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With the support of hybrid-kinetic simulations and analytic theory, we describe
the nonlinear behaviour of long-wavelength non-propagating (NP) modes and fast
magnetosonic waves in high-β collisionless plasmas, with particular attention to
their excitation of and reaction to kinetic micro-instabilities. The perpendicularly
pressure balanced polarization of NP modes produces an excess of perpendicular
pressure over parallel pressure in regions where the plasma β is increased. For mode
amplitudes |δB/B0| � 0.3, this excess excites the mirror instability. Particle scattering
off these micro-scale mirrors frustrates the nonlinear saturation of transit-time damping,
ensuring that large-amplitude NP modes continue their decay to small amplitudes. At
asymptotically large wavelengths, we predict that the mirror-induced scattering will
be large enough to interrupt transit-time damping entirely, isotropizing the pressure
perturbations and morphing the collisionless NP mode into the magnetohydrodynamic
(MHD) entropy mode. In fast waves, a fluctuating pressure anisotropy drives both mirror
and firehose instabilities when the wave amplitude satisfies |δB/B0| � 2β−1. The induced
particle scattering leads to delayed shock formation and MHD-like wave dynamics. Taken
alongside prior work on self-interrupting Alfvén waves and self-sustaining ion-acoustic
waves, our results establish a foundation for new theories of electromagnetic turbulence in
low-collisionality, high-β plasmas such as the intracluster medium, radiatively inefficient
accretion flows and the near-Earth solar wind.

Keywords: astrophysical plasmas, plasma waves, plasma instabilities

1. Introduction
1.1. Context and motivation

Nearly half of all the baryonic matter in the Universe resides in a hot and dilute plasma
state, in which Coulomb collisions are relatively rare and cosmic magnetic fields greatly
influence the trajectories of the constituent particles. Examples include the warm–hot
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intergalactic medium, having number densities n � 10−6 cm−3 and temperatures T ∼
105–107 K, and the intracluster medium of galaxy clusters, with n � 10−3 cm−3 and T ∼
107–108 K. Radiatively inefficient accretion flows such as that onto the supermassive black
hole at the Galactic centre, as well as the Solar wind that pervades interplanetary space,
provide smaller-scale examples of systems characterized by large collisional mean free
paths and small particle gyro-radii. A key feature of these systems is that the transport
of momentum and heat are anisotropic with respect to the magnetic-field direction, even
when the magnetic energy is much less than the thermal pressure, viz. β .= 8πnT/B2 � 1.
This spatial anisotropy is a direct result of the velocity-space anisotropy in the particle
distribution function, which is allowed by the rarity of particle–particle collisions and
shaped by the particles’ primary allegiance to the local magnetic-field direction. In
high-β plasmas, such field-biased deviations from local thermodynamic equilibrium can
have important dynamical consequences on both the large ‘fluid’ scales and the small
plasma-kinetic ‘micro’ scales. It is this multi-scale connection between a high-β plasma’s
thermodynamics and its fluid dynamics that is the focus of this paper. In particular, by
elucidating the nonlinear behaviour of long-wavelength magnetosonic modes, and placing
our findings in the company of complementary work on Alfvénic and acoustic fluctuations,
we demonstrate that even textbook examples of plasma dynamics such as basic waves are
fundamentally different in weakly collisional, high-β plasmas.

1.2. Pressure anisotropy, micro-instabilities and collisionless damping
Collisionless and weakly collisional plasmas possess particles whose motions are bound
by adiabatic invariants that are otherwise broken in highly collisional MHD plasmas.
While there are three adiabatic invariants most commonly considered in plasma physics,
two of them – the magnetic moment μ for cross-field gyro-motion and the bounce invariant
J for field-parallel bounce motion – are associated with frequencies that are generally
large enough for these invariants to be approximately conserved even when some collisions
are present. For describing collective behaviour, these invariants are often adapted into
the form of the double adiabats p⊥/nB and p‖B2/n3, which are conserved in time along
the flow of the plasma if the density n and magnetic-field strength B change slowly
relative to the periodic (gyro- or bounce) motion. In this case, the thermal pressure p
is split up into components along and across the magnetic-field direction, p‖ and p⊥,
respectively, a result of the invariants each being associated with different components of
the particles’ motions. In essence, the random thermal motions of a collisionless or weakly
collisional plasma are restricted differently depending on whether they are along or across
the magnetic field. Their dynamical importance with respect to the magnetic field can
also be defined separately, as β⊥

.= 8πp⊥/B2 and β‖
.= 8πp‖/B2. In numerous space and

astrophysical environments, the natural variations in the plasma density and magnetic-field
strength that are present, coupled with approximate double-adiabatic invariance, lead to
the development of pressure anisotropy �

.= p⊥/p‖ − 1 �= 0. In high-β plasmas where
the thermal pressure is much larger than the magnetic energy, even small deviations from
thermal isotropy (|�| � 1) may be significant enough to grant the pressure anisotropy a
role comparable to that of the magnetic energy (i.e. β|�| ∼ 1).

Two mechanisms by which the pressure anisotropy plays this elevated role are the
modification of magnetic-field-line tension and the triggering of rapidly growing, kinetic
micro-instabilities. An illustration of the former mechanism is a process named ‘Alfvén
wave interruption’ (Squire, Quataert & Schekochihin 2016; Squire et al. 2017a; Squire,
Schekochihin & Quataert 2017b), in which a linearly polarized Alfvén wave whose
amplitude satisfies (δB⊥/B)2 � 2/β adiabatically generates a pressure anisotropy large
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High-β collisionless magnetosonic modes 3

enough to nullify the restoring magnetic tension and prevent the wave’s propagation. In
this paper, we are focused primarily on large-scale compressive fluctuations, for which
magnetic tension ends up being of little importance at high β. Our focus is therefore
primarily on the connection that pressure anisotropy has with ion-Larmor-scale kinetic
instabilities, specifically the firehose and mirror instabilities.

The firehose instability is triggered in pressure-anisotropic plasmas satisfying β‖� �
−2. This threshold is commonly referred to as the ‘fluid firehose’ threshold, and
corresponds to an exact balance between the restoring magnetic tension force and the
destabilizing viscous stress from the negative pressure anisotropy.1 In this case, when
small perpendicular fluctuations in the magnetic field are present, the excess parallel
pressure leads to a centrifugal force that acts in the bends of the magnetic-field lines. When
the pressure anisotropy is sufficiently negative, this force cannot be stably balanced by
the magnetic tension and the bends grow very rapidly (Parker 1958; Vedenov & Sagdeev
1958), increasingly so on smaller length scales (down to the ion-Larmor scale, where they
are stabilized by finite-Larmor-radius effects; Kennel & Sagdeev 1967; Davidson & Völk
1968; Yoon, Wu & de Assis 1993; Hellinger & Matsumoto 2000). In a driven system,
the unstable pressure anisotropy is regulated through a combination of the particles’
pitch-angle scattering off of these bends and the compensating positive pressure anisotropy
associated with the growing magnetic perturbations (Schekochihin et al. 2008; Rosin
et al. 2011; Kunz, Schekochihin & Stone 2014a). Conversely, the mirror instability is
triggered when an excessively positive pressure anisotropy satisfies β⊥� � 1 (Barnes
1966; Hasegawa 1969). In this case, the enhanced perpendicular pressure is able to push
out against local decrements in the magnetic-field strength, causing ion-Larmor-scale
‘magnetic mirrors’ to form. These mirrors resonantly confine particles with large pitch
angles (v⊥ > v‖) through their conservation of μ (e.g. Southwood & Kivelson 1993). The
anisotropic thermal energy of these resonant particles reinforces the outward push against
the field lines, further growing the fluctuations (and thus the confining mirror force) until
the ends of the mirrors become so kinked that the particles can pitch-angle scatter off
of their sharp edges and regulate the pressure anisotropy (Kunz et al. 2014a; Riquelme,
Quataert & Verscharen 2015; Rincon, Schekochihin & Cowley 2015).

Kunz et al. (2020) demonstrated that these kinetic instabilities interfere with
the collisionless damping of long-wavelength, parallel-propagating ion-acoustic waves
(IAWs). Namely, IAW amplitudes satisfying |δn/n| � 2/β generate a pressure anisotropy
large enough to drive firehose and mirror instabilities, whose associated scattering and
trapping impede the maintenance of Landau resonances that enable such waves’ otherwise
potent decay. The result is self-sustaining wave dynamics that evince a weakly collisional
plasma: the ion distribution function is near-Maxwellian, the field-parallel flow of heat
resembles its Braginskii form (except in regions where large-amplitude magnetic mirrors
strongly suppress particle transport) and the relations between various thermodynamic
quantities are more ‘fluid-like’ than kinetic.

1.3. Non-propagating modes, fast waves and oblique IAWs
In this work, a combination of elements from both Alfvén waves and IAWs is investigated
in the study of collisionless magnetosonic modes – namely, non-propagating (NP) modes

1Certain conditions can lead to the dominance of a resonant oblique firehose instability having a less stringent
threshold of β‖� � −1.4 (Hellinger & Matsumoto 2000; A.F.A. Bott et al., in preparation). These conditions are, in fact,
realized in our simulations of long-wavelength fast waves having |δB/B0| � 2/β; see § 3.2 and figure 19 in particular.
However, as none of the magnetosonic fluctuations investigated in this paper are subject to self-interruption, the difference
between −2 and −1.4 is of little consequence dynamically, and we generically refer to the ‘firehose threshold’ as being
at −2.
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(in § 2), fast waves (in § 3) and to a more limited extent oblique IAWs (in Appendix C).
We investigate fast waves in the limit of perpendicular propagation, in which magnetic
tension and collisionless damping play no role, but the associated fluctuations in B and
n drive destabilizing pressure anisotropy. The NP modes, however, are highly oblique,
perpendicular-pressure-balanced structures, in which collisionless transit-time damping
(or ‘Barnes damping’; Barnes 1966) is responsible for the entirety of the modes’ dynamics.
Barnes damping is a form of Landau (1946) damping in which sinusoidal fluctuations in
magnetic-field strength caused by an oblique perturbation (magnetic ‘mirrors’) resonantly
confine μ-conserving particles and perform work on their guiding centres, thereby
transferring free energy from the electromagnetic perturbations to the particles. For large
values of β, the damping rate of the NP mode is relatively slow, and nonlinear saturation
of the damping process can occur before the mode decays by a significant fraction. In this
case, trapped particles in near resonance with the mode are rearranged in phase space,
flattening the velocity distribution function of the particles f (v‖) in the vicinity of the
phase velocity (v‖ ∼ 0) (e.g. Zakharov & Karpman 1963). Once (∂f /∂v‖)|0 ∼ 0, there is
no more free energy left to be gained by the distribution from rearranging particles, and
the damping process stalls. This swapping of phase-space positions occurs on the order
of a bounce time, ∼Ω−1

b , which is the time it takes for a (just barely) trapped particle to
make a full orbit of its confining magnetic mirror. A larger amplitude mode will result in
a shorter bounce time, so the nonlinear saturation ensures that large-amplitude NP modes
are longer lived than their small-amplitude counterparts. The principal question here is
to what extent the pressure anisotropy associated with these modes affects their character
and longevity.

