WEAK FAMILIES OF MAPS

J.C. Taylor

(received March 12, 1965)

1. Introduction. Let Ω be an index set and for each $\alpha \in \Omega$ let $f_{\alpha} : X \to X_{\alpha}$ be a function where X and X_{α} are sets. Assume that, for each α , a topology O_{α} is given for X_{α} . Then, as is well-known, the functions f_{α} and the topologies O_{α} determine a topology for X. This is the so-called weak or initial topology, which is generated by $\bigcup_{\alpha} \{f_{\alpha}^{-1} \circ | \circ \circ \circ O_{\alpha}\}$.

Bourbaki [1] shows that the weak topology is the unique topology \underline{O} for X satisfying the following condition: a function $f: Y \rightarrow X$ is $(\underline{T}, \underline{O})$ -continuous if and only if, for each α , f_{α} of is $(\underline{T}, \underline{O}_{\alpha})$ -continuous. This suggests that the concept of a weak topology could be defined using the language of category: theory.

Let <u>A</u> denote the category of topological spaces, and let <u>E</u> denote the category of sets. Denote by $a : A \rightarrow B, b, \ldots$ the morphisms of <u>A</u> and by $f : X \rightarrow Y, g, \ldots$ those of <u>E</u>. Let $F : A \rightarrow E$ denote the forgetful functor.

Denote by A the space (X, \underline{O}) , by A_{α} the space $(X_{\alpha}, \underline{O}_{\alpha})$, and let (f_{α}) be a family of functions $f_{\alpha} : X \rightarrow X_{\alpha}$. The topology of the space A is the weak topology determined by (f_{α}) and (A_{α}) if and only if the following assertion holds. A function $f : Y \rightarrow X$ is of the form F(b), for $b : B \rightarrow A$, if and only if, for each α , there exists $b_{\alpha} : B \rightarrow A_{\alpha}$ with $f_{\alpha} \circ f = F(b_{\alpha})$.

Canad. Math. Bull. vol. 8, no. 6, 1965

Assume that the topology of A is the weak topology determined by (f_{α}) and (A_{α}) . Since the identity map 1_{X} is $F(1_{A})$, each f_{α} is of the form $F(a_{\alpha})$. Hence, as is well known, the family (f_{α}) determines a family (a_{α}) of morphisms of A.

The family (a_{α}) of morphisms a_{α} of <u>A</u>, with common domain A, has the following property: if a function $f: F(B) \rightarrow F(A)$ is such that there exists a family (b_{α}) of morphisms $b_{\alpha}: B \rightarrow A_{\alpha}$ with, for each α , $F(a_{\alpha}) \circ f = F(b_{\alpha})$, then there exists a unique $b: B \rightarrow A$ with F(b) = f and, for each α , $a_{\alpha} \circ b = b_{\alpha}$. In terms of diagrams, (a_{α}) is such that the commutativity, for each α , of

with F(b) = f.

Let \underline{A} and \underline{E} be arbitrary categories, and let $F: \underline{A} \rightarrow \underline{E}$ be a covariant functor. The purpose of this expository note is to provide some examples and to discuss some elementary properties of families (a_{α}) of morphisms a_{α} of \underline{A} which have the above property. When \underline{E} is the trivial category with a unique morphism such families define the direct products that exist in \underline{A} .

While the theory outlined here is essentially a translation of Bourbaki's theory of initial structures [2] into the language of categories, it differs in several respects. The emphasis here is on families of morphisms of A, rather than on the determination of an object of A by families of morphisms of E and families of objects of \overline{A} . Further, the theory of initial structures restricts \overline{A} to be the category determined by a type of structure, \underline{E} to be the category of sets, and F to be the forgetful functor.

In the case where the index set is a singleton this theory is to be found, in its dual form, in a recent paper of Ehresmann [3].

I would like to thank I. Connell for some interesting conversations on rings during the preparation of this note.

2. Weak families. Let A and E be two categories and denote by $F : A \rightarrow E$ a covariant functor.

A family (a) of morphisms $a_{\alpha} : A \rightarrow A_{\alpha}$ of <u>A</u> will be called an <u>F-weak family</u> or a weak family if it has the following property: if a morphism $f : F(B) \rightarrow F(A)$ is such that there exists a family (b) of morphisms $b_{\alpha} : B \rightarrow A_{\alpha}$ with, for each α , $F(a_{\alpha}) \circ f = F(b_{\alpha})$, then there exists a unique $b : B \rightarrow A$ with F(b) = f and, for each α , $a_{\alpha} \circ b = b_{\alpha}$. A morphism $a : A \rightarrow C$ of <u>A</u> is called weak if it is a weak family when viewed as a family indexed by a one-point set. In the terminology of Ehresmann [3], a weak morphism is an (E, F) injection.

