UNIFORM APPROXIMATION ON THE GRAPH OF A SMOOTH MAP IN C ${ }^{n}$

BARNET M. WEINSTOCK

1. Introduction. Let X be a compact set in \mathbf{C}^{n}, and let f_{1}, \ldots, f_{m}, $m \geqq n$, be continuous, complex-valued functions on X which have C^{1} extensions to some neighborhood of X. We wish to describe the algebra A of continuous complex-valued functions on X which can be approximated uniformly by polynomials in the functions $z_{1}, \ldots, z_{n}, f_{1}, \ldots, f_{m}$. For this purpose we introduce the sets

$$
E=\left\{z \in X: \operatorname{rank}\left(\partial f_{i} / \partial \bar{z}_{j}\right)<n\right\}
$$

and

$$
\tilde{X}=\left\{\left(z, f_{1}(z), \ldots, f_{m}(z)\right) \in \mathbf{C}^{n+m}: z \in X\right\}
$$

Our description of the algebra A is given by the following theorem:
Theorem. Assume \tilde{X} is a polynomially convex subset of \mathbf{C}^{n+m}. Then A consists of those continuous functions on X which agree with some element of A on E.

The first result of this type was proved by Wermer [6] for the case $n=m=1$. He obtained the substantially stronger conclusion that A consists of those continuous functions which can be approximated uniformly on E by rational functions with no poles on E.

Proofs of this theorem in the more general setting of functions defined on a manifold were obtained by Freeman [2] in the real-analytic case and by Fornaess [1] for the case when the functions and the manifold are differentiable of sufficiently high order. The case $n=1, m$ arbitrary, E empty is presented in [7]. When E is empty the theorem is a special case of the theorem that every continuous function on a compact subset of a totally real C^{1} submanifold of \mathbf{C}^{n} is the uniform limit of holomorphic functions. This result was proved by Harvey and Wells [3]. The methods used in the present paper are more elementary than those of Harvey and Wells, since no use is made of uniform estimates for the Cauchy-Riemann operator.

The results contained in this paper were the subject of the author's

[^0]lecture at the International Conference on Complex Analysis, Laval University, July 1978. After the present manuscript was completed the author received a preprint "Integral kernels and approximation on totally real submanifolds of C^{n} " by Bo Berndtsson, Chalmers University of Technology and the University of Göteborg, which contains an interesting new proof of the Harvey-Wells Theorem cited above by methods related to those employed here.

The proof presented here is a generalization of Wermer's original proof in [6]. The essential idea is to replace Wermer's use of the Cauchy integral formula by a suitable Cauchy-Fantappiè kernel, in somewhat the same manner as in the author's earlier proof in [5] of a local version of the theorem in the case E is empty.
2. Construction of the Cauchy-Fantappiè kernel. It suffices to show that if μ is a complex Borel measure on X such that $\int f d \mu=0$ for all $f \in A$ then $\mu=0$ on $X-E$, or equivalently, that each point of $X-E$ has a neighborhood U in \mathbf{C}^{n} such that

$$
\int \phi(z) d \mu(z)=0
$$

for all $\phi \in C_{0}{ }^{\infty}(U)$.
Let $G_{1}, \ldots, G_{n} \in C^{1}(U \times M)$ where M is an open neighborhood of X containing U. Define G on $U \times M$ by

$$
G(\zeta, z)=\sum\left(\zeta_{j}-z_{j}\right) G_{j}(\zeta, z)
$$

Suppose that
(1) $G(\zeta, z)$ vanishes only when $\zeta=z$
and
(2) for each $j, G_{j}(\cdot, z) G(\cdot, z)^{-n}$ belongs to $L_{\mathrm{loc}^{1}}{ }^{1}$, uniformly for z in compact subsets of M.
If we define $\Omega(\zeta, z)$ by

$$
\Omega(\zeta, z)=(n-1)!(2 \pi i)^{-n} G(\zeta, z)^{-n} \sum(-1)^{j} G_{j}(\zeta, z) \bigwedge_{k \neq j} \bar{\delta}_{\zeta} G_{k} \wedge \alpha
$$

where $\alpha=d \zeta_{1} \wedge \ldots \wedge d \zeta_{n}$ then it is well-known (cf. [5]) that every $\phi \in C_{0}{ }^{\infty}(U)$ admits the representation