2. Non-propagating modes: Suppression of nonlinear saturation
2.1. Theory

2.1.1. Model equations and assumptions
The linear evolution of the NP mode at long wavelengths can be treated analytically

in the drift-kinetic approximation, in which all relevant time and length scales are much
larger than those associated with the particles’ gyromotion and the velocity distribution
function of the particles is gyrotropic. We adopt this framework, and further simplify
the calculation by treating the electrons as a massless, neutralizing, isothermal fluid
having constant temperature Te.2 In this model, the velocity of magnetic-field lines,
and equivalently the perpendicular fluid flow, is captured by the E×B drift velocity
u⊥. The perpendicular velocity peculiar to this drift, denoted by w⊥, then describes the
perpendicular particle motion relative to the field lines and the fluid flow, under the
constraint that the magnetic moment μ

.= miw2
⊥/2B is conserved. The component of the

particle velocity directed along the local magnetic-field direction is denoted by v‖.
In what follows, we solve for the evolution of small perturbations δf (t, r, v‖, w⊥) to a

spatially uniform ‘background’ ion velocity distribution function F0(v‖, w⊥). The parallel
(‖) and perpendicular (⊥) coordinate directions are fixed with respect to a uniform
background magnetic field, B0. Assuming that spatial variations in the plasma are due
only to a sinusoidal perturbation having wavenumbers k‖ and k⊥, the relevant equations in

2The choice of isothermal electrons is for consistency with the simulations performed using the Pegasus++
hybrid-kinetic particle-in-cell code (see § 2.2), though it can be justified physically in some weakly collisional plasmas
such as the ICM, where the electrons are collisional enough to remain near-Maxwellian and fast enough to be
approximately isothermal along perturbed magnetic-field lines (e.g. Kunz 2011). This assumption is also consistent
with the gyrokinetic theory of collisionless compressive fluctuations in the subsidiary limit (me/mi)

1/2 � 1, which
predicts that electrons are pressure-isotropic and isothermal along field lines due to rapid conduction if their equilibrium
distribution function is isotropic (see § 2.5.2 of Kunz et al. 2015).
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their linearized forms are the drift-kinetic Vlasov equation,(
∂

∂t
+ ik‖v‖

)(
δf + δB‖

B0

w⊥
2

∂F0

∂w⊥

)
+ e

mi
δE‖

∂F0

∂v‖
− ik‖

δB‖
B0

w2
⊥

2
∂F0

∂v‖
= 0; (2.1a)

the force equation for the evolution of the drift velocity,

du⊥
dt

= − ik⊥
min0

(δp⊥i + Teδn) − ik⊥v2
A
δB‖
B0

+ ik‖v2
A
δB⊥
B0

; (2.1b)

the ideal induction equation governing the parallel and perpendicular components of the
perturbed magnetic field δB,

d
dt

δB‖
B0

= −ik⊥u⊥ and
d
dt

δB⊥
B0

= ik‖u⊥; (2.1c)

and a generalized Ohm’s law for the parallel electric field,

δE‖ = −ik‖
Te

e
δn
n0

. (2.1d)

The perturbed number density and perpendicular ion pressure are given by

δn .=
∫

d3v δf and δp⊥i
.=
∫

d3v
1
2

miw2
⊥δf , (2.2a,b)

respectively, with d3v = 2πw⊥dw⊥dv‖. The other symbols have their usual meanings: e is
the elementary charge, mi is the ion mass, and vA

.= B0/(4πmin0)
1/2 is the Alfvén speed

given B0 and a uniform background density n0 (the zeroth moment of F0). Note that u⊥
is not an explicit moment of the perturbed distribution function, and must be evolved
independently using (2.1b). This combination of the drift-kinetic equation with a fluid
equation for the drift velocity and a frozen-in magnetic field is commonly referred to as
‘kinetic MHD’ (Kulsrud 1964, 1983).

At this point, we take F0 to be a stationary, isotropic, Maxwell–Boltzmann distribution,
F0 = FM(v), with

∫
d3vFM(v) = n0 and

∫
d3v miv

2FM(v) = 3n0Ti0
.= 3pi0. This not only

simplifies the analysis, but also ensures that the background distribution function itself is
not kinetically unstable. Equation (2.1a) can then be readily integrated in time to obtain

δf (t, w⊥, v‖) = δf (0, w⊥, v‖) exp
(−ik‖v‖t

)
−
∫ t

0
dt′FM(v) exp

(−ik‖v‖(t − t′)
) [

ik‖v‖
Te

Ti0

δn(t′)
n0

− w2
⊥

v2
th,i

d
dt′

δB‖(t′)
B0

]
, (2.3)

where vth,i
.= (2Ti0/mi)

1/2 is the ion thermal speed. The first term on the right-hand side of
(2.3) represents the parallel phase mixing of the initial perturbation by the free streaming
of particles along the (unperturbed) magnetic field. If δf (0, w⊥, v‖) ∝ FM(v), integrating
this term and then completing the square shows that any moment of the initially perturbed
distribution function will decay as exp[−(k‖vth,it/2)2]. The second term in (2.3) captures
the self-consistent response of the plasma to the induced parallel electric field (∝δn/n0)
and the magnetic mirror force (∝δB‖/B0). It is this eigenmode response that we first
calculate and discuss, before moving on to take the second moments of (2.3) and compute
the time-dependent pressure anisotropy in § 2.1.3.
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2.1.2. Eigenmode response for the NP mode
If we take the fluctuation amplitudes to be proportional to exp(−iωt) with complex

frequency ω, the dispersion relation that results after combining (2.1) may be written as

D(ζ )
.= (

ω2 − k2v2
A

) [
1 + Ti0

Te
+ ζZ(ζ )

]
+ k2

⊥v2
th,i ζZ(ζ )

[
1 + Ti0

Te
+ 1

2
ζZ(ζ )

]
= 0,

(2.4)

where ζ
.= ω/|k‖|vth,i is the dimensionless phase speed and Z(ζ ) is the plasma dispersion

function. The first term in parentheses captures the combined restoring force of the
magnetic pressure and tension, and indicates that we are examining magnetosonic modes.
Indeed, setting the accompanying multiplicative term in square brackets to zero provides
the dispersion relation for a Landau-damped IAW in the limit (me/mi)

1/2 � 1. The final
term in (2.4), proportional to k2

⊥v2
th,i, couples these Alfvénic and acoustic responses; its

presence can be traced back to the final term in (2.3) representing the mirror force, and
thus introduces collisionless damping of the mode through transit-time damping.

To isolate the NP mode, we focus specifically on highly oblique wavenumbers (k⊥ � k‖)
and low frequencies (ζ � 1). In this limit, the plasma dispersion function in (2.4) can
be approximated as Z(ζ ) ≈ i

√
π, and we may simplify the dispersion relation further by

neglecting terms of order ζ 2. The result is an approximate expression for the decay rate of
the NP mode:

ζ � − i√
πβi0

k2

k2
⊥

, where βi0 = 8πpi0

B2
0

= v2
th,i

v2
A

. (2.5)

For ζ � 1 to be satisfied by (2.5), we require that βi0 � 1, which aligns well with our
interest in high-β plasmas. Further properties of the NP mode can be found by taking
moments of the kinetic equation (2.1a), such as the proportionalities between δn, δp⊥,i and
δB‖:

δn
n0

= −ζZ(ζ )

[
1 + Te

Ti0
(1 + ζZ(ζ ))

]−1
δB‖
B0

� − 1
β0

k2

k2
⊥

δB‖
B0

, (2.6a)

δp⊥i

pi0
= − Te

Ti0

δn
n0

+ 2
ω2 − k2v2

A

k2
⊥v2

th,i

δB‖
B0

�
(

2 + Te

Ti0

)
δn
n0

, (2.6b)

where β0
.= βi0(1 + Te/Ti0). The latter equation implies approximate perpendicular

pressure balance when k‖ � k⊥, since then

δp⊥i + δpe + δB2

8π
� − k2

‖
k2

⊥

δB2

4π
� δB2

4π
. (2.6c)

Additionally, the parallel ion pressure perturbation is given by

δp‖i

pi0
= − Te

Ti0

δn
n0

− 2ζ 2 (1 + ζZ(ζ ))

(
δB‖
B0

+ Te

Ti0

δn
n0

)
� − Te

Ti0

δn
n0

, (2.6d)

so that δp‖i + δpe � 0. Equations (2.5) and (2.6) highlight some of the essential properties
of the NP mode, namely, that it does not oscillate, that it decays slowly at high β, and that
its perturbations to the magnetic-field strength and the density are anti-correlated.

The physical mechanism behind the damping rate is primarily transit-time magnetic
pumping, in which Landau-resonant particles (technically, their guiding centres) that
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are trapped between large-scale magnetic mirrors formed by an oblique perturbation in
the magnetic field extract energy from the mirror force. They experience net heating
by betatron acceleration because the number of particles heated in regions where |B|
increases (lower v‖ particles) is greater than the number of particles cooled where |B|
decreases (higher v‖ particles). At higher plasma β, this difference is smaller, hence the
β−1 dependence of the damping rate.3

This type of collisionless damping is susceptible to nonlinear saturation, whereby
the particles in the well explore the phase space available to them by μ conservation,
phase-mixing out the original Maxwellian according to their differing bounce times and
flattening the distribution function in the magnetic well to create a plateau around v‖ ∼ 0.
This effectively increases the plasma β of the resonant particles and the damping rate
weakens dramatically. Because of the slow nature of the NP mode’s decay rate at high β,
nonlinear saturation occurs comparatively rapidly, at a rate comparable to the bounce
frequency of a thermal particle,

Ωb
.= 1

2
k‖vth,i

∣∣∣∣δB‖
B0

∣∣∣∣
1/2

. (2.7)

While most particles bounce at approximately this frequency, particles that are barely
trapped bounce much slower due to their prolonged time spent traversing the edge of the
magnetic well. As a result, the plateau forms inside-out, reaching a pitch-angle dependent
maximum extent set by |v‖|/w⊥ <

√|Bmax|/|Bmin| − 1. For |δB‖/B0| � β−2
i0 , the bounce

frequency in (2.7) will be larger than the decay rate in (2.5), and thus nonlinear saturation
will be important. Because of our interest in plasmas having β � 1, even modes that
may often be considered ‘linear’ in amplitude will thus decay by only a small amount
before experiencing nonlinear saturation, the implication being that these structures should
be long lived. That is, unless some process is able to erode the resonant plateau in the
perturbed distribution function on a time scale �Ω−1

b .

2.1.3. Generation of pressure anisotropy and triggering of the mirror instability
The eigenmode in (2.6) implies a dimensionless pressure anisotropy in the ions given

by

�NP � 2
(

1 + Te

Ti0

)
δn
n0

� − 2
βi0

k2

k2
⊥

δB‖
B0

. (2.8)

This suggests that, for δB‖/B0 ∼ 1, the pressure anisotropy associated with the NP mode
is sufficient to excite both the firehose and mirror instabilities, the former occurring in
regions where δB‖ > 0, the latter occurring in regions where δB‖ < 0. There are two
considerations that complicate this conclusion.

The first complication concerns the additional pressure anisotropy that is generated
when the initial perturbation to the distribution function is anisotropically phase mixed

3Background pressure anisotropy with �0 > 0, associated for example with a bi-Maxwellian F0 = Fbi-M(v‖, w⊥),
decreases the decay rate of the linear NP mode further by increasing the number of large-pitch-angle particles in the
magnetic troughs. Mathematically, as the background pressure anisotropy gets closer to the mirror threshold, the decay
rate of the NP mode decreases towards zero, with (2.5) acquiring a multiplicative factor of ( p‖i0/p⊥i0)

2(1 − β⊥i0�0).
Such background pressure anisotropy makes it energetically ‘cheaper’ to inflate the magnetic-field lines (to maintain
perpendicular pressure balance), thereby (partially) offsetting the damping of the field-strength fluctuations. If the
concentration of these large-pitch-angle particles leads to more perpendicular pressure than can be stably balanced by
the magnetic pressure (viz. β⊥i0�0 > 1), the troughs must grow deeper to compensate. This process runs away as the
resonant particles in the deepening troughs lose energy via betatron cooling, resulting in the mirror instability (Southwood
& Kivelson 1993; Kunz et al. 2015). In this paper, we focus solely on the impact of fluctuation-driven pressure anisotropy
on the stability and evolution of magnetosonic modes, and exclude the possibility that the background plasma itself is
already kinetically unstable by setting �0 = 0.
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by particles streaming freely along, but not across, the field lines. To see this effect, let
us return to the time-dependent solution for the perturbed distribution function, (2.3), and
suppose that, at t = 0, the plasma hosts an isothermal, pressure-balanced perturbation with

δf (0, w⊥, v‖) = δn(0)

n0
FM(v) = − 2

β0

δB‖(0)

B0
FM(v). (2.9)

This initial condition guarantees that the pressure anisotropy that develops as the particles
free stream and the plasma settles into the NP eigenmode is generated self-consistently
and not put in by hand. Calculating the difference of the (1/2)miw2

⊥ and miv
2
‖ moments of

(2.3) with the initial condition (2.9) yields the following expression for the time-dependent
pressure anisotropy:

�NP(t) = 2
(

k‖vth,it
2

)2

exp
(−(k‖vth,it/2)2) (1 + Te

Ti0

)
δn(0)

n0

+
∫ t

0
dt′ exp

(−[k‖vth,i(t − t′)/2]2) d
dt′

δB‖(t′)
B0

+ 2
∫ t

0
dt′
[

k‖vth,i(t − t′)
2

]2

exp
(−[k‖vth,i(t − t′)/2]2) d

dt′

[
Te

Ti0

δn(t′)
n0

+ δB‖(t′)
B0

]
.

