WEAK FAMILIES OF MAPS

J.C. TayIor

(received March 12, 1965)

1. Introduction. Let Ω be an index set and for each $\alpha \in \Omega$ let $\frac{\mathrm{f}_{\alpha}: \mathrm{X} \rightarrow \mathrm{X}_{\alpha}}{}$ be a function where X and X_{α} are sets. Assume that, for each α, a topology \underline{O}_{α} is given for X_{α}. Then, as is well-known, the functions f_{α} and the topologies \underline{O}_{α} determine a topology for X. This is the so-called weak or initial topology, which is generated by $\bigcup_{\alpha}\left\{f_{\alpha}^{-1} O \mid O \in \underline{O}_{\alpha}\right\}$.

Bourbaki [1] shows that the weak topology is the unique topology O for X satisfying the following condition: a function $f: Y \rightarrow X$ is (T, \underline{O})-continuous if and only if, for each α, $\mathrm{f}_{\alpha} \circ \mathrm{f}$ is $\left(\underline{\mathrm{T}}, \underline{\mathrm{O}}_{\alpha}\right)$-continuous. This suggests that the concept of a weak topology could be defined using the language of category: theory.

Let A denote the category of topological spaces, and let E denote the category of sets. Denote by $a: A \rightarrow B, b, \ldots$ the morphisms of \underline{A} and by $f: X \rightarrow Y, g, \ldots$ those of E. Let $F: \underline{A} \rightarrow \underline{E}$ denote the forgetful functor.
 ($\mathrm{X}_{\alpha}, \mathrm{O}_{\alpha}$), and let (f_{α}) be a family of functions $\mathrm{f}_{\alpha}: \mathrm{X} \rightarrow \mathrm{X}_{\alpha}$. The topology of the space A is the weak topology determined by (f_{α}) and (A_{α}) if and only if the following assertion holds. A function $f: Y \rightarrow X$ is of the form $F(b)$, for $b: B \rightarrow A$, if and only if, for each α, there exists $b_{\alpha}: B \rightarrow A_{\alpha}$ with $f_{\alpha} \circ f=F\left(b_{\alpha}\right)$.

Canad. Math. Bull. voI. 8, no. 6, 1965

Assume that the topology of A is the weak topology determined by (f_{α}) and (A_{α}). Since the identity map ${ }^{1} X$ is $F\left(1_{A}\right)$, each f_{α} is of the form $F\left(a_{\alpha}\right)$. Hence, as is well known, the family (f_{α}) determines a family (a_{α}) of morphisms of A.

The family (a_{α}) of morphisms a_{α} of \underline{A}, with common domain A, has the following property: if a function $f: F(B) \rightarrow F(A)$ is such that there exists a family $\left(b_{\alpha}\right)$ of morphisms $b_{\alpha}: B \rightarrow A_{\alpha}$ with, for each $\alpha, F\left(a_{\alpha}\right) \circ f=F\left(b_{\alpha}\right)$, then there exists a unique $b: B \rightarrow A$ with $F(b)=f$ and, for each $\alpha, \mathrm{a}_{\alpha} \circ \mathrm{b}=\mathrm{b}_{\alpha}$. In terms of diagrams, $\left(\mathrm{a}_{\alpha}\right)$ is such that the commutativity, for each α, of

with $F(b)=f$.
Let A and E be arbitrary categories, and let $F: \underline{A} \rightarrow \underline{E}$ be a covariant functor. The purpose of this expository note is to provide some examples and to discuss some elementary properties of families (a_{α}) of morphisms a_{α} of \underline{A} which have the above property. When E is the trivial category with a unique morphism such families define the direct products that exist in A.

While the theory outlined here is essentially a translation of Bourbaki's theory of initial structures [2] into the language of categories, it differs in several respects. The emphasis here is on families of morphisms of A, rather than on the determination of an object of A by families of morphisms of E and families of objects of A. Further, the theory of initial structures restricts A to be the category determined by a type
of structure, E to be the category of sets, and F to be the forgetful functor.

In the case where the index set is a singleton this theory is to be found, in its dual form, in a recent paper of Ehresmann [3].

I would like to thank I. Connell for some interesting conversations on rings during the preparation of this note.
2. Weak families. Let A and E be two categories and denote by $F: \underline{A} \rightarrow \underline{E}$ a covariant functor.

