, ... ,
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we have random variables Jf , ..., X on a probability space

(J2, 1, P) , with sub a- f ie lds ! J o
c

= I , c : - - . c _ I of I such that

X , i s I , -measurable and E(X, | I , ) = 0 almost surely for

k = 1, 2, — , n . Such arrays are called martingale triangular arrays.

Let

k

~2

Let K(x) be a bounded nondecreasing function, which we take as fixed for

2
the remainder of the paper, and let a = X(°°) . Denote by G(x) the

distribution function of the infinitely divisible distribution with

2
variance a whose characteristic function <fr(t) is given by

"" itx n _..,.„•» ..-2^(1) log 0(t) = I [e%tx-l-itx)x dK(x) .
J -co

For each n we shal l denote by {G,,k=l, 2, ...,n} a

decomposition of G into n components, each inf in i te ly divisible with
2

f in i t e variance 0 , , and we shall denote the spectral function of G ,

by K , . (See [5] for further definit ions, and the proof of the

existence of such a decomposition for any n .) For such a decomposition,

put

A Ax) = P[X < x I I , J - C 7(ar) .

THEOREM. Let y be a bounded sequence of positive real numbers. If

there exist a decomposition \G ,} of G of the above form and a sequence

of positive numbers A for which

" ' • 0 as n •*• °° ,

where
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(3) an = sup

n
2

and U is the set of values of the index k for which a . < y , then
n J nk n

in order that S converqe in law as n -*• °° to a random variable withnn ^

distribution function G it is sufficient that the following conditions

hold:

2 P
(h) max 5 . — • 0 as n -*• °° ;

kiU n°
n

(5) there exists a finite constant C for which

lim P\ I a2. > c) = 0 ;

(6)

-£»• K(b) - K(a) as n ̂

for all continuity points a, b of K .

REMARKS I. (a) When the martingale differences X, are actually

independent,it is easy to see that the above result contains the

sufficiency part of Theorem 1 of [6],by choosing

where L is the Levy metric.

(b) If the martingale triangular array satisfies the conditions of

n 2

Theorem 1 of [3],then clearly Y a . < C for all n , so that taking
fe=l n°

Y = 2C ensures that the array also satisfies the conditions of our
n

theorem.

Proof of the theorem. We commence by introducing a new sequence of

random variables, Y , . For every k i U^ let J ^ have distribution

function G , , where the G , are given in the statement of the theorem,
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and let these be distributed independently of each other and the 0-field

n
generated by U I , . For H i / simply set Y , = X , . Now define

r, _-, ==KK Yl TIK. YIK

the sum R, by

n - y y
Hnk ~ f=1

 Yn

We s h a l l f i r s t show t h a t , a s «-*•«>

( 7 )

X . .

0 ,

so that to prove the theorem we can replace the X , 's by the Y r,'s

without any loss of generality. As in equation (15) of [ H it is easy to

show that the left hand side of (7) is not greater than

(8)

Each term of (8) can be written as

(9) Ell exp(itx)dArik(x)

£ E + EIL" •"•< + E i tx .

= r i * J 2 + J 3 ' s a y >

Consider now each of these terms separately:

-A

(10) J < E \ \dLnAx) | 2 E[P[X, £ -A

2 a + 2G , M

from (3). Furthermore, from an integration by parts we have

A A

(11) J 2 5 i c i t e i t e * Ank{
"1 Mx)J

s 244 a + 2a .
n n n
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But k d U entails a , > y , and since £ a . < a , there are at
ft YIK. Yt YlK.

kaJ
n

2 _T
most a y indices in U . Combining this fact, (9)-(ll), and a similar
bound for J, gives that (8) is not greater than

w h i c h , u n d e r t h e c o n d i t i o n s of t h e t h e o r e m , t e n d s t o z e r o a s n -»• °° . Th i s

e s t a b l i s h e s ( 7 ) .

Thus we now need o n l y c o n s i d e r t h e conve rgence o f R . B y Theorem

rtn

2.3 of [2] we need only show that for any subsequence {n'} there exists a

further subsequence {«"} along which convergence occurs. Thus, without

any loss of generality, we may assume that

(12)

k(.U
n

where K is a nondecreasing function dominated by K . (The existence

of such a function follows from Helly's first theorem.) This condition is

of course equivalent to the condition that T_ Y , converge in a law to

a random variable with characteristic function <j> (t) , given by

(13) log <j>(l)(*) = f [eitx-\-itx)x~2dK{l\x) .
' -CO

(2) (2)
We now define funct ions K and <(> by

(lit) tf(l)(a:) + t f ( 2 ) ( x ) = K ( x ) , < t > { l ) ( t ) 4 > { 2 ) ( t ) =

Then i t f o l l o w s from ( 6 ) and ( 1 2 ) t h a t , a s n •*••*>,

If we now apply the same type of argument as on pages 52-53 of P ] [that

is, we form a new array from the Y , , k 6 U ) it follows from Theorem 1
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of [3] that Y. Y v = E % h converges in law to the random variable
"* nK

(2)
with characteristic function <i> (t) . Combining this with (l2)-(ll»)

completes the proof of the theorem.

REMARKS 2. (a) We note that as in [3] the assumption that the rows

of the triangular array form a martingale difference sequence is not

essential. It is a trivial matter to relax this condition as in Theorem 2

of [73 so that in effect our result also generalises Theorem 2 of [43.

(b) It is of interest to obtain sharper forms of (2) when the limit

distribution has a simple form. For example, if the limit law is that of a

zero mean, unit variance, gaussian random variable, then (2) becomes

"+ 0 as n "•• °° .

This follows simply from (2) by choosing A = 2 log a , and then

noting that since each G , can be taken as the distribution function of a

2
gaussian random variable with zero mean and variance a , 5 1 t we can use

the well known inequality (for large x )

<&(-x) = l - $ ( x ) S [xe J~ ,

where $ is the standard gaussian distribution function, to bound the

terms in (2).

Similarly, when the limit law is Poisson, each G , can be taken as

2 2
Poisson with parameter cr , 5 a . Thus, using the upper tail bound for

this distribution given by

where {A } is now taken to be a sequence of positive numbers increasing

to infinity, we can apply Stirling's approximation to see that
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A +¥
i -v f p , ,1 «

1 - G. (An) £ constant a e A ,

which wil l tend to zero as n •*•<*>. Hence, in the Poisson case, (2) can be

very simply written as

yn'1\An ->• 0 as n •*• « ,

f o r any i n t e g e r s e q u e n c e [A } f o r w h i c h A •*•<*> a s n •*•<*>.
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