(2.10)

All terms involving the combination k‖vth,it/2 describe the damping effect of phase mixing
on the moments of the perturbed distribution function due to the production of fine-scale
structure along v‖. As discussed by Kunz et al. (2020, their (3.7)), the first term on the
right-hand side of (2.10) captures a transiently produced pressure anisotropy resulting from
the anisotropy of particle motion: as the magnetized particles free stream along, but not
across, the field, the w2

⊥ and v2
‖ moments of δf (0) phase mix differently. The integral terms

in (2.10) capture the pressure anisotropy driven by adiabatic invariance as the mode is
excited and then decays in time. It is this contribution to �NP(t) that includes the pressure
anisotropy of the eigenmode, (2.8).

The integrals in (2.10) can be computed numerically (see Appendix A) and the pressure
anisotropy �NP(t) determined for a given initial mode amplitude

α
.=
∣∣∣∣δB‖(0)

B0

∣∣∣∣ . (2.11)

The result is shown in figure 1(a) at a selection of values of Te/Ti0. The initial rise in
�NP is due to a combination of the anisotropic phase mixing of the initially perturbed
density and the pressure anisotropy adiabatically produced as the system settles into the
NP eigenmode. After approximately one thermal-crossing time of the mode’s parallel
wavelength, the eigenmode is established and the slow exponential decay of �NP seen
in the figure reflects the Barnes damping of the mode. (The higher-frequency oscillations
seen on top of this slow decay are caused by fast modes excited by the initial conditions
and represent rapid oscillations about the approximately perpendicular pressure balance.)
An approximate analytic solution for �NP(t) may be obtained in the limit of βi0 � 1,
(k‖/k⊥)2 � 1 and Te/Ti0 ∼ 1 upon substituting the damped eigenmode (2.6a) into the
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(a) (b)

FIGURE 1. (a) Solution of (2.10) using the method presented in Appendix A for the
time-dependent root-mean-square pressure anisotropy of a linear NP mode with wavenumber
k‖ and dimensionless initial amplitude α

.= δB‖(0)/B0 for βi0 = 16 and various Te/Ti0. The
small oscillations present after the initial adjustment are due to fast waves generated as the
isothermal, pressure-balanced initial condition settles into the NP eigenmode. The approximate
analytic solution (2.12) is shown with the dashed line. (b) Maximum pressure anisotropy (divided
by α) versus Te/Ti0; its values at Te/Ti0 = 1/2, 1 and 2 are indicated.

time integrals in (2.10). The result is that

�NP(t) � 2τ 2e−τ 2

(
1 + Te

Ti0

)
δn(0)

n0
−
(

erf(τ ) − τ√
π

e−τ 2

)
2
βi0

δB‖(t)
B0

(2.12a)

= −
[

2τ 2e−τ 2 + e−2iζ τ

(
erf(τ ) − τ√

π
e−τ 2

)]
2
βi0

δB‖(0)

B0
, (2.12b)

where τ
.= k‖vth,it/2. The term in square brackets goes as ∼2τ 2 + τ/

√
π for early times,

suggesting that the plasma would become mirror-unstable at a time tm ∼ (
√

αk‖vth,i)
−1,

comparable to the inverse of the bounce frequency (2.7). With the mode then slowly
decaying exponentially, the maximum value of the pressure anisotropy may be estimated
by setting exp(−2iζ τ) � 1 and maximizing (2.12b) with respect to τ . The result is
a maximum pressure anisotropy �2.6αβ−1

i0 (cf. (2.8)) occurring at k‖vth,it � 2.3. The
approximate solution (2.12) is traced by the dashed line in figure 1(a), and is a manifestly
good description of the full solution.

The second complication when using (2.8) to determine the kinetic stability of the
NP mode is related to how the mode perturbs the perpendicular and parallel plasma β

parameters that feature in the firehose and mirror instability thresholds. Using (2.6) and
that δB⊥ = −(k‖/k⊥)δB‖, one obtains

β‖i � βi0

(
1 + 2

δB‖
B0

+ k2

k2
⊥

δB2
‖

B2
0

)−1 [
1 − k2

k2
⊥

1
βi0

Te

Ti0

(
1 + Te

Ti0

)−1
δB‖
B0

]
, (2.13a)

β⊥i � βi0

(
1 + 2

δB‖
B0

+ k2

k2
⊥

δB2
‖

B2
0

)−1 [
1 − k2

k2
⊥

1
βi0

(
2 + Te

Ti0

)(
1 + Te

Ti0

)−1
δB‖
B0

]
.

(2.13b)

https://doi.org/10.1017/S0022377823000429 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000429


10 S. Majeski, M.W. Kunz and J. Squire

The final terms in both of these expressions may be dropped in the limit of βi0 � 1.
Combining the result with (2.8) yields

β‖i�NP ≈ β⊥i�NP ≈ −2
δB‖
B0

(
1 + 2

δB‖
B0

+ k2

k2
⊥

δB2
‖

B2
0

)−1

. (2.14)

Equation (2.14) indicates that it is impossible to produce a pressure anisotropy that is
sufficiently negative to destabilize the plasma to the firehose. Regions in which �NP < 0
also have a reduced plasma β, and so the more negative the anisotropy becomes (for larger
δB‖ > 0), the further the firehose threshold (≈ − 2/β‖i) moves away. Indeed, minimizing
the right-hand side of (2.14) for δB‖ > 0, the most negative value of βi�NP is found to
be ≈ − (1 + |k/k⊥|)−1 > −1/2. In contrast, the plasma in regions where δB‖ < 0 that
acquire a positive pressure anisotropy have an easier time of reaching the reduced mirror
threshold (≈1/β⊥i). Setting the right-hand side of (2.14) to unity and solving for δB‖ =
−|δB‖| then provides the following amplitude threshold for the NP mode to trigger the
mirror instability: ∣∣∣∣δB‖

B0

∣∣∣∣ � 0.3 (NP mode amplitude threshold). (2.15)

When this criterion is satisfied, we anticipate regions of kinetically unstable plasma to be
localized to where δB‖ < 0 and to host ion-Larmor-scale mirrors.

With these predictions borne in mind, we now determine the spatial extent of these
mirror-unstable regions and discuss how the mirrors growing within them evolve to
regulate the pressure anisotropy.

2.1.4. Regulation of pressure anisotropy by the mirror instability
In § 2.1.3, we showed that the plasma where δB‖ < 0 becomes mirror-unstable at

tm ∼ (
√

αk‖vth,i)
−1 if initialized from isothermal pressure balance. With α � 0.3 (i.e.

when instability is possible), this time is comparable to the time scale over which the NP
mode’s pressure anisotropy is set up (see figure 1). We may then view the mirror instability
as growing on top of an otherwise weakly decaying positive pressure anisotropy satisfying
(2.14) with δB‖ < 0. The maximum growth rate of the instability depends on how far the
local pressure anisotropy ventures beyond the instability threshold, Λm

.= � − β−1
⊥i > 0.

In the asymptotic limit β⊥iΛm � 1, the maximum mirror growth rate and associated
wavenumber are given by (Hellinger 2007; A.F.A. Bott et al., in preparation)

γm/Ωi ≈ 0.07β⊥iΛ
2
m, k‖,mρi ≈ 0.2β⊥iΛm, k⊥,mρi ≈ 0.6(β⊥iΛm)1/2. (2.16)

However, because of the sensitive dependence of the instability parameter β⊥iΛm on the
NP mode amplitude (see (2.14)), with its value ranging from ∼1 to ∼100 for α ∈ [0.4, 0.9],
only very marginally unstable NP modes (viz., α ≈ 0.3) satisfy the ordering used to
derive (2.16). The growth rate and wavenumber when β⊥iΛm � 1 can be obtained by a
direct numerical solution of the linearized Vlasov–Maxwell equations for a bi-Maxwellian
plasma, with (2.14) specifying the pressure anisotropy for a given NP mode amplitude α
(A.F.A. Bott, private communication). The resulting growth rates and wavenumbers are
shown versus α in figure 2(a). (For this figure, we used βi0 = 16 and k⊥/k‖ = 4, although
the values shown are insensitive to either parameter as long as βi0 � 10 and (k/k⊥)2 ≈ 1.)
As α increases, these quantities approach the empirical values

γm/Ωi ≈ 0.2Λm, k‖,mρi ≈ 0.6, k⊥,mρi ≈ 1.2. (2.17a–c)
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(a) (b)

FIGURE 2. (a) Perpendicular (k⊥,m) and parallel (k‖,m) wavenumbers of the fastest-growing
mirror mode having growth rate γm, all computed from linear Vlasov–Maxwell theory using the
instability parameter Λm corresponding to an NP mode with α

.= |δB‖/B0| and k⊥/k‖ = 4 in a
βi0 = 16 plasma (see (2.18); these values are weakly dependent upon βi0 and k⊥/k‖ so long as
βi0 � 10 and (k/k⊥)2 ≈ 1). Dotted lines correspond to the asymptotic expressions (2.16), valid
for β⊥iΛm � 1. (b) Predicted number of mirrors Nm within the δB‖ < 0 region of an NP mode
having wavelength λ‖ and amplitude α (see (2.20)).

For the mirror instability to be relevant to the linear evolution of the NP mode, two
criteria must be satisfied. First, the mirror growth rate must be much larger than the rate
at which the NP mode decays (2.5), i.e. γm

√
πβi � k‖vth,i. This condition appears to be

trivially satisfied in high-β plasmas for unstable NP modes with parallel wavelengths λ‖ �
103ρi. The second criterion is that the mirror modes must actually fit inside the length
of the region that is mirror unstable, viz. 2π/k‖,m � �mirror. We estimate �mirror by asking
where in the NP mode the quantity (2.14) is larger than unity:

Λm � 1
βi0

(
−1 − 4

δB‖
B0

− k2

k2
⊥

δB2
‖

B2
0

)
� 0. (2.18)

Because the leading-order eigenvector components are all real, we can take δB‖ =
−αB0 cos(k‖x + k⊥y) (as used in our simulations; see § 2.2). By courtesy of our
assumption that k⊥ � k‖, we have that δB⊥ � δB‖, so the field lines are approximately
straight everywhere and the paths taken by the trapped particles as they bounce are
approximately parallel to B0. Then, taking the appropriate root of (2.18) to ensure that
the inverse cosine is defined for mirror-unstable amplitudes, we find that the length of the
mirror-unstable portion of the wave satisfies

�mirror ≈ λ‖
π

cos−1

(
2 −

√
4 − k2/k2

⊥
α

)
.= fmλ‖. (2.19)

For α ≈ 0.3–0.9 and k‖ � k⊥, fm ≈ 0.1–0.4. The number of maximally growing mirrors
that can fit within �mirror is then

Nm ≈ fm

4

(
k‖,mρi

2π

)(
λ‖
ρi

)
. (2.20)

In writing (2.20), we have included an additional factor of ≈1/4 to account for the fact that
the pressure anisotropy is not expected to be uniform within the mirror-unstable region and
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so the full extent of �mirror is unlikely to be filled with mirrors of identical wavelengths;
the bespoke factor of ≈1/4 was obtained empirically from examining the spatial extent
of scattering mirrors formed in the hybrid-kinetic simulations of unstable NP modes
presented in § 2.2. A further, and final, adjustment to Nm accounts for the fact that the
ion-Larmor radius ρi ∝ √

T⊥i/B in the mirror-unstable region is larger than ρi0, primarily
because of the decrease in the local magnetic-field strength. Using (2.6) to express δT⊥i
in terms of δB‖, and appending a multiplicative factor of ≈1/2 to α to account, if only
approximately, for the effective reduction in α due to the non-uniformity of δB‖ within the
mirror-unstable region, we find that

ρi

ρi0
≈
(

1 − α

2βi0

k2

k2
⊥

)1/2 (
1 − α + k2

4k2
⊥

α2

)−1/2

. (2.21)

With k‖,mρi taken from figure 2(a), we can assemble (2.18)–(2.21) to predict Nm for a given
λ‖/ρi0, α and k‖/k⊥ of the NP mode at βi0 � 1.

The result of this procedure is shown in figure 2(b) as the open circles. Note that the
number of mirrors Nm is fairly independent of the NP mode amplitude for α � 0.4, with
the consequence that several mirrors can fit within the mirror-unstable region of an NP
mode with λ‖ ∼ 103ρi0. However, at the critical amplitude α ≈ 0.3, only one or perhaps
two mirrors are predicted to fit if λ‖ ∼ 103ρi0. In this case, the mirror instability might be
ineffective at regulating the pressure anisotropy.

In summary, we predict that an NP mode with α � 0.4 and λ‖ � 103ρi0 should be able
to support a robust collection of mirror-unstable fluctuations.