If (a_{α}) is a family of morphisms $a_{\alpha} : A \rightarrow A_{\alpha}$ the family (A_{α}) will be called the <u>range</u> of the family and the object A will be referred to as its <u>domain</u>. Two families (a_{α}) and (a'_{α}) , with the same range and with domains A and A', will be called <u>isomorphic</u> if there is an isomorphism a of <u>A</u> with, for each α , $a_{\alpha} \circ a = a'_{\alpha}$.

Examples.

1. A family (a_{α}) of morphisms of <u>A</u> will be said to have the left cancellation property (LCP) if b=c whenever, for each α , a_{α} o b = a_{α} o c. When <u>A</u> = <u>E</u> and <u>F</u> is the identity functor it follows that (a_{α}) is weak if and only if (a_{α}) has the LCP. In particular, a morphism is weak if and only if

it is a monomorphism. Consequently, a weak family can be thought of as a generalized monomorphism.

2. Let <u>A</u> be the category of uniform spaces, <u>E</u> be the category of sets, and let F be the forgetful functor. Then, a family (a_{α}) of uniformly continuous functions is weak if and only if the uniformity on F(A), A being the domain, is the weak uniformity defined by the functions $F(a_{\alpha})$ and the uniformities \underline{U}_{α} on the sets $F(A_{\alpha})$.

3. Let \underline{E} be the category with a unique morphism. There is a unique functor $F: \underline{A} \rightarrow \underline{E}$. A family (a_a) of morphisms a_a is weak if and only if (A, (a_a)) is a direct product of the family (A_a). Hence, weak families might well be called relative direct products.

4. Let <u>A</u> be the category of groups. Take F to be the forgetful functor from <u>A</u> to the category of sets. A family (a_{α}) of group homomorphisms $a_{\alpha} : A \rightarrow A_{\alpha}$ is F-weak if and only if $\bigcap_{\alpha} \ker(a_{\alpha})$ is the trivial subgroup of A. In particular a group homomorphism is weak if and only if it is a monomorphism.

5. Let <u>A</u> denote the category of vector spaces over the field of rationals. For <u>E</u> take the category of abelian groups, and let F(A) denote the underlying abelian group of A. Then, every family of linear transformations $a_{\alpha} : A \rightarrow A_{\alpha}$ is weak.

6. Let <u>A</u> denote a ring R, with unit, viewed as a category with one object 1 and morphisms the elements of the ring, the law of composition being ring multiplication. A left R-module defines a covariant functor $M : \underline{A} \rightarrow \underline{E}$ where \underline{E} is the category of abelian groups.

A ring element r is M-weak if, for a group homomorphism f, $r \cdot f(x) = s \cdot x$ for all $x \in M$ (1) implies that there exists a unique $t \in \mathbb{R}$ with $f(x) = t \cdot x$ for all $x \in M$ (1). In order that M-weak elements exist, it is necessary that M have zero annihilator. Clearly, an element of the ring with a left inverse is M-weak for all such modules M.

Conversely, if r is M-weak for all modules M with zero annihilator then r is left-invertible. Consider the left R-module $M = R \times R/(r)$, where (r) is the principal left ideal determined by r. Define $f: M \rightarrow M$ by f(x,y) = (o,y). Then $r \cdot f(x,y) = 0 \cdot (x,y) = 0$. The group homomorphism f is of the form $f(x,y) = t \cdot (x,y)$ if and only if $R/(r) = \{0\}$. This is equivalent to r being left-invertible.

Every ring R is a left R-module with zero annihilator. The element 0 is R-weak if and only if every endomorphism f of the additive group of R is given by left multiplication with some element of the ring. For example, 0 is a \mathbb{Z} -weak element of \mathbb{Z} .

7. Let <u>A</u> again denote a ring R viewed as a category, and let <u>E</u> now be the category of sets. Let F be the composition of the functor corresponding to R as a left R-mcdule with the forgetful functor from the category of groups to E.

A ring element r is F-weak if, for a function f, $r \cdot f(x) = s \cdot x$ for all $x \in F(1)$ implies that there exists $t \in R$ with $f(x) = t \cdot x$ for all $x \in F(1)$. When $0 \neq 1$ this is equivalent to r not being a left divisor of zero.