A family (a_{α}) of morphisms $\mathrm{a}_{\alpha}: \mathrm{A} \rightarrow \mathrm{A}_{\alpha}$ of \underline{A} will be called an F-weak family or a weak family if it has the following property: if a morphism $f: F(B) \rightarrow F(A)$ is such that there exists a family (b_{α}) of morphisms $b_{\alpha}: B \rightarrow A_{\alpha}$ with, for each $\alpha, F\left(a_{\alpha}\right) \circ f=F\left(b_{\alpha}\right)$, then there exists a unique $b: B \rightarrow A$ with $F(b)=f$ and, for each $\alpha, a_{\alpha} \circ b=b_{\alpha}$. A morphism a : A \rightarrow C of A is called weak if it is a weak family when viewed as a family indexed by a one-point set. In the terminology of Ehresmann [3], a weak morphism is an (E,F) injection.

If (a_{α}) is a family of morphisms $a_{\alpha}: A \rightarrow A_{\alpha}$ the family (A_{α}) will be called the range of the family and the object A will be referred to as its domain. Two families $\left(a_{\alpha}\right)$ and ($a^{\prime}{ }_{\alpha}$), with the same range and with domains A and A ', will be called isomorphic if there is an isomorphism a of A with, for each $\alpha, a_{\alpha} \circ a=a^{\prime}{ }_{\alpha}$.

Examples.

1. A family (a_{α}) of morphisms of A will be said to have the left cancellation property (LCP) if $b=c$ whenever, for each $\alpha, a_{\alpha} \circ b=a_{\alpha} \circ c$. When $\underline{A}=E$ and F is the identity functor it follows that (a_{α}) is weak if and only if (a_{α}) has the LCP. In particular, a morphism is weak if and only if
it is a monomorphism. Consequently, a weak family can be thought of as a generalized monomorphism.
2. Let A be the category of uniform spaces, E be the category of sets, and let F be the forgetful functor. Then, a family (a_{α}) of uniformiy continuous functions is weak if and only if the uniformity on $F(A)$, A being the domain, is the weak uniformity defined by the functions $F\left(a_{\alpha}\right)$ and the uniformities \underline{U}_{α} on the sets $F\left(A_{\alpha}\right)$.
3. Let E be the category with a unique morphism. There is a unique functor $F: A \rightarrow E$. A family (a_{α}) of morphisms a_{α} is weak if and only if ($\mathrm{A},\left(\mathrm{a}_{\alpha}\right)$) is a direct product of the family (A_{α}). Hence, weak families might well be called relative direct products.
4. Let A be the category of groups. Take F to be the forgetful functor from A to the category of sets. A family (a_{α}) of group homomorphisms $a_{\alpha}: A \rightarrow A_{\alpha}$ is F-weak if and only if \bigcap_{α} ker (a ${ }_{\alpha}$) is the trivial subgroup of A. In particular a group homomorphism is weak if and only if it is a monomorphism.
5. Let A denote the category of vector spaces over the field of rationals. For E take the category of abelian groups, and let $F(A)$ denote the underlying abelian group of A. Then, every family of linear transformations $a_{\alpha}: A \rightarrow A_{\alpha}$ is weak.
6. Let \underline{A} denote a ring R, with unit, viewed as a category with one object 1 and morphisms the elements of the ring, the law of composition being ring multiplication. A left R-module defines a covariant functor $M: A \rightarrow E$ where E is the category of abelian groups.

A ring element r is M-weak if, for a group homomorphism f, $r \cdot f(x)=s \cdot x$ for all $x \in M(1)$ implies that there exists a unique $t \in R$ with $f(x)=t \cdot x$ for all $x \in M$ (1). In order that M-weak elements exist, it is necessary that M have zero annihilator. Clearly, an element of the ring with a left inverse is M-weak for all such modules M.

Conversely, if r is M-weak for all modules M with zero annihilator then r is left-invertible. Consider the left R-module $M=R \times R /(r)$, where (r) is the principal left ideal determined by r. Define $f: M \rightarrow M$ by $f(x, y)=(0, y)$. Then $r \cdot f(x, y)=0 \cdot(x, y)=0$. The group homomorphism f is of the form $f(x, y)=t \cdot(x, y)$ if and only if $R /(r)=\{0\}$. This is equivalent to r being left-invertible.