2.1.5. Effective collisionality induced by the mirror instability
We now seek an estimate for the effective collision frequency instigated by these

mirror-unstable distortions in the magnetic-field lines. For this, we follow the arguments
of Newman (2020) for the pitch-angle diffusion of charged particles in regions of
Larmor-scale magnetic irregularities. First, we conjecture that each encounter of an ion
with the edges of a single mirror depletes the plasma’s temperature anisotropy A .=
w2

⊥/2 − v2
‖ by a fraction χ (here, the overline indicates an average over the ion distribution

function). Following Newman (2020), we identify χ with (3/2) sin2 ϑ , where ϑ is the local
deflection angle of the perturbed magnetic-field lines. We estimate sin2 ϑ ≈ (δB⊥,m/B)2 ≈
(k‖,m/k⊥,m)2(δB‖,m/B)2, and leverage prior results on the nonlinear evolution of the mirror
instability showing that mirrors can grow to amplitudes |δB‖,m/B| ≈ 1/3 before saturating
through strong pitch-angle scattering (Kunz et al. 2014a; Riquelme et al. 2015; Sironi &
Narayan 2015). The result is that

χ ≈ 0.2(k‖,m/k⊥,m)2. (2.22)

To obtain the effective collision frequency νeff, we then multiply χ by the number of
Larmor-scale mirrors per unit time encountered by a typical particle. For an NP mode
with amplitude α � 0.4, the criterion for a particle to be able to pass through the NP
mode’s enhancement in |B| is |v‖|/w⊥ � √

4/3. In other words, for a near-Maxwellian
distribution of particle velocities, a majority of the particles will be confined to the trough
of the NP mode where ion-Larmor-scale mirrors should be present, passing through this
mirror-unstable region twice per bounce time. In this case, Nm scattering mirrors are
encountered by each trapped particle every transit time �t ≈ πΩ−1

b . The average rate of
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(a) (b)

FIGURE 3. (a) Predicted scattering frequency νeff (see (2.24)) caused by the mirror instability
for an NP mode with amplitude α, using the values of k‖,mρi in figure 2(a). (b) Minimum parallel
wavelength λ‖ of an NP mode for which νeff�t ≥ 1, where �t = πΩ−1

b . Such modes should
host mirrors whose scattering frequency is comparable to the transit time. The data in both
panels correspond to βi0 = 16 and k⊥/k‖ = 4, although the values shown are insensitive to either
parameter as long as βi0 � 10 and (k/k⊥)2 � 1.

change of the ion anisotropy is then

�A
�t

≈ −χ

π
NmΩbA .= −νeffA, (2.23)

where in the last equality, we have introduced the effective collision frequency νeff.
Assembling (2.7) and (2.18)–(2.23), we find that

νeff ≈ 0.003GΩi0, (2.24a)

where

G .= k‖,mρi

(
k‖,m
k⊥,m

)2 (
α − α2 + k2

4k2
⊥

α3

)1/2

cos−1

(
2 −

√
4 − k2/k2

⊥
α

)
(2.24b)

is a function of only the amplitude and wavenumber obliquity of the NP mode.
Equation (2.24) states that the predicted νeff is independent of the wavelength of the

NP mode and increases with increasing α, key features that are tested (and confirmed)
in § 2.2.6. The predicted dependence of νeff upon α at βi0 = 16 and k⊥/k‖ = 4 is shown
in figure 3(a); the values shown are insensitive to either parameter as long as βi0 � 10
and (k/k⊥)2 ≈ 1. The predicted collision frequency drops gradually from α = 0.9 to
0.5, and then falls sharply by more than an order of magnitude to νeff � 10−5Ωi0 at
α = 0.3. In figure 3(b), we plot the minimum parallel wavelength λ‖ of an NP mode for
which νeff�t ≥ 1, where �t = πΩ−1

b . Such modes should host mirrors whose scattering
frequency is comparable to the transit time. Note that, for α = 0.3, λ‖/ρi0 must be �105

for the scattering frequency to be larger than the inverse transit time. It is worth bearing
these numbers in mind when interpreting the simulation results presented in §§ 2.2.3 and
2.2.6.

2.1.6. Suppression of nonlinear saturation of the NP mode
Once νeff becomes competitive with the bounce frequency, the induced scattering

will isotropize the ion distribution function faster than the nonlinear saturation can
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maintain the plateau in δf (v‖) around v‖ ∼ 0. In this case, the nonlinear saturation
is suppressed and the NP mode should resume its decay at a rate comparable to
(2.5) (Johnston 1971). At some point during this decay, the mode amplitude will
pass below its critical threshold for triggering the mirror instability (2.15), and the
mirror modes themselves will become short-wavelength decaying NP modes. Near the
mirror-instability threshold, these short-wavelength NP modes decay very slowly, and
so the associated magnetic-field-strength fluctuations will remain nonlinear for some
time after the large-scale NP mode is no longer formally mirror unstable. We therefore
conjecture that the NP mode will continue to decay until the mirror fluctuations (and
their induced scattering) have had sufficient time to dissipate. Excepting perhaps the
case of asymptotically long NP mode wavelengths, then, there should be some delay
between when the NP mode passes below threshold and when its nonlinear saturation
is re-established.

The preceding arguments imply that three distinct regimes exist for collisionless NP
modes in high-β plasmas. (i) When the mode amplitude satisfies |δB‖/B0| < 0.3, the
associated pressure anisotropy is too small to trigger the mirror instability, and the
mode experiences slow Barnes damping until the damping nonlinearly saturates as
the distribution function flattens around v‖ ∼ 0. These pressure-balanced structures are
thus long-lived. (ii) When |δB‖/B0| � 0.3, the pressure anisotropy triggers the mirror
instability in regions where δB‖ < 0 and eventually introduces an effective collisionality
that, for sufficiently large NP mode wavelengths, suppresses the maintenance of a
nonlinear plateau. As a result, linear decay resumes until the NP mode decays back well
below its amplitude threshold. (iii) Because the induced scattering rate (2.24) does not
scale with the wavelength of the NP mode, one might expect a third fluid-like regime
results at very long wavelengths when νeff � k‖vth,i and the collisionless damping is
arrested altogether. We discuss the realizability of this third regime and speculate on its
behaviour in § 2.2.6.

2.2. Numerical results
2.2.1. Method of solution and initial conditions

To test the theory presented in § 2.1 and explore the nonlinear evolution of a
mirror-infested NP mode, we employ the hybrid-kinetic particle-in-cell code Pegasus++
(Kunz, Stone & Bai 2014b; Arzamasskiy et al., in preparation). Pegasus++ evolves the
ion distribution function f (t, r, v) using a collection of positively charged macro-particles
that interact with the self-consistent electromagnetic fields E(t, r) and B(t, r), which
are in turn evolved on a discrete mesh using Faraday’s law and a generalized Ohm’s
law that includes the inductive electric field, the Hall effect and a thermoelectric field
caused by pressure gradients in the (assumed massless) electron fluid. The latter ensures
quasi-neutrality. For simplicity, we adopt an isothermal equation of state for the electrons
with temperature Te = Ti0. Both the interpolation of fields to the macro-particle locations
and the deposition of the macro-particles’ phase-space information on the mesh are
performed using second-order-accurate triangle-shaped stencils.

All simulations of the NP mode are performed on a two-dimensional mesh that is
elongated in the direction of a mean magnetic field B0 = B0x̂ and spans one full NP
mode wavelength, Lx × Ly = λ‖ × λ⊥. The latter ranges from λ‖ = 1000ρi0 to 4000ρi0,
with aspect ratios of either λ‖/λ⊥ = 4 or 8. When varying these two dimensions, the
transverse dimension is never smaller than 250ρi0, thereby guaranteeing sufficient scale
separation between the NP mode and any ion-Larmor-scale instabilities. In all runs, the
spatial resolution is �x = �y � 0.3ρi0 and the number of macro-particles per cell is either
104 or 5 × 103 (the latter used only in our largest simulations); these values are similar
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to those used in previously published Pegasus simulations of collisionless Alfvén waves
(Squire et al. 2017a) and IAWs (Kunz et al. 2020) in firehose/mirror-susceptible plasmas.
A digital low-pass filter is applied to the computed moments of the ion distribution
function to reduce the impact of grid-scale, finite-particle-number noise on the evolution
of the NP mode and the trajectories of the particles.

At t = 0, we perturb the magnetic field using the vector potential

A(x, y) = −αB0

|k| sin(k‖x + k⊥y)ẑ, (2.25)

where k‖ = 2π/λ‖, k⊥ = 2π/λ⊥ and α is a dimensionless number quantifying the mode
amplitude. To excite the NP mode, the associated change in the magnetic pressure,

δB2

8π
= −αB2

0

8π
cos(k‖x + k⊥y)

[
2k⊥
|k| − α cos(k‖x + k⊥y)

]
, (2.26)

must be exactly balanced by a perturbation to the perpendicular pressure of the plasma
(cf. (2.6c)). To keep the initialization of the latter relatively simple, we choose to begin
not from an exact NP eigenmode but rather from an isothermal perturbation to the
plasma density δn, in which case the perturbed perpendicular pressure is simply δp⊥ =
δn(Ti0 + Te). Balancing this expression by (2.26) and solving for δn leads to the initial ion
distribution function

f (0, x, y, v) = FM(v)

{
1 + α

β0
cos(k‖x + k⊥y)

[
2k⊥
|k| − α cos(k‖x + k⊥y)

]}
. (2.27)

In this case, the initial total (magnetic plus thermal) pressure in the simulation domain is
constant and equal to (B2

0/8π)(1 + β0); recall that β0
.= βi0(1 + Te/Ti0). Starting from a

pressure-isotropic plasma has the advantage that any pressure anisotropy that develops
is generated self-consistently and not put in by hand. It is also consistent with the
assumptions made to obtain the analytic solution for �NP(t), (2.10).

In all but two of our simulations, we set βi0 = 16, a value large enough to allow
comparison with the asymptotic expressions derived in § 2.1, but not so large that we
cannot capture a full decay time of the linear NP decay rate. We vary α ∈ [0.1, 0.8],
spanning the predicted NP amplitude threshold for triggering the mirror instability (2.15).
Special attention is paid to the case with λ‖ = 2000ρi0, λ⊥ = 500ρi0 and α = 0.8; we
refer to this as our fiducial case. Two additional runs, one with βi0 = 4 and the other with
βi0 = 36, both having α = 0.8, λ‖ = 1000ρi0 and λ⊥ = 250ρi0, were also performed.

Hereafter, 〈·〉 denotes a spatial average taken over the entire domain; 〈·〉m denotes a
spatial average taken over the mirror-unstable region of the NP mode; and 〈·〉k denotes a
spatial average taken over the y-direction while accounting for the changing position of the
wavefront (so as to align all of the perturbed and unperturbed regions within the domain).
The latter is referred to as a ‘wavefront average’; note that it leaves the x-coordinate (in the
direction of B0) unchanged.

2.2.2. Overall evolution of the fiducial run
We begin our discussion of the Pegasus++ results by using the fiducial run to make

contact with some of the predictions laid out in § 2.1. These predictions include the
excitation and subsequent linear collisionless damping of the NP mode, its nonlinear
saturation, the simultaneous generation of mirror-unstable pressure anisotropy in the
regions of the mode where δB‖ < 0, and the resumption of linear damping following the
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FIGURE 4. Amplitude of the magnetic-field-strength perturbation of the NP mode versus time
from the fiducial run, with the different phases of the predicted evolution labelled and
colour-coded. The dashed line indicates the linear decay rate (2.5) of the NP mode in a
pressure-isotropic plasma with βi0 � 1. See § 2.2.2 for discussion.

pitch-angle scattering of trapped ions by the saturated Larmor-scale mirrors at a rate larger
than the bounce frequency. Figure 4 illustrates these evolutionary phases by depicting
the amplitude of the NP mode versus time. After a rapid adjustment from the isothermal
pressure-balanced initial condition, the NP mode emerges and decays at the linear rate
(black line) for approximately one bounce time, Ω−1

b . Immediately thereafter, the decay
stalls (blue line) as nonlinear saturation sets in. Figure 5 demonstrates that, meanwhile, the
NP mode has produced a large, positive pressure anisotropy in the regions where δB‖ < 0
and almost zero pressure anisotropy elsewhere, consistent with the prediction (2.14)
(dashed line). The mirror-unstable region (with 〈β⊥i�〉k above the dotted line in figure 5)
is seen to occupy ∼40 % of the NP mode wavelength, consistent with (2.19) for α = 0.8.
It is in this mirror-unstable region that the magnetic field acquires moderate-amplitude,
oblique fluctuations in its strength on ion-Larmor scales, which are clearly apparent in
figure 6. The strongest fluctuations occupy roughly a quarter of the box length and acquire
amplitudes comparable to that of the mean field. The associated distortions in the field
lines ultimately scatter particles at a rate comparable to the bounce frequency (see figure 7
and the accompanying discussion in § 2.2.3). As a result, the NP mode amplitude enters
a ‘suppressed saturation’ phase (figure 4, red line), during which the nonlinear plateau is
eroded by the mirror-induced collisionality and the Barnes damping resumes.4

In the remainder of § 2.2, we examine these phases in more detail and their dependence
on mode amplitude and scale separation, starting with the mirror-induced scattering and
its impact on the NP mode’s pressure anisotropy.