Assume $r \in R$ is not a left divisor of zero. Let $f : R \rightarrow R$ be a function for which there exists s with $r \cdot f(x) = s \cdot x$ for all $x \in R$. Let t = f(1). Then, $r \cdot f(x) = (r \cdot t) \cdot x$, for all $x \in R$. Since r is not a left divisor of zero, $f(x) = t \cdot x$ for all $x \in r$. In other words, r is F-weak.

Assume that r is F-weak. Then $r \neq 0$. Let r be a left divisor of zero and let $p \in R$ be such that $r \cdot p = 0$ and $p \neq 0$. Define $f: R \rightarrow R$ by f(x) = 0 if $x \neq p$ and f(p) = p. Then, $r \cdot f(x) = 0 \cdot x$ for all $x \in R$. Hence, there exists $t \in R$ with $f(x) = t \cdot x$ for all $x \in R$. Since $1 \neq p$, 0 = f(1) = t. This is a contradiction.

3. Elementary properties of weak families. As might be expected, a weak family (a_{α}) is determined up to isomorphism by its range and $(F(a_{\alpha}))$.

PROPOSITION 1. Let (a_{α}) and (a_{α}') be two weak families with the same range. They are isomorphic if, for each α , $F(a_{\alpha}) = F(a_{\alpha}')$.

Proof: If A and A' are the respective domains of (a_a) and (a'), then F(A) = F(A') = X. Therefore, $F(a_{\alpha}) \circ 1_X = F(a_{\alpha}') = F(a_{\alpha}') \circ 1_X = F(a_{\alpha})$. It follows that there are unique morphisms $a : A' \rightarrow A$ and $a' : A \rightarrow A'$ such that, for each α , $a_{\alpha} \circ a = a_{\alpha}'$ and $a_{\alpha}' \circ a' = a_{\alpha}$, and F(a) = F(a') $= 1_X$. The uniqueness condition in the definition of a weak family implies that a and a' are inverse to one another.

A family (a_{α}) of morphisms will be said to have the left cancellation property (L C P) if, for each α , $a_{\alpha} \circ b = a_{\alpha} \circ c$ implies b = c. If the family (a_{α}) defines a direct product in <u>A</u> of the family (A_{α}) of objects A_{α} of <u>A</u>, then (a_{α}) has the L C P.

In general, if (A_{α}) has the LCP the family $(F(a_{\alpha}))$ need not have this property. However, when F has a left adjoint the family $(F(a_{\alpha}))$ inherits the LCP from (a_{α}) .

Since a weak family can be thought of as a generalized or relative direct product, the question arises as to whether a family (a_{α}) that defines a direct product in A is weak.

PROPOSITION 2. Let (a) define a direct product in \underline{A} . The following are equivalent:

(1) (a) is weak;

(2) for each family (b_{α}) of morphisms of <u>A</u>, with domain B and range (A_{α}) , there is a unique morphism $f: F(B) \to F(A)$ with, for each α , $F(a_{\alpha}) \circ f = F(b_{\alpha})$.

In particular, (a) is weak if F has a left adjoint or, more generally, if (F(a)) has the LCP.

<u>Proof</u>: Since (a_{α}) defines a direct product in <u>A</u>, for each family (b_{α}) of morphisms of <u>A</u>, with domain B and range (A_{α}) , there is a unique $b: B \rightarrow A$ with, for each α , $a_{\alpha} \circ b = b_{\alpha}$. Consequently, there is at most one $f: F(B) \rightarrow F(A)$ of the form F(b) where b satisfies, for each α , $a_{\alpha} \circ b = b_{\alpha}$. From this observation, it follows immediately that (1) and (2) are equivalent.

Examples.

8. Let both <u>A</u> and <u>E</u> be the category of topological spaces and let F be the functor defined by the generalized Stone-Čech compactification. It is well known that F does not preserve direct products [4]. However, every family (a_{α}) of continuous functions that defines a direct product is F-weak.

9. Let $\underline{A} = \underline{E}$ be the category of abelian groups and let F be the functor obtained by associating with each group A^{i} the tensor product $A \otimes \mathbb{Q}$. Denote by A a direct product of the modules \mathbb{Z}_{i} , where i = 1, 2, 3, ... and by (a_{i}) the family of projections $a_{i} : A \rightarrow \mathbb{Z}_{i}$. The family (a_{i}) is not F-weak. Clearly, for each i, $F(\mathbb{Z}_{i}) = \mathbb{Z}_{i} \otimes \mathbb{Q}$ is the zero group and $F(A) = A \otimes \mathbb{Q}$ is not the zero group. Hence, there are at least two morphisms $f_{i}, f_{2} : F(A) \rightarrow F(A)$ with, for each i, $F(a_{i}) \circ f_{i} = F(a_{i}) = 0$.