Every ring R is a left R-module with zero annihilator. The element 0 is R-weak if and only if every endomorphism f of the additive group of R is given by left multiplication with some element of the ring. For example, 0 is a \mathbb{Z}-weak element of \mathbb{Z}.
7. Let A again denote a ring R viewed as a category, and Iet E now be the category of sets. Let F be the composition of the functor corresponding to R as a left R-mcdule with the forgetful functor from the category of groups to \underline{E}.

A ring element r is F-weak if, for a function f, $r \cdot f(x)=s \cdot x$ for all $x \in F(1)$ implies that there exists $t \in R$ with $f(x)=t \cdot x$ for all $x \in F(1)$. When $0 \neq 1$ this is equivalent to r not being a left divisor of zero.

Assume $r \in R$ is not a left divisor of zero. Let $f: R \rightarrow R$ be a function for which there exists s with $r \cdot f(x)=s \cdot x$ for all $x \in R$. Let $t=f(1)$. Then, $r \cdot f(x)=(r \cdot t) \cdot x$, for all $x \in R$. Since r is not a left divisor of zero, $f(x)=t \cdot x$ for all $x \in r$. In other words, r is F-weak.

Assume that r is F-weak. Then $r \neq 0$. Let r be a Ieft divisor of zero and let $p \in R$ be such that $r \cdot p=0$ and $p \neq 0$. Define $f: R \rightarrow R$ by $f(x)=0$ if $x \neq p$ and $f(p)=p$. Then, $r \cdot f(x)=0 \cdot x$ for all $x \in R$. Hence, there exists $t \in R$ with $f(x)=t \cdot x$ for all $x \in R$. Since $1 \neq p, 0=f(1)=t$. This is a contradiction.
3. Elementary properties of weak families. As might be expected, a weak family $\left(a_{\alpha}\right)$ is determined up to isomorphism by its range and ($F\left(a_{\alpha}\right)$).

PROPOSITION 1. Let (a_{α}) and ($a_{\alpha}{ }^{\prime}$) be two weak families with the same range. They are isomorphic if, for each $\alpha, F\left(a_{\alpha}\right)=F\left(a_{\alpha}{ }^{\prime}\right)$.

Proof: If A and A^{\prime} are the respective domains of $\left(a_{\alpha}\right)$ and (a α^{\prime}), then $F(A)=F\left(A^{\prime}\right)=X$. Therefore, $F\left(a_{\alpha}\right) \circ 1_{X}=F\left(a_{\alpha}{ }^{\prime}\right)=F\left(a_{\alpha}{ }^{\prime}\right) \circ 1_{X}=F\left(a_{\alpha}\right)$. It follows that there are unique morphisms $a: A^{\prime} \rightarrow A$ and $a^{\prime}: A \rightarrow A^{\prime}$ such that, for each $\alpha, a_{\alpha} \circ a=a_{\alpha}{ }^{\prime}$ and $a_{\alpha}{ }^{\prime} \circ a^{\prime}=a_{\alpha}$ and $F(a)=F\left(a^{\prime}\right)$ $={ }^{1} \mathrm{X}$. The uniqueness condition in the definition of a weak family implies that a and a^{\prime} are inverse to one another.

A family (a_{α}) of morphisms will be said to have the left cancellation property (LC P) if, for each $\alpha, a_{\alpha} \circ b=a{ }_{\alpha} \circ c$ implies $b=c$. If the family (a_{α}) defines a direct product in A of the family (A_{α}) of objects A_{α} of \underline{A}, then (a_{α}) has the L C P.

In general, if (A_{α}) has the L C P the family ($F\left(a_{\alpha}\right)$) need not have this property. However, when F has a left adjoint the family $\left(F\left(a_{\alpha}\right)\right)$ inherits the $L C P$ from (a_{α}).

Since a weak family can be thought of as a generalized or relative direct product, the question arises as to whether a family (a_{α}) that defines a direct product in \underline{A} is weak.

PROPOSITION 2. Let (a_{α}) define a direct product in A. The following are equivalent:
(1) (a_{α}) is weak;
(2) for each family $\left(\mathrm{b}_{\alpha}\right)$ of morphisms of A, with domain B and range $\left(A_{\alpha}\right)$, there is a unique morphism $f: F(B) \rightarrow F(A)$ with, for each $\alpha, F\left(a_{\alpha}\right) \circ f=F\left(b_{\alpha}\right)$.