2.2.3. Effective collisionality: particle scattering and trapping
Figure 7 displays the evolution of the mirror-induced effective collisionality νeff in

the fiducial run, calculated following the method used by Kunz et al. (2014a, 2020),
Melville, Schekochihin & Kunz (2016) and Squire et al. (2017a). Namely, the individual
magnetic moments of ∼104 particles are tracked and monitored for (both abrupt and
accumulated) changes by at least a factor of κ = 1.2 (as used by Kunz et al. 2020

4We were not able to discern any fluctuations above the noise floor in the out-of-plane component Bz, which would
be indicative of the ion-cyclotron instability (e.g. Gary & Lee 1994). Such fluctuations appeared, however, in the run at
βi0 = 4 and α = 0.8; at this lower value of βi0, the ion-cyclotron threshold is comparable to the mirror threshold (e.g.
Hellinger et al. 2006). Nevertheless, no substantive differences in the subsequent evolution of the NP mode were seen.
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(b)

(a)

FIGURE 5. Wavefront-averaged profiles of β⊥i� and β‖i� at k‖vth,it = 3.1, when the pressure
anisotropy is near its maximum value, compared against the theoretical predictions from the
linear eigenmode (2.14), for α = 0.8 and different NP mode wavelengths λ‖ and λ⊥. The fiducial
run corresponds to the solid black line. Positive values of βi� far exceeding the mirror threshold
occur in the regions where δB‖ < 0. Elsewhere, negative pressure anisotropy is compensated by
a decrease in βi to avoid exciting the firehose instability.

FIGURE 6. The x-component of the magnetic-field perturbation, filtered to remove
wavenumbers associated with the α = 0.8 NP mode, at k‖vth,it = 25 in the fiducial run. By
this time, the mirror instability is fully nonlinear, causing large-amplitude, small-wavelength
deflections in the magnetic-field direction that pitch-angle scatter particles.

to measure firehose/mirror-induced scattering in unstable IAWs). The time intervals τ
between which these changes occur are stored, along with the locations at which the
changes occurred, and a spatially dependent effective collision frequency νeff is calculated
from the mean scattering time 〈τ 〉 using νeff

.= (ln κ)2/〈τ 〉. This calculation was also
performed using κ ∈ [1.1, 1.5], with no significant differences arising.

In figure 7(b), the box-averaged effective collisionality (black line) and maximum value
of the wavefront-averaged effective collisionality (red line) are shown as functions of
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(b)

(a)

FIGURE 7. Effective collisionality νeff caused by the mirror instability in the fiducial run with
α = 0.8 and λ‖ = 2000ρi0 = 4λ⊥. (a) Space–time diagram of 〈νeff〉k (colour). An illustrative
particle trajectory is shown with the grey line, exhibiting resonant bouncing, followed by trapping
within a mirror fluctuation and eventual scattering out of resonance with the NP mode. (b)
Box-averaged (black) and maximum wavefront-averaged (red) collision frequencies versus time.

time. Both exhibit rapid growth during the initial phase of the mirror instability and
then reach a quasi-steady state, with max(〈νeff〉k) ≈ 0.0035Ωi0 ≈ 2.5Ωb. We have found
the time scale for the scattering rate to reach this steady state to be largely independent
of the wavelength of the NP mode, although it increases somewhat with decreasing α
because of the slower linear growth rate of the mirror instability. The space–time diagram
of the wavefront-averaged collisionality shown in panel (a) indicates that the maximum
value of νeff is localized to the centre of the mirror-unstable region, with slightly smaller
values occurring near this region’s boundaries where the mirror amplitudes are smaller
(cf. figure 6). A large fraction of the thermal plasma is subject to this collisionality,
because the mode amplitude is large enough that most of the plasma particles are confined
in the regions where δB‖ < 0. For example, when α = 0.8, particles whose pitch angles
satisfy |v‖|/w⊥ ≤ √

max(B)/min(B) − 1 ≈ 2.8 would be mirror-confined in the absence
of collisions. Outside of these regions, where the plasma is stable, the collisionality is
very low; as a result, the box-averaged collisionality is more than a factor of 5 smaller
than the maximum value. Figure 7(a) also shows the path of a single tracked particle as a
grey line. The initial evolution demonstrates bouncing within the δB‖ < 0 region. Once the
mirror fluctuations reach nonlinear amplitudes, the particle is temporarily trapped within
a growing mirror. Eventually, it scatters enough in pitch angle to become de-trapped and
traverses the δB‖ > 0 region, breaking its resonance with the NP mode.
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(b)

(a)

FIGURE 8. (a) Maximum of the wavefront-averaged � (solid blue line) and β⊥i� (solid red
line) versus time in the fiducial run. The evolution of 〈�〉k matches well the predicted linear
evolution (blue dashed line), suggesting that the rapid reduction of β⊥i� is due mostly to
the resumed decay of the NP mode and the decrease in β⊥i caused by the growing mirror
fluctuations. (b) Root-mean-square amplitude of the mirror fluctuations, averaged over the mirror
unstable region and normalized to the average ‘background’ (i.e. guide-field plus NP-mode)
magnetic-field strength in the mirror region. The growth of the mirror instability coincides with
a drop in 〈β⊥i�〉k.

2.2.4. Evolution of pressure anisotropy
Figure 8(a) shows the evolution of the maximum of the wavefront-averaged � and β⊥i�

in the fiducial run. Figure 8(b) depicts the growth of the root-mean-square amplitude
of the mirror fluctuations, averaged over the mirror-unstable region where δB‖ < 0 and
normalized to the average ‘background’ (i.e. guide-field plus NP-mode) magnetic-field
strength in this region. The fluctuations grow large enough to scatter particles and
restore the linear decay of the NP mode, through which the pressure anisotropy decays.
Indeed, 〈�〉k is similar to the linear prediction (2.12), denoted here by the blue dashed
line. Likewise, 〈β⊥i�〉k is modelled well by (2.14) with the substitution δB‖/B0 =
−α exp(−iζk‖vth,it), where ζ is the linear eigenvalue (2.5). This expression is traced by
the dashed red line in figure 8, where we have started the decay at k‖vth,it = 9 and set
α = 0.68 to account for the delay due to the (temporary) nonlinear saturation. At larger
scale separations, we anticipate that faster pitch-angle scattering induced by the mirrors
will be able to regulate the pressure anisotropy more efficiently than its linear decay,
at which point the mode will no longer resemble the collisionless linear NP eigenmode
(see § 2.2.6).

The growth of mirrors leads to modifications in the shape of the NP mode profile, as
shown in figure 9. The evolution of the wavefront-averaged profile of β⊥i� in the fiducial
run at k‖vth,it = 3, 6, 11 and 27 is shown. The profile in the region where the mirror
instability is active has flattened, although the mode seems to remain close to the linear
eigenmode, as evidenced by figure 8. The reduction in β⊥i� occurs considerably faster
than the linear decay of � by itself, which highlights the importance of β⊥i in achieving
marginal stability. This reinforces the idea that the mirror fluctuations do not so much act
directly on the anisotropy to achieve β⊥i� = 1, but rather they enable the NP mode to
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FIGURE 9. Temporal evolution of the wavefront-averaged profile of β⊥i�. Four times are
shown: just after the adjustment into the NP eigenmode during the initial decay phase (black
line); an intermediate time during which the NP mode decay is saturated (blue line); after the
mirrors become nonlinear and scatter particles fast enough to suppress the NP mode’s saturation
(red line); and later once β⊥i� has been reduced enough that the mirrors are marginally stable
(grey line).

(a) (b)

FIGURE 10. Amplitude of the magnetic-field-strength perturbation of the NP mode, normalized
to its initial value, versus time for λ‖ = 1000ρi0 = 4λ⊥ and different α. (a) Early times, during
which the NP mode nonlinearly saturates after approximately one bounce time ∼Ω−1

b (vertical
dotted lines; see (2.7)). The dashed line indicates the linear decay rate (2.5). (b) Late times,
showing suppression of nonlinear saturation for amplitudes α ≥ 0.6.

decay and reduce both � and β⊥i to achieve marginal stability more rapidly than would
otherwise occur.

2.2.5. Suppression of nonlinear saturation and resumption of transit-time damping
The effects of nonlinear saturation and mirror-induced collisionality across a variety

of NP mode amplitudes can be seen in figure 10. For reasons of computational cost, for
these runs, we used λ‖ = 1000ρi rather than the fiducial 2000ρi. A Fourier transform is
used to select the magnitude of the box-wavelength perturbation to the background field
(i.e. the amplitude of the NP mode); this quantity is plotted as a function of time. In
panel (a), the initial phase of evolution is featured, at first demonstrating linear decay
at a rate similar to the prediction (2.5) (shown by a black dashed line), approximately
independent of α. After roughly one bounce time (marked by dotted lines of matching
colour), the decay begins to stall and the mode amplitude tends towards a constant value.
This nonlinear saturation occurs at earlier times for larger mode amplitudes, trending with
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the α−1/2 scaling of the bounce time (see (2.7)). At amplitudes α � 0.4, more than 90 %
of the original mode amplitude is preserved by the nonlinear saturation, suggesting that
large-amplitude collisionless NP modes at high β can be rather long lived.

Figure 10(b) shows the behaviour of these modes over longer time scales. For amplitudes
α ≤ 0.4, nonlinear saturation remains and the linear decay rate is never again realized. By
contrast, the larger values of pressure anisotropy in the α = 0.6 and 0.8 NP modes produce
mirror fluctuations with amplitudes large enough to interfere with the maintenance of
the nonlinear plateau. These modes are then able to decay further and convert magnetic
energy into particle energy through a balance between plateau generation and pitch-angle
scattering. The linear decay rate is fully re-established at α = 0.8. A slightly weaker
decay rate is seen in the α = 0.6 case because of the slower mirror-induced scattering rate
relative to k‖vth,i; at the larger scale separation of λ‖ = 2000ρi0 (not shown), the full linear
decay rate is re-established for α = 0.6. With the value of λ‖ used in these runs being twice
smaller than that in the fiducial run, it is notable that the time at which near-linear decay is
restored by mirror-induced scattering is the same in units of Ωi0. At scale separations much
larger than those we are able to simulate currently, we therefore anticipate the nonlinear
plateau to be eroded almost instantly by rapid mirror growth and its associated particle
scattering.

Our final piece of evidence that the nonlinear plateau is maintained at subcritical
NP mode amplitudes and eroded at supercritical amplitudes is also the most direct. In
figure 11, we show ion velocity distribution functions f (v‖, w⊥) measured within the
δB‖ < 0 region, with bi-Maxwellian fits subtracted, from two runs having λ‖ = 4λ⊥ and
either α = 0.4 (figure 11a,c) or 0.8 (figure 11b,d). These distribution functions were
time-averaged over two intervals of duration 4(k‖vth,i)

−1 centred approximately k‖vth,it =
5.4 (figure 11a,b) and k‖vth,it = 21 (figure 11c,d). In the α = 0.4 run, the distribution
is reduced with respect to the bi-Maxwellian at high pitch angles where the ions are
well trapped, which indicates flattening in the parallel distribution approximately v‖ ∼ 0.
This feature persists beyond k‖vth,it = 21, and is the cause of the stalled decay seen in
figure 10. In the α = 0.8 run, the flattening observed in the early-time distribution function
is removed later on, allowing transit-time damping to resume (see figure 4). In fact, a
considerable enhancement in the phase-space density exists at higher w⊥ near v‖ = 0; we
suspect that the resumed damping allows for further betatron heating of trapped particles,
leading to a small population of non-thermal particles in the w⊥ tail of the distribution.
Note that the width of the flattened regions at early times increases dramatically with
amplitude, as is expected from the trapping criterion |v‖|/w⊥ <

√|Bmax|/|Bmin| − 1.