$$
\phi(z)=\int \Omega(\zeta, z) \wedge \bar{\delta} \phi(\zeta)
$$

with equality for all $z \in M$ (that is, the right side vanishes also for $z \in M-U)$. If we rewrite $\Omega(\zeta, z)$ in the form

$$
\Omega(\zeta, z)=\sum K_{j}(\zeta, z) \wedge_{k \neq j} d \bar{\zeta}_{k} \wedge \alpha
$$

then we conclude from Fubini's theorem that

$$
\int \phi(z) d \mu(z)=\int\left|\sum \int K_{j}(\zeta, z) d \mu(z)\right| \bar{\partial} \phi(\zeta) \wedge_{k \neq j} d \bar{z}_{k} \wedge \alpha
$$

where the z-integration is over U.
Thus we will have proved the theorem if we can construct G_{1}, \ldots, G_{n} satisfying (1) and (2) and such that for almost all $z \in U$,
(3) $\int K_{j}(\zeta, z) d \mu(z)=0$.

Fix $p \in X-E$. Without loss of generality we may assume that the principal $n \times n$ submatrix of $\left(\partial f_{i} / \partial \bar{z}_{j}(p)\right)$ is non-singular. Let $T(p)$ denote this submatrix, and let $S(p)$ denote the corresponding submatrix of $\left(\partial f_{i} / \partial z_{j}(p)\right)$. If $w \in \mathbf{C}^{m}$ we let $w^{\prime}=\left(w_{1}, \ldots, w_{n}\right)$. Similarly $f^{\prime}=$ $\left(f_{1}, \ldots, f_{n}\right)$.

Define $g(\zeta, z, w)$ by

$$
g(\zeta, z, w)=T(p)^{-1}\left(f^{\prime}(\zeta)-w-S(p)(\zeta-z)\right) .
$$

Lemma 1. There is a neighborhood U_{1} of p such that if $\zeta, z \in U_{1}$ then

$$
|g(\zeta, z, f(z))-(\bar{\zeta}-\bar{z})|<\frac{3}{4}|\zeta-z| .
$$

Proof. Define $R(\zeta, z)$ by

$$
f^{\prime}(\zeta)=f^{\prime}(z)+S(z)(\zeta-z)+T(z)(\bar{\zeta}-\bar{z})+R(\zeta, z) .
$$

Let $C=\left\|T(p)^{-1}\right\|$. Choose a neighborhood V of p such that

$$
\|S(z)-S(p)\|<(4 C)^{-1} \quad \text { and } \quad\|T(z)-T(p)\|<(4 C)^{-1} \quad \text { if } z \in V .
$$

Choose $\epsilon>0$ such that $|R(\zeta, z)|<(4 C)^{-1}|\zeta-z|$ if $\zeta, z \in V$ and $|\zeta-z|<\epsilon$. Let

$$
U_{1}=V \cap\{|\zeta-p|<\epsilon / 2\} .
$$

Then

$$
\begin{aligned}
& |g(\zeta, z, f(z))-(\bar{\zeta}-\bar{z})|= \\
& \left|T(p)^{-1}\{R(\zeta, z)+(S(z)-S(p))(\zeta-z)+(T(z)-T(p))(\bar{\zeta}-\bar{z})\}\right| \\
& \leqq 3 / 4|\zeta-z| .
\end{aligned}
$$

Corollary. Let $\Gamma(\zeta, z, w)=(\zeta-z) \cdot g(\zeta, z, w)$ where $\alpha \cdot \beta$ denotes the standard bilinear form on \mathbf{C}^{n};
(i) Γ is holomorphic in z and w for fixed ζ, and Γ is of class C^{1}
(ii) $|\Gamma(\zeta, z, f(z))| \geqq 1 / 4|\zeta-z|^{2} \quad \zeta, z \in U_{1}$
(iii) $\operatorname{Re} \Gamma(\zeta, z, f(z))>0$ if $\zeta \neq z \quad \zeta, z \in U_{1}$
(iv) $|\Gamma(\zeta, z, f(z))| \leqq 7 / 4|\zeta-z|^{2} \quad \zeta, z \in U_{1}$.

Since \tilde{X} is polynomially convex we can find a neighborhood \tilde{M} of \tilde{X} which is a domain of holomorphy and open subsets V, W of \tilde{M} with the following properties:
(a) $\{V, W\}$ is an open convering of \tilde{M}
(b) if $z \in U_{1}$ then $(z, f(z)) \in V$
(c) there is an open neighborhood U_{2} of $p, U_{2} \subset U_{1}$, such that $z \in U_{1}$ and $(z, f(z)) \in V \cap W$ imply $z \notin U_{2}$
(d) $\operatorname{Re} \Gamma(\zeta, z, w)>0$ on $U_{2} \times(V \cap W)$.