In particular, (a_{α}) is weak if F has a left adjoint or, more generally, if $\left(F\left(a_{\alpha}\right)\right)$ has the LCP.

Proof: Since (a_{α}) defines a direct product in A, for each family (b_{α}) of morphisms of A, with domain B and range (A_{α}), there is a unique $\mathrm{b}: \mathrm{B} \rightarrow \mathrm{A}$ with, for each α, $\mathrm{a}_{\alpha} \circ \mathrm{b}=\mathrm{b}_{\alpha}$. Consequently, there is at most one $\mathrm{f}: F(B) \rightarrow F(A)$ of the form $F(b)$ where b satisfies, for each $\alpha, a_{\alpha} \circ b=b_{\alpha}$. From this observation, it follows immediately that (1) and (2) are equivalent.

Examples.

8. Let both A and E be the category of topological spaces and let F be the functor defined by the generalized Stone-Čech compactification. It is well known that F does not preserve direct products [4]. However, every family (a_{α}) of continuous functions that defines a direct product is F-weak.
9. Let $A=E$ be the category of abelian groups and let F be the functor obtained by associating with each group A : the tensor product $A \otimes \mathbb{Q}$. Denote by A a direct product of the modules \mathbb{Z}_{i}, where $i=1,2,3, \ldots$ and by $\left(a_{i}\right)$ the family of projections $a_{i}: A \rightarrow \mathbb{Z}_{i}$. The family $\left(a_{i}\right)$ is not F-weak. Clearly, for each $i, F\left(\mathbb{Z}_{i}\right)=\mathbb{Z}_{i} \otimes \mathbb{Q}$ is the zero group and $F(A)=A \otimes \mathbb{Q}$ is not the zero group. Hence, there are at least two morphisms $f_{1}, f_{2}: F(A) \rightarrow F(A)$ with, for each i, $F\left(a_{i}\right) \circ f_{j}=F\left(a_{i}\right)=0$.

The following proposition is a converse to proposition 2.
PROPOSITION 3. If (a_{α}) is a weak family in A for which the family $\left(F\left(a_{\alpha}\right)\right)$ defines a direct product of the family ($F\left(A_{\alpha}\right)$), then (a_{α}) defines a direct product of the family (A_{α}).

Proof: Let (b_{α}) be a family of morphisms $b_{\alpha}: B \rightarrow A_{\alpha}$ of A. There is a unique map $f: F(B) \rightarrow F(A)=X$ with, for each $\alpha, f_{\alpha} \circ f=F\left(b_{\alpha}\right)$. Since $\left(a_{\alpha}\right)$ is weak and $F\left(a_{\alpha}\right)=f_{\alpha}$, there is a unique map $b: B \rightarrow A$ with, for each $\alpha,{ }_{\alpha} \circ b=b_{\alpha}$. Hence, (a_{α}) defines a direct product of (A_{α}).

Let B be a third category and let $F: \underline{A} \rightarrow E$ be equal to $H G$, where $G: \underline{A} \rightarrow \underline{B}$ and $H: \underline{B} \rightarrow \underline{E}$.

PROPOSITION 4. When H is faithful, a family (a_{α}) of morphisms of A is G-weak if it is F-weak. If the family of morphisms ($\left.a_{\alpha}\right)^{\prime}$ is G-weak and the family $\left(G\left(a_{\alpha}\right)\right)$ is H-weak, then (a_{α}) is F-weak.

Proof: Assume that $\left(b_{\alpha}\right)$ is a family of morphisms $\mathrm{b}_{\alpha}: \mathrm{B} \rightarrow \mathrm{A}_{\alpha}$ and that $\mathrm{g}: \mathrm{G}(\mathrm{B}) \rightarrow \mathrm{G}(\mathrm{A})$ is such that, for each α, $\mathrm{G}\left(\mathrm{a}_{\alpha}\right) \circ \mathrm{g}=\mathrm{G}\left(\mathrm{b}_{\alpha}\right)$. Then, for each $\alpha, \mathrm{F}\left(\mathrm{a}_{\alpha}\right) \circ \mathrm{H}(\mathrm{g})=\mathrm{F}\left(\mathrm{b}_{\alpha}\right)$. Consequently, there is a unique $b: B \rightarrow A$ with $F(b)=H(g)$ and, for each $\alpha, a_{\alpha} \circ b=b_{\alpha}$.