2.2.6. Dependence on scale separation
The effective collision frequency predicted by (2.24) suggests that, if the initial NP

mode amplitude and wavenumber obliquity were held constant, then increasing the
wavelength of the mode should have no effect on the collision frequency. This can
be recast as a more illustrative relationship between the thermal crossing time and
the collision frequency, νeff/(k‖vth,i) ∝ λ‖. Figure 12 shows the maximum value of the
box-averaged effective collision frequency normalized to k‖vth,i for a few different NP
mode wavelengths, wavenumber obliquities and amplitudes. The measured values exhibit
good agreement with the proportionality expectation at both wavenumber obliquities. This
evidence implies that, at yet longer wavelengths, the collision frequency will continue
to increase with respect to the transit time. Note that the measured collisionality for
α = 0.6 is approximately a factor of two smaller than for α = 0.8, in qualitative agreement
with the prediction featured in figure 3(a) that the scattering should decrease with
decreasing NP mode amplitude. The fact that the simulated NP mode with α = 0.4
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(a) (b)

(c) (d)

FIGURE 11. Ion velocity distribution functions f (v‖, w⊥) measured within the δB‖ < 0 region,
with bi-Maxwellian fits subtracted, from two simulations having λ‖ = 4λ⊥ and either α =
0.4 (a,c) or 0.8 (b,d). Panels (a,b) and (c,d) correspond to a time k‖vth,it = 5.4 and = 21,
respectively. The colour bar has been allowed to saturate for the purpose of showing detail.
Dotted lines represent isocontours of total energy, w2

⊥ + v2
‖ = const.

and λ‖ = 1000ρi0 does not have its nonlinear saturation interrupted by mirrors is also
consistent with the prediction in figure 3(b). Finally, the collisionality measured in the run
having α = 0.8, λ‖/ρi0 = 1000 and βi0 = 36 (red diamond) is comparable to that in the
otherwise-equivalent βi0 = 16 run (red circle), consistent with the theoretical expectation
in (2.24) that νeff should be independent of βi0 for βi0 � 10.5

As conjectured in § 2.1.6, the linear scaling of νeff/(k‖vth,i) with λ‖ suggests a possible
fluid-like regime at sufficiently long NP-mode wavelengths. To investigate this regime,
if only approximately, we examine the linear decay rate of NP modes in the presence
of a constant pitch-angle scattering rate, shown in figure 13. The details of how we
determined this decay rate are given in Appendix B; note that the real part of the
frequency is zero for all scattering rates, i.e. the mode remains non-oscillatory. On the
left-hand side of the plot, the collision frequency is small and the collisionless NP mode is
recovered; on the right-hand side, the collision frequency is large and the mode becomes
the MHD entropy mode. The MHD entropy mode is similar to the kinetic NP mode
in that it too has no real frequency, but in the fully collisional limit, it involves only a
density perturbation. For the employed values of k⊥/k‖ = 4 and βi0 = 16, the transition
between these two regimes occurs at ν ≈ 3k‖vth,i. Using an asymptotic expansion at high β
and k � k⊥, one can show that the transitional collisionality scales approximately as
ν ∼ (3/4)

√
βik‖vth,i. With νeff/Ωi0 ∼ (3–6) × 10−4 for α � 0.6 (see figures 3 and 12),

5The effective collisionality measured in the βi0 = 4 run satisfies max(〈νeff〉) � 0.027k‖vth,i, a value that is larger
than predicted because of the additional scattering from Larmor-scale magnetic perturbations driven by the ion-cyclotron
instability and because the prediction (2.24) is accurate only for βi0 � 10.
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FIGURE 12. Maximum value of the measured mirror-induced effective collision frequency
νeff,max versus NP mode wavelength for βi0 = 16 at two different wavenumber obliquities and
two different initial amplitudes (an additional run having α = 0.8, βi0 = 36 and λ‖/ρi0 = 1000 is
also included). The predicted scaling ν/(k‖vth,i) ∝ λ‖ is shown (dashed black line), normalized
to the fiducial case (red circle at λ‖ = 2000ρi0).

FIGURE 13. Linear decay rate of the NP mode obtained from the Landau-fluid CGL-MHD
equations (B1) (see Appendix B for details). The dimensionless (complex) frequency ζ

.=
ω/(|k‖|vth,i) is computed numerically as a function of collisionality ν/(|k‖|vth,i) for k⊥ = 4|k‖|,
βi0 = 16 and Te = Ti0. Overlaid are red circles marking the maximum box-averaged scattering
rates measured in our hybrid-kinetic simulations (see figure 12).

we estimate that the transition to the collisional regime requires a scale separation
λ‖/ρi0 � 104√βi0. Under this condition, the mirror-induced scattering will both isotropize
the pressure perturbation and prevent resonant particles from continuously sapping energy
from the wave, thereby reducing the decay rate and morphing the collisionless NP mode
into the MHD entropy mode (at least for as long as the mirrors continue to scatter particles
faster than ∼√

βik‖vth,i). Unfortunately, unless the scale separation is extremely large (e.g.
λ‖/ρi0 � 105 for our parameters), the decay rate will not be much slower than in the ν = 0
case. In the absence of affordable numerical simulations to test this point,6 we simply
conjecture that at asymptotic wavelengths, the reduction in the decay rate would allow

6To accomplish this at βi0 = 16 would require a parallel wavelength roughly 40× larger than used in our largest
simulation. With the computational cost being ∝(λ‖/ρi0)

2 (accounting for the proportionally longer run times needed at
larger scale separations), such a run would require ∼109 CPU-hours to complete.
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these NP structures to become long lived once again, much like their below-threshold,
nonlinearly saturated counterparts.

2.3. Summary of key results on the NP mode
For the reader’s benefit, we summarize here the essential findings of our investigation of
the NP mode in magnetized, high-β, collisionless plasmas.

(i) Transit-time (Barnes) damping of NP modes nonlinearly saturates before substantial
collisionless decay when the mode amplitude |δB‖/B0| � β−2

i0 .
(ii) The near-perpendicular pressure balance of the NP eigenmode polarization ensures

the production of large positive βi� and only weakly negative βi�.
(iii) Above a threshold amplitude of |δB‖/B0| ≈ 0.3, the pressure anisotropy affiliated

with the NP eigenmode becomes unstable to the mirror instability; at no point is the
plasma firehose unstable.

(iv) Once the growing mirror fluctuations become nonlinear, they pitch-angle scatter
particles according to (2.24), a rate which is independent of the NP mode
wavelength.

(v) At wavelengths satisfying
√

βi � ν/(k‖vth,i) � |δB‖/B0|1/2, the induced scattering
is only fast enough to erode the nonlinear plateau, causing the mode to resume its
decay close to the linear (collisionless) rate.

(vi) At longer wavelengths satisfying ν/(k‖vth,i) � √
βi, transit-time damping will be

interrupted entirely. We predict that in this limit the mode will behave more like the
MHD entropy mode.

3. Fast modes: Wave steepening and viscous damping
3.1. Theory

3.1.1. Model equations and assumptions
Collisionless fast magnetosonic waves are in many ways simpler than their

non-propagating counterparts, particularly so if their wavevectors are nearly perpendicular
to the background magnetic field, viz. k⊥ � k‖. In this limit, collisionless damping is
extremely weak, and magnetic tension plays virtually no role in the mode’s propagation.
In fact, for exactly perpendicular propagation (k‖ = 0), Landau and Barnes damping are
entirely absent at long wavelengths due to the limited cross-field transport of magnetized
particles. In this case, no kinetic information to approximate these modes other than their
pressure anisotropy is needed, and they can be described entirely within double-adiabatic
MHD – a model that results from taking the first three fluid moments of the drift-kinetic
system (see Appendix B) and dropping the heat fluxes. Setting B = Bŷ and ∇ = x̂ ∂/∂x,
these equations are

Dn
Dt

= −n
∂u⊥
∂x

, (3.1a)

min
Du⊥
Dt

= − ∂

∂x

(
p⊥i + pe + B2

8π

)
, (3.1b)

DB
Dt

= −B
∂u⊥
∂x

, (3.1c)
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D
Dt

(p⊥i

nB

)
= 0, (3.1d)

D
Dt

(
p‖iB2

n3

)
= 0, (3.1e)

where D/Dt .= ∂/∂t + u⊥∂/∂x. Although the right-hand side of (3.1b) is independent of
the parallel pressure, and so (3.1e) is not needed to close this set of equations, (3.1e) is
nevertheless useful for calculating the fast-wave pressure anisotropy. As in § 2, we adopt a
simple equation of state for the electrons, pe = nTe, with Te being constant.7

In what follows, we investigate analytically two features of fast-wave propagation in
a collisionless, magnetized plasma, adopting the simple but illustrative case of k‖ = 0.
First, we demonstrate that such waves nonlinearly steepen quicker in double-adiabatic
MHD than they do in standard (pressure-isotropic) MHD, a direct consequence of the
proportional relationship between T⊥ and B associated with μ conservation, (3.1d).
Second, we show how the resulting pressure anisotropy can destabilize the plasma to
both firehose and mirror instabilities. We then estimate the effective scattering frequency
introduced into the plasma by these instabilities and discuss how the consequent regulation
of the pressure anisotropy affects the characteristics of the fast wave.

Before proceeding, it is useful to linearize (3.1) to obtain the fast-wave dispersion
relation and eigenmode. Perturbing the plasma with approximately a uniform background
having density n0, isotropic ion pressure pi0 and magnetic-field strength B0, we find that

δp⊥,i

pi0
= 2

δB
B0

and
δp‖i

pi0
= δn

n0
= δB

B0
. (3.2a,b)

These equations state that the density and pressure anisotropy are positively correlated
with the magnetic-field strength, with the parallel ion temperature remaining constant.
The dispersion relation of this double-adiabatic (‘da’) fast wave is

ω = k⊥vA

√
1 + βi0

(
1 + Te

2Ti0

)
.= k⊥vms,da, (3.3)

so that the bulk velocity u⊥ = vms,da(δB/B0). For comparison, the dispersion relation of a
fast wave in single-adiabatic (‘sa’) MHD is

ω = k⊥vA

√
1 + βi0

(
Γ

2
+ Te

2Ti0

)
.= k⊥vms,sa, (3.4)

where Γ is the adiabatic index of the ions. The proportional relation between the
magnetic-field strength and the density in the double-adiabatic model means that vms,da >
vms,sa. This increase will play a role in allowing double-adiabatic fast waves to form shocks
faster than single-adiabatic fast waves, especially so at high β.

3.1.2. Wave steepening in double- versus single-adiabatic MHD
For waves in which the perturbed quantities determine the wave propagation speed,

steepening may result. Large-amplitude waves in particular generate significant differences
in the propagation speed between the peaks and the troughs, a situation expected to

7Having the electrons respond double-adiabatically would simply double the pressure anisotropy associated with the
fast wave and send Te/2Ti0 → Te/Ti0 in (3.3).
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occur in both double- and single-adiabatic MHD fast waves. In this section, we perform
a series of manipulations to the system (3.1) to quantify this effect. Before proceeding,
it is convenient to renormalize quantities using the Alfvén speed vA = B0/(4πmin0)

1/2

and the wavelength λ as follows: u⊥ = ũ⊥vA, B = B̃B0, n = ñn0, x = x̃λ, t = t̃λ/vA and
p⊥,i = p̃⊥imin0v

2
A. We also note that if the perturbations satisfy δñ = δB̃ at t = 0, then

these two quantities will remain equal for all times (see (3.1a) and (3.1c)); we can then
eliminate δñ in favour of δB̃.8 Meanwhile, if δB̃ is small and its associated perturbations
in p̃⊥,i and ñ are given by (3.2a,b), (3.1d) becomes

∂

∂ t̃

(
p̃⊥,i

ñB̃

)
≈ −ũ⊥

βi0

2
∂(δB̃)2

∂ x̃
∼ O[(δB̃)3]. (3.5)

Hence, to second order in δB̃, we may treat p̃⊥,i = (βi0/2)B̃2 as the equation of state if the
initial condition is an eigenmode.