For fixed $\zeta \in U_{2}, \log \Gamma$ is holomorphic on $V \cap W$. By [4, Proposition 2] there exist C^{1} functions P on $U_{2} \times V$ and Q on $U_{2} \times W$ which are holomorphic in V and W respectively for fixed $\zeta \in U_{2}$ and which satisfy

$$
\log \Gamma=Q-P \text { on } U_{2} \times(V \cap W)
$$

If we now define $\widetilde{G}(\zeta, z, w)$ on $U_{2} \times \widetilde{M}$ to be e^{Q} on $U_{2} \times W$ and Γe^{P} on $U_{2} \times V$ then \widetilde{G} is (well-defined and) holomorphic in M for fixed $\zeta \in U_{2}$ and \widetilde{G} is of class C^{1} in $U_{2} \times \tilde{M}$.

Furthermore, we may assume with no loss of generality that $P(p, p, f(p))=0$ and that therefore

$$
\left|e^{P(\zeta, z, w)}-1\right|<1 / \sqrt{2}
$$

on some neighborhood of $(p, p, f(p))$ of the form $U_{3} \times U_{3} \times Z$ where $U_{3} \subset U_{2}$. Thus, if $(\zeta, z) \in U_{3} \times U_{3}$ and $\zeta \neq z$,

$$
|\widetilde{G}(\zeta, z, f(z))-\Gamma(\zeta, z, f(z))|<2^{-1 / 2} \mid \Gamma(\zeta, z, f(z) \mid .
$$

Since on $U_{2} \times V$ the function \widetilde{G} vanishes only where Γ does, and since \widetilde{G} is nowhere zero on $U_{2} \times W$ we have the following result which we record as Lemma 2 for easy reference.

Lemma 2. There exists $\epsilon>0$ such that if $(\zeta, z) \in U_{3} \times U_{3}$ then $\widetilde{G}(\zeta, z, f(z))$ lies in the circular sector $3 / 4 \pi \leqq \theta \leqq 5 / 4,0 \leqq r \leqq \epsilon$ only if $\widetilde{G}(\zeta, z, f(z))=0$.

Let M be a neighborhood of X such that $z \in M$ implies $(z, f(z)) \in \tilde{M}$. Define $G(\zeta, z)$ on $U_{3} \times M$ by $G(\zeta, z)=\widetilde{G}(\zeta, z, f(z))$.

Lemma 3. There exist $G_{1}, \ldots, G_{n} \in C^{1}\left(U_{3} \times M\right)$ such that
(i) $G(\zeta, z)=\sum\left(\zeta_{j}-z_{j}\right) G_{j}(\zeta, z)$
(ii) for fixed $\zeta \in U_{3}, G_{j}(\zeta, \cdot) \in A, 1 \leqq j \leqq n$
(iii) $\left|G_{j}(\zeta, z)\right| \leqq C|\zeta-z|$ if $\zeta, z \in U_{3}$.

Furthermore,

(iv) $\lambda>0$ such that $|G(\zeta, z)| \geqq \lambda|\zeta-z|^{2}$ for $(\zeta, z) \in U_{3} \times M$.

Proof. By [4, Proposition 4] we can find functions $R_{1}, \ldots, R_{n}, S_{1}, \ldots, S_{n}$ of class C^{1} on $U_{3} \times(\tilde{M} \times \tilde{M})$, holomorphic in $\tilde{M} \times \tilde{M}$ for fixed $\zeta \in U_{3}$,
such that

$$
\begin{aligned}
& \widetilde{G}(\zeta, z, w)-\widetilde{G}\left(\zeta, z^{\prime}, w^{\prime}\right)=\sum\left(z_{j}-z_{j}^{\prime}\right) R_{j}\left(\zeta, z, w, z^{\prime}, w^{\prime}\right) \\
& +\sum\left(w_{j}-w_{j}^{\prime}\right) S_{j}\left(\zeta, z, w, z^{\prime}, w^{\prime}\right)
\end{aligned}
$$

for all $\zeta \in U_{3}$ and all $(z, w),\left(z^{\prime}, w^{\prime}\right) \in \tilde{M}$. Let $w=f(z), z^{\prime}=\zeta$, and $w^{\prime}=f(\zeta)$, and define