The following proposition is a converse to proposition 2.

PROPOSITION 3. If (a_{α}) is a weak family in <u>A</u> for which the family $(F(a_{\alpha}))$ defines a direct product of the family $(F(A_{\alpha}))$, then (a_{α}) defines a direct product of the family (A_{α}) .

<u>Proof</u>: Let (b_{α}) be a family of morphisms $b_{\alpha} : B \rightarrow A_{\alpha}$ of A. There is a unique map $f : F(B) \rightarrow F(A) = X$ with, for each α , f_{α} of $= F(b_{\alpha})$. Since (a_{α}) is weak and $F(a_{\alpha}) = f_{\alpha}$, there is a unique map $b : B \rightarrow A$ with, for each α , $a_{\alpha} \circ b = b_{\alpha}$. Hence, (a_{α}) defines a direct product of (A_{α}) .

Let <u>B</u> be a third category and let $F: \underline{A} \rightarrow \underline{E}$ be equal to HG, where $G: \underline{A} \rightarrow \underline{B}$ and $H: \underline{B} \rightarrow \underline{E}$.

PROPOSITION 4. When H is faithful, a family $\binom{a}{\alpha}$ of morphisms of A is G-weak if it is F-weak. If the family of morphisms $\binom{a}{\alpha}$ is G-weak and the family $(G(a_{\alpha}))$ is H-weak, then $\binom{a}{\alpha}$ is F-weak.

<u>Proof</u>: Assume that (b_{α}) is a family of morphisms $b_{\alpha} : B \rightarrow A_{\alpha}$ and that $g : G(B) \rightarrow G(A)$ is such that, for each α , $G(a_{\alpha}) \circ g = G(b_{\alpha})$. Then, for each α , $F(a_{\alpha}) \circ H(g) = F(b_{\alpha})$. Consequently, there is a unique $b : B \rightarrow A$ with F(b) = H(g)and, for each α , $a_{\alpha} \circ b = b_{\alpha}$.

Since F(b) = HG(b) = H(g), the faithfulness of H implies that g = G(b). Clearly, there is at most one b with G(b) = gand satisfying the condition $a_{\alpha} \circ b = b_{\alpha}$ for each α .

Let (b_{α}) be a family of morphisms $b_{\alpha} : B \to A_{\alpha}$ and let $f : F(B) \to F(A)$ be such that, for each α , $F(a_{\alpha}) \circ f = F(b_{\alpha})$. Since $(G(a_{\alpha}))$ is H-weak, there is a unique $g : G(B) \to G(A)$ with, for each α , $G(a_{\alpha}) \circ g = G(b_{\alpha})$ and H(g) = f. The G-weakness of (a_{α}) implies that there exists a unique $b : B \to A$ with, for each α , $a_{\alpha} \circ b = b_{\alpha}$ and G(b) = g.

Clearly, F(b) = f. It remains to show the uniqueness of b. Let $b' : B \rightarrow A$ be such that, for each α , $a \circ b' = b \circ and$ F(b') = f. Then, G(b') = g since, for each α , $G(a_{\alpha}) \circ G(b') = G(b_{\alpha})$ and H G(b') = F(b') = f. It then follows from the G-weakness of (a_{α}) that b' = b.

Examples.

10. Let <u>A</u> be a ring R viewed as a category and let <u>B</u> denote the category of abelian groups. Let $G: \underline{A} \rightarrow \underline{B}$ be the functor corresponding to R as a left R-module and let $H: \underline{B} \rightarrow \underline{E}$, where <u>E</u> is the category of sets, be the forgetful functor. Then, F = HG is the functor of example 7. The faithfulness of H and proposition 4 imply that every $r \in R$ which is not a divisor of zero is G-weak.

11. Let $\underline{A} = \underline{B}$ be the category of abelian groups and let \underline{E} be the trivial category with one morphism. Denote by G the functor of example 9 and by H the unique functor from \underline{B} to \underline{E} . The family (a_i) of example 9 is then F = HG-weak, but it is not G-weak.