Under these conditions, (3.1) may be combined to obtain the following system:

∂

∂ t̃

[
ũ⊥
δB̃

]
+
⎡
⎣ ũ⊥ 1 + βi0

(
1 + Te/2Ti0

1 + δB̃

)
1 + δB̃ ũ⊥

⎤
⎦ ∂

∂ x̃

[
ũ⊥
δB̃

]
= 0. (3.6)

Defining W = [ũ⊥, δB̃]T, (3.6) can be rewritten as ∂t̃W + A(W )∂x̃W = 0, with A(W )
being the evolution matrix. By first finding the eigenvalues l(i) and left eigenvectors L(i)

of A(W ), this system can be solved via its characteristic equations, which are given by
L(i) · dW = 0. These characteristic equations are obeyed along space–time trajectories
following dx̃/dt̃ = l(i). However, because our equation of state is only valid up to second
order in the wave amplitude, we need only to retain those terms of first order in the
evolution matrix, and hence in its eigenvalues. Therefore, we expand the characteristic
equations to first order and integrate them to find that the combinations

η± = ũ⊥±ṽms,daδB̃ (3.7)

are approximately constant along(
dx̃
dt̃

)±
=η++η−

2
± ṽms,da

[
1 + 1 + βi0

4ṽ3
ms,da

(η+−η−)

]
. (3.8)

These can be reformulated as two nonlinear advection equations,9

∂η±
∂ t̃

+
(

dx̃
dt̃

)±
∂η±
∂ x̃

= 0. (3.9)

8This reduction is equivalent to assuming an adiabatic index of Γ = 2. In fact, when comparing the results of this
analysis to an MHD treatment with isothermal electrons, the substitution Γ = 2 recovers the double-adiabatic result (see
(3.12) and (3.13)).

9This process is analogous to that used in the derivation of approximate Riemann solvers for numerical solutions of
the MHD equations (e.g. Stone et al. 2008). Commonly, the left eigenvector is assumed to be constant when integrating
the characteristic equations. Here, we keep terms up to first order in δB within L to more accurately resolve the
wave steepening. The careful reader will note that these expressions do not transform directly back to an approximate
form of (3.6). This approach focuses on the characteristics of A, so the leading-order behaviour of (3.6) and the
eigenvalues/vectors of A are approximated accurately; this is in contrast to expanding A itself and truncating past the
first correction in δB̃.
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FIGURE 14. Approximate solution (3.11) to the fast-wave steepening problem with initial
amplitude α = 0.3 and βi0 = 25. The solution has just begun to form a shock, indicating a
shock-formation time of k⊥vAts ∼ 0.4.

Note that if the initial conditions are those of the fast eigenmode (as previously assumed
in the assertion that δB̃ = δñ for all time), then η− = 0 for all time. We are then left with

∂η+
∂ t̃

+
[
η+
2

+ ṽms,da

(
1 + 1 + βi0

4ṽ3
ms,da

η+

)]
∂η+
∂ x̃

= 0, (3.10)

the solution of which for ũ⊥ is given by the method of characteristics as

ũ⊥(t̃, x̃) = δũ⊥0

(
t̃, x̃ − ṽms,da t̃

[
1 + δB̃0(x̃i) + 1 + βi0

2ṽ2
ms,da

δB̃0(x̃i)

])
, (3.11)

where the subscript ‘0’ denotes an initial value and xi is the x-position of the source
of a given characteristic. The time-dependent solution for an example large-amplitude,
double-adiabatic fast wave is shown in figure 14. This solution is strictly valid only until a
shock has formed, at a time that may be determined by evaluating the eigenvalue l+ at the
location x0 where its derivative achieves its largest negative value:

tda
s = [

l+(x0)
]−1 ≈

[
αk⊥vms,da

(
1 + v2

A

v2
ms,da

1 + βi0

2

)]−1

, (3.12)

where α
.= δB̃(0) is the initial fast-wave amplitude. This double-adiabatic (‘da’)

shock-formation time is to be compared with the corresponding time in a single-adiabatic
MHD plasma, in which pn−Γ = p0n−Γ

0 . The general problem of fast-wave steepening
in MHD plasmas has been studied thoroughly under many conditions (Hada & Kennel
1985; Ödblom 1998; Sujith 2005). Following an analogous process to that used for the
double-adiabatic fast wave, we find the single-adiabatic (‘sa’) shock-formation time:

tsa
s ≈

[
αk⊥vms,sa

(
1 + v2

A

v2
ms,sa

1 + Γ (Γ − 1)βi0/2
2

)]−1

. (3.13)

Simplifying (3.12) and (3.13) at high β, and setting Te = Ti0 and Γ = 5/3, yields

k⊥vAtda
s ≈

√
6

4α
√

βi0
and k⊥vAtsa

s ≈ 12
√

3
29α

√
βi0

� 1.17k⊥vAtda
s . (3.14a,b)
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The single-adiabatic shock-formation time is thus larger than the double-adiabatic
shock-formation time. When Te/Ti0 = 0, their ratio reaches a maximum of �1.23;
for Te � Ti0, it approaches unity. This increase is a consequence of the direct
correlation between the magnetic-field strength and the perpendicular (ion) pressure in
double-adiabatic MHD, which amplifies local changes in the mode propagation speed.

3.1.3. Pressure anisotropy and its regulation by kinetic instabilities
By contrast with the NP mode, the fast wave generates a fluctuating pressure anisotropy

as the wave propagates. At sufficiently large β, both firehose and mirror instabilities may
therefore be triggered. With δp⊥,i and δp‖,i given by (3.2a,b), the amplitude threshold for
triggering both firehose and mirror instabilities is∣∣∣∣δB

B0

∣∣∣∣ � 2
βi

( fast-wave amplitude threshold). (3.15)

At high β, this criterion can be satisfied for even small-amplitude fluctuations, justifying
the use of the linear eigenvector and unperturbed βi in determining the threshold.

To assess whether these micro-instabilities will be able to grow, we compare their linear
growth rates with the linear frequency of the fast wave at high β, ωfast ∼ k⊥vth,i. We adopt
the maximal mirror growth rate from (2.16), and use the maximal oblique firehose growth
rate γf ≈ 0.3ΩiΛ

1/2
f , where Λf

.= |� + 2/βi| (Yoon et al. 1993; A.F.A. Bott et al., in
preparation), both of which are appropriate for the near-threshold conditions we anticipate
in our fast-wave simulations. Assuming |δB/B0| � 2β−1

i , we find that

γm

ωfast
∼ 0.01β−1

i
λ⊥
ρi

and
γf

ωfast
∼ 0.1β

−1/2
i
λ⊥
ρi

, (3.16a,b)

where λ⊥ = 2π/k⊥ is the wavelength of the fast wave. It is immediately apparent from
(3.16a,b) that, at high β, very large scale separation between the fast-wave wavelength and
the ion-Larmor scale is necessary to allow enough time for mirror fluctuations to grow
and become nonlinear. The scaling with βi is much weaker for the firehose instability, and
so there will exist wavelengths at which mirror regulation of the pressure anisotropy is
effectively non-existent but the firehose regulation is rapid. For this reason our Pegasus++
simulations, which focus on βi0 = 25, require λ⊥ � 103ρi0 to realize both mirror and
firehose regulation.

The unstable Larmor-scale fluctuations will ultimately grow to amplitudes at which
the particles’ rate of pitch-angle scattering is sufficient to hold the pressure anisotropy
at marginal stability. This rate may be estimated by calculating the pressure anisotropy
driven by a small-amplitude fast wave in a weakly collisional plasma (following Braginskii
1965) and asking what value of effective collisionality νeff would be required to keep
|�| ∼ 2β−1

i . With the former given in the collisional regime by � ∼ −(∇ · u)/νeff ∼
(k⊥vms/νeff)|δB/B0|, the limiting collisionality is

νeff ∼ k⊥vms
βi

2

∣∣∣∣δB
B0

∣∣∣∣ . (3.17)

Note its explicit dependence upon the scale of the fast wave, an indirect consequence of
the pressure anisotropy of the fast wave being continuously driven by the fluctuating wave.
This is very different from the case with the aperiodic NP mode, in which the pressure
anisotropy – an essential feature of the mode’s perpendicular pressure balance – actually
decays in time through transit-time damping.
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FIGURE 15. Exact solution to the dispersion relation (3.18) for a k‖ = 0 fast wave in a plasma
having collision frequency ν, βi0 = 25 and Te/Ti0 = 1.

3.1.4. Viscous damping and collisional propagation
The estimate of the effective collisionality (3.17) suggests that, depending on the

wave amplitude, one should see a variety of fast-wave behaviour. For example, if
|δB/B0| � 2β−1

i0 , then the implied collisionality can be large enough to push the fast wave
into the collisional Braginskii-MHD regime (ν � ω). Making the presently unjustified
yet instructive assumption that this collisionality is distributed uniformly in space, the
fast-wave dispersion relation at arbitrary ν can be obtained after including isotropizing
collisional terms −ν�p/nB and ν�pB2/n3 on the right-hand sides of (3.1d) and (3.1e),
respectively, then linearizing the resulting system of equations. We find that

ω3 − iνω2 − ωk2
⊥v2

ms,da + iνk2
⊥v2

ms,sa = 0. (3.18)

The numerical solution to (3.18) is shown in figure 15. In the collisionless limit
ν → 0, one recovers propagation at the double-adiabatic fast speed; taking ν → ∞
returns propagation at the single-adiabatic fast speed. Viscous damping occurs at
intermediate values of ν ∼ Re(ω) ∼ k⊥vth,i around the transition between the double-
and single-adiabatic regimes, where the scattering rate is comparable to the wave’s
oscillation frequency. The damping rate is always small compared with the wave
frequency. The dispersion relation (3.18) alongside the amplitude threshold (3.15) and
the predicted effective collision frequency (3.17) imply three regimes for the behaviour
of perpendicularly propagating fast modes in a high-β plasma. For small amplitudes
satisfying |δB/B0| < 2β−1

i0 , the mode propagates normally as a collisionless fast mode.
It will steepen and eventually form a shock on the double-adiabatic shock time tda

s . In the
near-threshold regime where |δB/B0| � 2β−1

i0 , the scattering rate from triggered mirror
and firehose instabilities will not quite reach the value (3.17), though scattering is still
expected to occur and result in some viscous damping. The wave will also steepen to form
a shock, but only a fraction of the wavelength will be kinetically unstable and therefore
the shock will occur on a hybrid of the double- and single-adiabatic shock times. Lastly,
at amplitudes well above the threshold, the scattering rate should be given by (3.17). The
viscous damping will be very weak, the wave will host firehose/mirror scattering sites
throughout most of its wavelength and the shock time should be better represented by the
single-adiabatic model.

We now test these ideas using numerical simulations.
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FIGURE 16. Shock-formation time versus βi0 and α for a double-adiabatic fast wave computed
from CGL-MHD simulations (lines) and predicted analytically using (3.12) (circles). The
simulated waves are estimated to have formed a shock at the time when the rate of change of
the maximum density gradient drops below half of its own peak value.

3.2. Numerical results
3.2.1. Method of solution and initial conditions

Due to the large scale separations needed to obtain asymptotic νeff for both firehose
and mirror fluctuations (§ 3.1.3), we use a combination of Pegasus++ and (much cheaper)
Landau-fluid CGL-MHD simulations. All simulations initialize a k‖ = 0 fast wave in an
otherwise Maxwellian plasma using the collisionless eigenmode (3.2a,b), viz.,

B(0, x) = B0 [1 + α sin(k⊥x)] ŷ, u(0, x) = vms,daα sin(k⊥x)ŷ,

n(0, x)
n0

= p‖i(0, x)
pi0

= 1 + α sin(k⊥x),
p⊥i(0, x)

pi0
= [1 + α sin(k⊥x)]2 ,

⎫⎬
⎭ (3.19)

where k⊥ = 2π/λ⊥ and α is a dimensionless number quantifying the mode amplitude.
For the Pegasus++ runs, the mesh is two-dimensional and elongated in the propagation
direction, with size Lx × Ly = λ⊥ × 100ρi0. The size of the domain in the y direction is
large enough to capture all relevant firehose and mirror fluctuations. We set βi0 = 25 and
Te = Ti0; the slightly larger value of βi0, as compared with that used in the simulations
of the NP mode (βi0 = 16), results in a shorter numerical integration time (and thus
computational savings) without changing the physical character of the fast wave. The
spatial resolution and the number of macro-particles per cell are the same as in the NP
simulations (§ 2.2.1). In the manuscript, we only show results from a Pegasus++ run
having λ⊥ = 8000ρi0, corresponding to the largest domain size that we simulated. We
found that this value of λ⊥/ρi0 was the minimum required for the mirrors to have time to
grow and begin scattering particles before the wave oscillates and the sign of the driven
pressure anisotropy reverses.

In the accompanying Landau-fluid simulations, the full system of CGL-MHD equations
is solved using a new Riemann solver implemented in a version of the finite-volume
Athena++ simulation code (Stone et al. 2008) that includes Landau-fluid heat fluxes
(J. Squire et al., in preparation). These equations are given in Appendix B; they reduce to
(3.1) in our chosen geometry. For these runs, βi0 is varied between 1 and 100 to study the
variance of the shock time. A ‘limiter’ collisionality νlim is set either to 0 or to αβi0k⊥vms,da,
depending on whether the focus is on wave steepening and shock formation (ν = 0) or the
effects of the instability-induced scattering. This anomalous scattering rate is active only
within regions of the domain where the pressure anisotropy would be kinetically unstable,
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viz., where βi� ≤ −2 and βi� ≥ 1; elsewhere, it is zero. It serves to isotropize the plasma
pressure where mirror or firehose fluctuations would otherwise do so in a kinetic system,
by contributing a term proportional to −νlim�p to the right-hand sides of the evolution
equations for p⊥ and p‖.