$$
G_{j}(\zeta, z)=-R_{j}(\zeta, z, f(z), \zeta, f(\zeta))
$$

For fixed $\zeta, R_{j}(\zeta, z, w, \zeta, f(\zeta))$ is holomorphic on \tilde{M}, hence is the uniform limit on \widetilde{X} of a sequence of polynomials by the Oka-Weil theorem. Consequently, for fixed $\zeta \in U_{3}, G_{j}(\zeta, z)$ is the uniform limit on X of a sequence of polynomials in z and $f(z)$. Since $\widetilde{G}(\zeta, \zeta, f(\zeta))=0$ if $\zeta \in U_{3}$ we have established (i) and (ii).

To prove (iii), observe that in $U_{3} \times U_{3}$ we have

$$
|G(\zeta, z)| \leqq C|\zeta-z|^{2}
$$

by the Corollary to Lemma 1. It follows from Taylor's theorem that

$$
\left|G_{j}(\zeta, z)\right| \leqq C|\zeta-z|
$$

for some constant $c>0$.
Finally, if V is a small neighborhood of \bar{U}_{3} then $G(\zeta, z)|\zeta-z|^{-2}$ is bounded below on $U_{3} \times(M-V)$, while on $U_{3} \times U_{3}$,

$$
G(\zeta, z)=e^{P} \cdot \Gamma(\zeta, z, f(z))
$$

which is bounded below by a multiple of $|\zeta-z|^{2}$ by the Corollary to Lemma 1.
3. Proof of the theorem. The function $G(\zeta, z)=\sum\left(\zeta_{j}-z_{j}\right) G_{j}(\zeta, z)$ defined on $U_{3} \times M$ vanishes only when $\zeta=z$ and, by the Corollary to Lemma 1,

$$
\left|G_{j}(\zeta, z) G(\zeta, z)^{-n}\right| \leqq C|\zeta-z|^{1-2 n}
$$

hence, if $\Omega(\zeta, z)$ denotes the Cauchy-Fantappiè form constructed above using the functions G_{j}, and if K_{j} is defined as above then, if $E \subset U_{3}$ and $F \subset M$ are compact,

$$
\sup _{z \in F} \int_{E}\left|K_{j}(\zeta, z)\right| d m(\zeta)<\infty
$$

where $d m$ denotes Lebesgue measure on \mathbf{C}^{n}. Hence

$$
\int_{F} \int_{E}\left|K_{j}(\zeta, z)\right| d m(\zeta) d|\mu|(z)
$$

is finite, so by Fubini's theorem,
${ }^{(*)} \int\left|K_{j}(\zeta, z)\right| d|\mu|(z)<\infty$
for almost all ζ in U_{3}.
Lemma 4. Fix $\zeta \in U_{3}$ such that (${ }^{*}$) holds. There exist functions $H_{j}(\lambda)$, holomorphic on a neighborhood of $\{G(\zeta, z): z \in X\}$ such that
(i) $\left|H_{\nu}(\lambda)\right| \leqq 3 /|\lambda|$
(ii) $H_{\nu}(\lambda) \rightarrow 1 / \lambda \quad \lambda \neq 0$.

Proof. This follows as in [6, Lemma 3] in view of Lemma 2 above.
Each of the functions K_{j} is the product of $G_{j} \cdot G^{-n}$ with some ζ-derivatives of the functions G_{k}. Since the ζ-derivatives of the functions $R_{j}(\zeta, z, w, \zeta, f(\zeta))$ of the previous section are also holomorphic in z and w, it follows from the Oka-Weil theorem once again that the ζ-derivatives of each function G_{k} belong to A. Moreover, on some neighborhood of \tilde{X} the functions $H_{\nu}(G(\zeta, \cdot, \cdot))$ are holomorphic, hence $H_{\nu}(G(\zeta, \cdot, \cdot))$ is the uniform limit on \widehat{X} of polynomials in z and w, so that $H_{\nu}(G(\zeta, z, f(z))$ is in A. By (i) and (ii) and the remarks preceding Lemma 4,

$$
H_{\nu}\left(G(\zeta, z, f(z)) \in L^{1}(d|\mu|(z))\right.
$$

and consequently, for each j,

$$
K_{j} G^{n} H^{n} \in L^{1}(d|\mu|) .
$$

Since $K_{j} G^{n} H_{\nu}{ }^{n} \rightarrow K_{j}$, and since $\left|K_{j} G^{n} H_{\nu}{ }^{n}\right| \leqq 3\left|K_{j}\right|$,

$$
\int K_{j}(\zeta, z) d \mu(z)=\lim _{\nu} \int K_{j} G^{n} H_{\nu}{ }^{n} d \mu(z) .
$$