4. Weak families and direct products. Let Ω be an index set, and for each $\alpha \in \Omega$ let $I(\alpha)$ be an index set. For each $\beta \in I(\alpha)$ let $a'_{\alpha\beta} : A \rightarrow A_{\alpha\beta}$ be a morphism of A, and for each $\alpha \in \Omega$ let $a : A \rightarrow A$. Define a to be $a'_{\alpha\beta} \circ a$.

PROPOSITION 5. If (a_{α}) and, for each α , $(a_{\alpha\beta}')$ are weak families, the family $(a_{\alpha\beta})$ is weak. Conversely, if $(a_{\alpha\beta})$ is weak the family (a_{α}) is weak.

<u>Proof</u>: Let $(b_{\alpha\beta})$ be a family of morphisms $b_{\alpha\beta} : B \to A_{\alpha\beta}$. Assume $f : F(B) \to F(A)$ is such that, for each α and β , $F(a_{\alpha\beta}) \circ f = F(b_{\alpha\beta})$.

Let $f_{\alpha}: F(B) \rightarrow F(A_{\alpha})$ be the morphism $F(a_{\alpha})$ of. Since, for each α , $(a'_{\alpha\beta})$ is weak, there is, for each α , a unique morphism $b_{\alpha}: B \rightarrow A_{\alpha}$ with $F(b_{\alpha}) = f_{\alpha}$ and, for each β , $a'_{\alpha\beta} \circ b_{\alpha} = b_{\alpha\beta}$. Since $f_{\alpha} = F(a_{\alpha})$ of $= F(b_{\alpha})$, there is a unique $b : B \rightarrow A$ with F(b) = f and, for each α , $a_{\alpha} \circ b = b_{\alpha}$. It remains to show that b is the unique morphism with F(b) = f and, for each α and β , $a_{\alpha\beta} \circ b = b_{\alpha\beta}$.

Assume F(b') = f and that, for each α and β , $a \ o \ b' = b \ \alpha \beta$. Let $b' = a \ o \ b'$. Then, F(b') = F(a) of $f = f \ \alpha \beta$ and, for each β , $a' \ o \ b' = b \ \alpha \beta$. Therefore, $b' = b \ \alpha \beta$. From this it follows immediately that b = b'.

The proof of the converse is similar.

A morphism e of A will be called an embedding if e is. weak and F(e) is a monomorphism. An object A of A will be called a subobject of B if there is an embedding $e: A \rightarrow B$.

PROPOSITION 6. Let (A_{α}) be a family of objects A_{α} of <u>A</u>. Let $(\Pi A_{\alpha}, \operatorname{pr}_{\alpha})$ be a direct product of the family (A_{α}) . Assume that $(\operatorname{pr}_{\alpha})$ is weak and that $(F(\operatorname{pr}_{\alpha}))$ has the LCP. The following statements are equivalent:

(1) A is a subobject of ΠA_{α} ;

(2) there is a weak family (a) with domain A and range (A) for which (F(a)) has the LCP.

<u>Proof</u>: There is a 1-1 correspondence between families (a_{α}) with domain A and range (A_{α}) and morphisms e : A $\rightarrow \prod A_{\alpha}$. To the morphism e corresponds the family (a_{α}) where, for each α , a_{α} = pr_{α} o e. Since (pr_{α}) is weak, proposition 5 shows that e is weak if and only if the corresponding family (a_{α}) is weak.

If $(F(a_{\alpha}))$ has the LCP it is clear that F(e) is a monomorphism. Conversely, since $(F(pr_{\alpha}))$ has the LCP,

the family $(F(a_{\alpha}))$ has the LCP whenever F(e) is a monomorphism.

Example.

12. Let <u>A</u> be the category of topological spaces, let <u>E</u> be the category of sets, and let F be the forgetful functor. A family (a_{α}) with domain A is such that (F(a_{α})) has the <u>L</u> C P if and only if the functions a_{α} separate the points of F(A). Hence, the embedding lemma in [5] is a particular case of the result in proposition 6. This proposition also shows that a similar embedding lemma holds for uniform spaces.

REFERENCES

- N. Bourbaki, Topologie Générale, Actualités Sci. Ind. 1142 3éme ed., 1961.
- 2. , Théorie des Ensembles, Actualités Sci. Ind. 1258, 1957.
- 3. D. Ehresmann, Structures Quotient, Comm. Math. Helvetici, vol. 38 (1964), 219-242.
- 4. L. Gillman and M. Jerison, Rings of Continuous Functions, New York, 1960.
- 5. J. L. Kelley, General Topology, New York, 1955.

McGill University