Since $F(b)=H G(b)=H(g)$, the faithfulness of H implies that $g=G(b)$. Clearly, there is at most one b with $G(b)=g$ and satisfying the condition $\mathrm{a}_{\alpha} \circ \mathrm{b}=\mathrm{b}_{\alpha}$ for each α.

Let $\left(b_{\alpha}\right)$ be a family of morphisms $b_{\alpha}: B \rightarrow A_{\alpha}$ and Let $f: F(B) \rightarrow F(A)$ be such that, for each $\alpha, F\left(a_{\alpha}\right) \circ f=F\left(b_{\alpha}\right)$. Since $\left(G\left(a_{\alpha}\right)\right)$ is H-weak, there is a unique $g: G(B) \rightarrow G(A)$ with, for each $\alpha, G\left(a_{\alpha}\right) \circ g=G\left(b_{\alpha}\right)$ and $H(g)=f$. The G-weakness of (a_{α}) implies that there exists a unique $b: B \rightarrow A$ with, for each $\alpha, \mathrm{a}_{\alpha} \circ \mathrm{b}=\mathrm{b}_{\alpha}$ and $\mathrm{G}(\mathrm{b})=\mathrm{g}$.

Clearly, $F(b)=f$. It remains to show the uniqueness of b. Let $b^{\prime}: B \rightarrow A$ be such that, for each $\alpha, a_{\alpha} \circ b^{\prime}=b_{\alpha}$ and
$F\left(b^{\prime}\right)=f$. Then, $G\left(b^{\prime}\right)=g$ since, for each α, $G\left(a_{\alpha}\right) \circ G\left(b^{\prime}\right)=G\left(b_{\alpha}\right)$ and $H G\left(b^{\prime}\right)=F\left(b^{\prime}\right)=f$. It then follows from the G-weakness of (a_{α}) that $b^{\prime}=b$ 。

Examples.

10. Let \underline{A} be a ring R viewed as a category and let \underline{B} denote the category of abelian groups. Let $G: \underline{A} \rightarrow \underline{B}$ be the functor corresponding to R as a left R-module and let $H: \underline{B} \rightarrow \underline{E}$, where \underline{E} is the category of sets, be the forgetful functor. Then, $F=\overline{H G}$ is the functor of example 7. The faithfulness of H and proposition 4 imply that every $r \in R$ which is not a divisor of zero is G-weak.
11. Let $A=B$ be the category of abelian groups and let E be the trivial category with one morphism. Denote by G the functor of example 9 and by H the unique functor from B to E. The family $\left(a_{i}\right)$ of example 9 is then $F=H G-$ weak, but it is not G-weak.
12. Weak families and direct products. Let Ω be an index set, and for each $\alpha \in \Omega$ let $I(\alpha)$ be an index set. For each $\beta \in I(\alpha)$ let $a_{\alpha \beta}^{\prime}: A_{\alpha} \rightarrow A_{\alpha \beta}$ be a morphism of A, and for each $\alpha \in \Omega$ Iet $a_{\alpha}: A \rightarrow A_{\alpha}$. Define $a_{\alpha \beta}$ to be $a_{\alpha \beta}^{\prime} \circ a_{\alpha}$.

PROPOSITION 5. If (a_{α}) and, for each α, $\left(\mathrm{a}_{\alpha \beta}^{\prime}\right)$ are weak families, the family $\left(\mathrm{a}_{\alpha \beta}\right)$ is weak. Conversely, if (${ }_{\alpha \beta}$) is weak the family (a_{α}) is weak.

Proof: Let $\left(b_{\alpha \beta}\right)$ be a family of morphisms $b_{\alpha \beta}: B \rightarrow A_{\alpha \beta}$. Assume $f: F(B) \rightarrow F(A)$ is such that, for each α and β, $F\left(\mathrm{a}_{\alpha \beta}\right) \circ \mathrm{f}=\mathrm{F}\left(\mathrm{b}_{\alpha \beta}\right)$.