But $K_{j} G^{n} H_{\nu}{ }^{n} \in A$. Thus each integral on the right is zero. This completes the proof of the theorem.
4. Further remarks. The algebra A is naturally isomorphic to the algebra $P(\tilde{X})$ of those continuous functions on \tilde{X} which can be uniformly approximated by polynomials in z and w. Let \tilde{E} be the set $\{(z, f(z)): z \in E\}$. In this setting we can rephrase our theorem as follows:

$$
P(\tilde{X})=\{g \in C(X): g \mid \tilde{E} \in P(\widetilde{E})\} .
$$

Thus the problem of approximation on \tilde{X} by polynomials is reduced to the problem of approximation on \tilde{E} by polynomials.

Lemma 5. The set \widetilde{E} is polynomially convex.
Proof. This is probably well-known, but for lack of a convenient reference we give the short argument here. Let h be a complex homo-
morphism of $P(\widetilde{E})$. Then h extends to a complex homomorphism of $P(\widetilde{X})$ so there exists $x \in \tilde{X}$ with $h(P)=P(x)$ for all polynomials P. If $x \notin \tilde{E}$ there exists a continuous function g on \widetilde{X} which vanishes on \widetilde{E} but not at x. Then $0=h(g)=g(x) \neq 0$. Thus $x \in \widetilde{E}$, so \widetilde{E} is polynomially convex.

Corollary. Suppose E has the property that every continuous function on \tilde{E} is the uniform limit of a sequence of functions holomorphic in a neighborhood of \tilde{E}. Then $P(\tilde{X})=C(\tilde{X})$, i.e., $A=C(X)$.

Proof. This follows by Lemma 5 and the Oka-Weil theorem.
A natural question to ask now is: Are there reasonable conditions on f_{1}, \ldots, f_{n} which imply that \widetilde{E} satisfies the hypotheses of the Corollary? The author hopes to treat this question in future work.

Finally, we observe that the hypothesis of polynomial convexity for \tilde{X} is certainly necessary when E is empty, but this is not the case otherwise. The author is indebted to the referee for the following example:

Let $X=\left\{(z, w) \in \mathbf{C}^{2}:|z|=1, \quad \operatorname{Im} w=0,0 \leqq \operatorname{Re} w \leqq 1\right\}$. Let $f_{1}=(\operatorname{Re} w)^{2}$ and $f_{2}=\bar{z} f_{1}$. Then $E=\{|z|=1, w=0\}$ and \tilde{X} is not polynomially convex. Nevertheless $A=\{g \in C(X): g|E \in A| E\}$. Indeed, since $f_{1}, f_{1} \operatorname{Re} z$, and $f_{1} \operatorname{Im} z \in A$, any pair of points of X at least one of which is not in E can be separated by a real-valued function in A. The desired conclusion now follows by a well-known argument. (Cf. A. Browder, Introduction to Function Algebras, remarks following Theorem 2.7.5.)

References

1. J. E. Fornaess, Uniform approximation on manifolds, Math. Scand. 31 (1972), 166-170.
2. M. Freeman, Uniform approximation on a real-analytic manifold, Trans. Amer. Math. Soc. 143 (1969), 545-553.
3. R. Harvey and R. O. Wells, Jr., Holomorphic approximation and hyperfunction theory on a C^{1} totally real submanifold of a complex manifold, Math. Ann. 197 (1972), 287-318.
4. B. Weinstock, Inhomogeneous Cauchy-Riemann systems with smooth dependence on parameters, Duke Math. J. 40 (1973), 307-312.
5. ——A new proof of a theorem of Hörmander and Wermer, Math. Ann. 200 (1976), 59-64.
6. J. Wermer, Polynomially convex discs, Math. Ann. 158 (1965), 6-10.
7. ——Banach algebras and several complex variables (Springer-Verlag, New York, 1976).

University of North Carolina at Charlotte, Charlotte, North Carolina

[^0]: Received March 6, 1979 and in revised form June 20, 1979. This work was partially supported by a grant from the National Science Foundation.

