ON SEMIGROUPS OF TRANSFORMATIONS ACTING TRANSITIVELY ON A SET

E.J. Tully, Jr.*
(received May 17, 1966)

We call a semigroup S transitive if S is isomorphic to a semigroup T of transformations of some set M into itself, where T acts on M transitively, that is in such a manner that for all $x, y \in M$ we have $x \pi=y$ for some transformation $\pi \in T$. In [4] the author showed that S is transitive if and only if there exists a right congruence σ (i.e., an equivalence relation for which $a \sigma$ b always implies $a c \sigma$ bc for all $c \in S$) on S, satisfying:
(1) There exists a left identity modulo σ, that is an element e such that ea σ a for all $a \in S$.
(2) Each σ-class meets each right ideal, or, equivalently, for all $a, b \in S$ we have $a c \sigma b$ for some $c \in S$.
(3) The relation σ contains (i.e., is less fine than) no left congruence except the identity relation (in which each class consists of a single element).

This was used to obtain a much simpler condition [4, Theorem 3.4, p.538] for the special case where S contains a minimal right ideal.

The purpose of the present note is to obtain a somewhat complicated necessary and sufficient condition, which does not involve right congruences, for the transitivity of an arbitrary semigroup. This condition asserts that there exists a subset A of S which meets each right ideal, such that every pair a, b of

[^0]Canad. Math. Bull. vol. 9, no. 4, 1966
distinct elements of S has a left multiple consisting of a pair ca, cb which cannot be joined to each other by successive left multiplications and divisions by elements of A. This is then used to obtain a simpler sufficient condition for transitivity.

LEMMA. Suppose σ is a right congruence on a semigroup S, and (1) is satisfied. Then (3) is equivalent to
(3') For every pair a, b of distinct elements of S, there exists $x \in S$ such that $x a$ and $x b$ are in different σ classes.

Proof. First suppose (3') holds, and (3) is false. Then there is a left congruence ρ contained in σ, with $a \rho b$ for some $a \neq b$. Let x be as in (3'). Then $x a p b$, and hence xa σ xb. This contradicts (3^{\prime}). Conversely, suppose (3) holds, and (3^{\prime}) is false. Then for some $a \neq b$ we have $x a \operatorname{xb}$ for all x. Define ρ to be the smallest left congruence for which $a \rho b$. Explicitly, ρ is given by: $c \rho d$ if and only if either $c=d$ or there exist $x_{0}, \ldots, x_{n} \in S$ with $x_{0}=c, x_{n}=d$, and, for each i, either $\left\{x_{i-1}, x_{i}\right\}=\{a, b\}$ or $\left\{x_{i-1}, x_{i}\right\}=\left\{y_{i}, y_{i} b\right\}$ for some $y_{i} \in S$. Now ρ is contained in σ. For $y_{i} a \sigma y_{i} b$ by the falsity of (3^{\prime}), and, using (1), we can obtain a σ ea σ eb σ b. But ρ is not the identity relation. This contradicts (3).

THEOREM. A semigroup S is transitive if and only if there exists a subset A of S which meets each rightideal, and satisfies
(4) If $a, b \in S$, and for each $c \in S$ there exist $x_{0}, \ldots, x_{n} \in S$ with $x_{0}=c a, x_{n}=c b$, and, for each i, either $x_{i-1}=y_{i} x_{i}$ or $x_{i}=y_{i} x_{i-1}$ for some $y_{i} \in A$, then $a=b$.

Proof. First suppose that S is transitive. Let σ be a right congruence satisfying (1), (2) and (3'). Choose A to be a σ-class containing a left identity modulo σ. It is easy to see that every element of A is a left identity modulo σ. By (2), A meets each right ideal. We now prove (4). Suppose each left multiple ca, cb of a pair a, b could be joined by a chain as in (4). Then, for all $i, x_{i} \sigma x_{i-1}$, since y_{i} is a leftidentity modulo σ. Hence $\mathrm{ca} \sigma \mathrm{cb}$ for all c . $\mathrm{By}\left(3^{\prime}\right) \mathrm{a}=\mathrm{b}$.