Let $f_{\alpha}: F(B) \rightarrow F\left(A_{\alpha}\right)$ be the morphism $F\left(a_{\alpha}\right) \circ f$. Since, for each $\alpha,\left(a_{\alpha \beta}^{\prime}\right)$ is weak, there is, for each α, a unique morphism $b_{\alpha}: B \rightarrow A_{\alpha}$ with $F\left(b_{\alpha}\right)=f_{\alpha}$ and, for each β, $a_{\alpha \beta}^{\prime} \circ b_{\alpha}=b_{\alpha \beta}$.

Since $f_{\alpha}=F\left(a_{\alpha}\right) \circ f=F\left(b_{\alpha}\right)$, there is a unique $b: B \rightarrow A$ with $F(b)=f$ and, for each $\alpha, a_{\alpha} \circ b=b_{\alpha}$. It remains to show that b is the unique morphism with $F(b)=f$ and, for each α and $\beta, a_{\alpha \beta} \circ b=b_{\alpha \beta}$.

Assume $F\left(b^{\prime}\right)=f$ and that, for each α and β, $a_{\alpha \beta} \circ b^{\prime}=b_{\alpha \beta}$. Let $b_{\alpha}^{\prime}=a_{\alpha} \circ b^{\prime}$. Then, $F\left(b_{\alpha}^{\prime}\right)=F\left(a_{\alpha}\right) \circ f=f f_{\alpha}$ and, for each $\beta, a_{\alpha \beta}^{\prime} \circ b_{\alpha}^{\prime}=b_{\alpha \beta}$. Therefore, $b_{\alpha}^{\prime}=b_{\alpha}$. From this it follows immediately that $b=b^{\prime}$.

The proof of the converse is similar.

A morphism e of A will be called an embedding if e is. weak and $F(e)$ is a monomorphism. An object A of A will be called a subobject of B if there is an embedding $e: A \rightarrow B$.

PROPOSITION 6. Let (A_{α}) be a family of objects A_{α} of A . Let ($\Pi \mathrm{A}_{\alpha}, \mathrm{pr}_{\alpha}$) be a direct product of the family (A_{α}). Assume that (pr_{α}) is weak and that $\left(\mathrm{F}\left(\mathrm{pr}_{\alpha}\right)\right.$) has the LCP. The following statements are equivalent:
(1) A is a subobject of ΠA_{α};
(2) there is a weak family (a_{α}) with domain A and range (A_{α}) for which $\left(F\left(a_{\alpha}\right)\right)$ has the LCP.

Proof: There is a 1-1 correspondence between families $\left(a_{\alpha}\right)$ with domain A and range (A_{α}) and morphisms e:A $\rightarrow \Pi A_{\alpha}{ }^{\circ}$ To the morphism e corresponds the family (a_{α}) where, for each $\alpha, \mathrm{a}_{\alpha}=\mathrm{pr}{ }_{\alpha}$ oe. Since ($\mathrm{pr} \mathrm{e}_{\alpha}$) is weak, proposition 5 shows that e is weak if and only if the corresponding family $\left(a_{\alpha}\right)$ is weak.

If $\left(F\left(a_{\alpha}\right)\right)$ has the $L C P$ it is clear that $F(e)$ is a monomorphism. Conversely, since $\left(F\left(p r{ }_{\alpha}\right)\right)$ has the $L C P$,
the family $\left(F\left(a_{\alpha}\right)\right)$ has the $L C P$ whenever $F(e)$ is a monomorphism.

Example.

12. Let A be the category of topological spaces, let E be the category of sets, and let F be the forgetful functor. A family $\left(a_{\alpha}\right)$ with domain A is such that $\left(F\left(a_{\alpha}\right)\right)$ has the $L C P$ if and only if the functions a_{α} separate the points of $F(A)$. Hence, the embedding lemma in [5] is a particular case of the result in proposition 6. This proposition also shows that a similar embedding lemma holds for uniform spaces.

REFERENCES

1. N. Bourbaki, Topologie Générale, Actualités Sci. Ind. 1142 3éme ed., 1961.
2. \qquad , Théorie des Ensembles, Actualités Sci. Ind. 1258, 1957.
3. D. Ehresmann, Structures Quotient, Comm. Math. Helvetici, vol. 38 (1964), 219-242.
4. L. Gillman and M. Jerison, Rings of Continuous Functions, New York, 1960.
5. J. L. Kelley, General Topology, New York, 1955.

McGill University