Conversely, suppose such a subset A exists. Define a right congruence σ by: $\mathrm{x} \sigma \mathrm{y}$ if and only if there exist $x_{0}, \ldots, x_{n} \in S$ with $x_{0}=x, x_{n}=y$, and, for each i, either $x_{i-1}=y_{i} x_{i}$ or $x_{i}=y_{i} x_{i-1}$ for some $y_{i} \in A$. Any element of A is clearly a left identity modulo σ. Now let $a, b \in S$ be given. Since A meets each right ideal, we have ay $\in A$ for some $y \in S$. Hence ayb σ b. This proves (2). Finally, (3') clearly reduces in the present context to (4). Thus σ satisfies (1), (3) and (3'), so that S is transitive.

Following Dubreil [1], we call a subsemigroup T of S left unitary if $a, a b \in T$ implies $b \in T$. It is easy to see from the preceding proof, that we could, in the statement of the theorem, impose upon A the additional requirement that it be a left unitary subsemigroup of S.

COROLLARY. Suppose S contains a left unitary subsemigroup T which meets each right ideal, and satisfies
(5) If $a, b \in S$ and $a \neq b$, then there exist $x, y \in S$ such that either xay $\in T$, $x b y \notin T$ or $x a y \notin T$, $x b y \in T$.

Then S is transitive.

Proof. We need only show that T satisfies (4). Suppose $a \neq b$, and each pair $c a, c b$ can be joined by a chain as in (4). Let x, y be as in (5). Then, in particular, $x a, x b$ can be joined by a chain as in (4). Hence, xay, xby can also be joined by such a chain. Since T is a left unitary subsemigroup, this implies that xay, xby are either both in T or both outside T, contradicting (5).

Teissier [2] and the present author [3,5] have studied the following condition on a subset A of a semigroup:
(5') If $a, b \in S$ and $a \neq b$, then there exist $x, y \in S^{\prime}$ such that either xay $\in A$, xby $\notin A$ or xay $\notin A$, $x b y \in A$, where S^{\prime} denotes S with an identity element adjoined.

Teissier [2] showed that (5^{\prime}) is equivalent to the assertion that the identity relation is the only (two-sided) congruence for which A is a union of congruence classes. Condition (5') is slightly weaker than (5). However, if desired, (5) in the corollary could, by a slight modification of the proofs, be replaced by (5^{\prime}).

As an example of the application of the corollary, let S be the free semigroup with two generators, so that S consists essentially of all finite sequences of 0 's and 1 's, with juxtaposition as the semigroup operation. It is already known [4, ex. 2, p. 540] that S is transitive. Let T be the subsemigroup generated by the sequence 0 together with all sequences consisting of n 1's, followed by 0 , followed by $\mathrm{n}-1$ entries chosen arbitrarily. (For example, $00111011 \in T, 11100 \notin \mathrm{~T}$.) Then T is left unitary, meets each right ideal, and satisfies (5). This supplies a new proof of the transitivity of S.

REFERENCES

1. P. Dubreil, Contribution à la théorie des demi-groupes. Mem. Acad. Sci. Inst. France (2) 63, no. 3, 52 pages, (1941).
2. M. Teissier, Sur les équivalences régulières dans les demi-groupes. C.R. Acad. Sci. Paris 232, (1951), pages 1987-1989.
3. E.J. Tully, Jr., Representation of a semigroup by transformations of a set. Dissertation, Tulane University, (1960).
4. E.J. Tully, Jr., Representation of a semigroup by transformations acting transitively on a set. Amer. J. Math. 83, (1961), pages 533-541. Errata, Amer. J. Math, 84, (1962), page 386.
5. E.J. Tully, Jr., Congruence relations on a set with semigroup of transformations. Unpublished.

University of California, Davis

[^0]: * Most of this research was done while the author held an NSF Postdoctoral Fellowship at California Institute of Technology.