As in § 2, 〈·〉 denotes a spatial average taken over the entire domain, while 〈·〉k denotes
a spatial average performed along the wavefront (in this case, the y direction).

3.2.2. Wave steepening and shock formation
Our first goal is to test the expression (3.12) for the shock-formation time ts. We perform

a parameter survey by varying βi0 and the wave amplitude α using the CGL-MHD
code with the micro-instability-limiting scattering turned off. At each time step in the
simulation, the local density gradient (using a four-cell average) is calculated throughout
the domain and its maximum value is recorded as a measure of the wave steepening. As
a fast wave steepens, the growth rate of this maximum gradient increases until eventually
the shock forms and the maximum gradient in the domain begins to plateau. We define
the numerically calculated shock-formation time to be the time at which the rate of change
of this maximum gradient drops below half of its own peak value. The resulting times are
compared with (3.12) in figure 14. When testing the dependence on βi0 (blue, left), the
perturbation amplitude is set to α = 0.01; when testing the dependence on amplitude (red,
right), βi0 = 25.

Overall, the agreement between (3.12) and the numerically calculated shock-formation
times is quite good. Small variations occur due to differences in the rates at which
the maximum gradients plateau and to minute fluctuations in the maximum value of
the gradient after the shock is formed (this value does not necessarily reach a perfect
steady state). Perhaps unsurprisingly, at high β where vms,da ≈ vA

√
3βi0/2, the ratio of

the wave-crossing time and the shock-formation time is tcross/ts,da ≈ 4α/3. This means the
number of wavelengths propagated prior to forming a shock is dependent upon the mode
amplitude only.

3.2.3. Generation of pressure anisotropy and triggering of kinetic instabilities
Prior to shock formation, the linearized fluctuations (3.2a,b) suggest that pressure

anisotropy at a level capable of triggering both mirror and firehose instabilities will exist
when the fast-wave amplitude satisfies |δB/B0| � 2/βi. For these supercritical amplitudes,
the wavefront should carry with it rapidly growing firehose fluctuations and more slowly
growing mirror fluctuations, as per (3.16a,b). To test this idea, we performed a large-scale
Pegasus++ simulation, the parameters of which are described in § 3.2.1; the initial wave
amplitude α = 0.1 and βi0 = 25.

Figure 17(a) depicts the pressure anisotropy generated by the fast wave as it propagates
through space at three different times (k⊥vAt = 0.0, 0.08, 0.39; note that the aspect ratio
of the plotted domain is far from unity, and that the mean magnetic field is in the y
direction). Initially, the positive and negative pressure anisotropies in the wave are equal in
magnitude. Shortly thereafter, the (unstable) negative anisotropy is reduced significantly
due to the rapid growth of the (primarily oblique) firehose instability. The positive pressure
anisotropy does not show a comparable decrease, and in fact increases somewhat from its
initial value. This is likely because the rapid change in the negative-anisotropy regions,
which perturbs the wave and causes some deviation from the eigenmode, is not matched
by a comparable regulation from the positive side because of the relatively slow mirror
growth. Figure 17(b) zooms in on the corresponding magnetic-field fluctuations that
emerge in two separate co-moving regions where the plasma is mirror unstable (left)
or firehose unstable (right). To accentuate these fluctuations, the large-scale contribution
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(a)

(b)

FIGURE 17. (a) Pressure anisotropy times the ion beta from a Pegasus++ simulation of a
collisionless fast wave, showing that the compression and rarefaction of the magnetic-field lines
generate oppositely signed anisotropies that move with the wavefront. Some sloshing due to
firehose regulation of the negative pressure anisotropy causes an additional reversal of � in the
final time frame. (b) Zoomed-in regions showing δBy and δBz, with the contribution from the
background fast wave removed. Recall that the mean field is oriented in the y direction. In the
left set of panels, the mirror instability, with its oblique orientation and dominance in δB‖ = δBy,
grows relatively slowly in the co-moving region of fast-wave compression from k⊥vAt = 0.08 to
0.39. The firehose instability in the right set of panels is predominantly oblique and exhibits
rapid growth and saturation; smaller-amplitude parallel firehoses appear in δBx (not shown).
These firehose fluctuations reside downstream of the mirrors, where the fast-wave δB < 0.

from the fast wave has been removed. At k⊥vAt = 0.08, oblique firehose fluctuations are
strong and nonlinear; parallel firehose fluctuations are also present, though subdominant,
in δBx (not shown). At this time, there is only a hint of mirror fluctuations emerging above
the noise level. In the final frame (k⊥vAt = 0.39) however, highly oblique mirror modes
have grown to large amplitudes in the region encompassed approximately by x/ρi0 ∈
[4000, 5000]. The scale separation achieved in this simulation (Lx/ρi0 = 8000) was the
minimum at which we could observe mirror fluctuations with strengths comparable to their
firehose counterparts; increasing the scale separation further would come at considerable
computational expense.

3.2.4. Effective collisionality: particle scattering
Following § 2.2.3, the effective collisionality was determined for the fast wave shown

in figure 17 by tracking thousands of ion macro-particles and measuring the frequency
at which their μ changes statistically by a factor of 1.2 or more. Figure 18 depicts this
scattering rate as a function of the position along the wave (x/ρi0) and the time (k⊥vAt).
Sites of strong scattering are associated with the firehose modes, which appear more or
less instantly and travel along with the trough of the wave. The trail of the scattering
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FIGURE 18. Space–time diagram of the effective collision frequency measured in a Pegasus++
fast wave. The simulation parameters are βi0 = 25, α = 0.1 and Te/Ti0 = 1; using these numbers
in (3.17) predicts νeff ≈ 16k⊥vA.

FIGURE 19. Wavefront-averaged βi� in the fast wave for the same time frames as figure 17.
Pressure-anisotropy regulation from the firehose instability maintains βi� � −1.4, while the
mirror fluctuations cause some distortion of the mode above βi� ≈ 1 but are unable to regulate
fully the positive anisotropy to marginally unstable values. An increase in the rate at which
positive pressure anisotropy is generated by the steepened wave and the asymmetry in the
anisotropy’s regulation by micro-instabilities causes an enhancement of the positive pressure
anisotropy in the final time shown.

sites indicates that the trough of the wave moves at ≈6vA, as expected for a fast mode
with βi0 = 25. In this simulation, the rapid regulation of the pressure anisotropy by the
firehose instability causes sloshing. The sloshing temporarily drives a higher positive
pressure anisotropy, and therefore enhanced mirror growth, for a short period beginning at
kvAt ≈ 0.4. The measured scattering rate in the firehose-unstable regions is comparable to
the predicted asymptotic scattering rate for a βi0 = 25 fast wave with α = 0.1 and Te = Ti0,
viz. νeff ≈ 16k⊥vA (see (3.17)). The mirror instability in this case also scatters particles at
an average rate of a few times k⊥vA, but these scattering sites are much less coherent and
do not coincide with the peak in the positive pressure anisotropy. This delayed growth is
a result of the limited achievable scale separation in our simulations, which only barely
allows mirrors to grow to nonlinear levels within a fast-wave crossing time.

The effects of the induced scattering on the fast wave’s pressure anisotropy are visible in
figure 19, which shows 〈βi�〉y at the same times as in figure 17. The negative anisotropy is
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regulated within a very short time by the firehose instability to a value close to the oblique
threshold βi� � −1.4. This regulation persists, but is not matched on the mirror-unstable
side. Some steepening has also occurred, as expected, but the positive anisotropy has not
been driven down near marginal mirror stability. For mirror fluctuations to regulate the
positive pressure anisotropy to marginal stability, they would need to grow faster with
respect to the fast-wave crossing time; (3.16a,b) suggests that this could be achieved
by increasing λ⊥/ρi0 even further (beyond λ⊥/ρi0 = 104), or perhaps by decreasing
βi0 (though in this case, the amplitude threshold (3.15) would increase, necessitating
larger fast-wave amplitudes that would shock almost immediately). Unfortunately, such
large scale separations become prohibitively expensive to simulate using Pegasus++, and
so from this point onwards, we employ the CGL-MHD code with pressure-anisotropy
limiters.10

3.2.5. Viscous damping and collisional steepening
To study fast-wave behaviour at asymptotically large scale separations, we employ

the Landau-fluid CGL-MHD code. These simulations are performed using a larger β
parameter than that used in the Pegasus++ run, βi0 = 100 rather than 25, and with α = 0.2.
These parameters have the advantage that a large portion of the fast wave is initially above
the threshold for instability while the wave remains somewhat linear in amplitude. As
discussed in § 3.2.1, this code introduces a user-specified constant scattering rate in (and
only in) the kinetically unstable regions of the plasma. We set this scattering rate according
to (3.17) using the initial mode amplitude. In reality, this scattering rate should decay
alongside the amplitude, and so our treatment will not precisely reproduce the results that
would be obtained from a more rigorous kinetic calculation.

In figure 20, the propagation and nonlinear steepening of the CGL-MHD fast wave are
presented. The top panel in figure 20(a) shows the bulk fluid velocity perpendicular to
the background field at three different times, exhibiting steepening without a significant
change in wave amplitude. This indicates that no significant viscous dissipation occurs on
a time scale comparable to the shock-formation time scale (as predicted by (3.18)). The
bottom panel shows the pressure anisotropy of the wave at the same times, multiplied
by βi. The anisotropy is substantially reduced below what it would be in the absence
of the limiting collisionality, particularly on the firehose-unstable side, although it is
not perfectly regulated to the instability thresholds. In particular, a peak in the positive
pressure anisotropy becomes prominent starting from k⊥vAt ≈ 0.1. This is a result of wave
steepening, as the sharp gradient at the wavefront generates positive � much faster than the
slow decline in the wake generates negative �, as well as faster than our (constant) limiting
collisionality is able to regulate. Figure 20(b) displays the evolution of the maximum
absolute value of the density gradient from this run, alongside that from a comparable run
with νlim = 0. On the abscissa is the simulation time normalized by the double-adiabatic
shock time tda

s (see (3.12)). We calculated the shock time for each run using the same
detection method as in figure 16; these times, marked by filled circles in the figure,
agree reasonably well with the predicted values of tda

s and tsa
s for the collisionless and

collisional cases, respectively. The difference in steepening rate between the two runs can
be interpreted as νlim forcing a more MHD-like, rather than collisionless, evolution in the
fast wave. The collisional isotropization at the peaks of the wave (which are also the most
rapidly moving regions) effectively changes the local adiabatic index of the ions, slowing
down the steepening process and yielding better agreement with tsa

s than with tda
s . In this

10As with the NP mode’s decay rate, the fast-wave steepening time also increases linearly with the wavelength, here
λ⊥, and so the overall cost scales ∝(λ⊥/ρi0)

2. A Pegasus++ simulation with a scale separation of λ⊥/ρi0 = 104 would
cost �107 CPU-hours.
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(a) (b)

FIGURE 20. (a) Propagation of an α = 0.2 fast wave with βi0 = 100 and νlim set by (3.17). The
top panel shows wave steepening in the fluid velocity, with no noticeable viscous decay on the
time scale of shock formation. The bottom panel shows regulation of the pressure anisotropy to
near the mirror and firehose thresholds. A peak appears in βi� due to the rapid generation of
positive pressure anisotropy in the steepening wavefront. (b) Maximum density gradient found
within the domain of the same α = 0.2, βi = 100 fast wave, compared against an equivalent
run with νlim = 0. The predicted shock times are labelled by tda

s and tsa
s , and the shock times

detected by the same method used for figure 14 are denoted by circular markers. The growth
of the maximum gradient continues for a longer time in the single-adiabatic case than in the
double-adiabatic case, indicating delayed shock formation.

sense then, all of the essential characteristics of large-amplitude, high-β, collisionless fast
waves approach that of single-adiabatic MHD as a result of induced micro-instabilities.

4. Summary and discussion

This exploration of microphysically unstable magnetosonic modes brings closure to a
systematic investigation of isolated waves in collisionless, high-β plasmas that started with
the discovery of self-interrupting Alfvén waves and continued with the demonstration
of self-sustaining sound. In summary, through the action of adiabatic invariance, the
consequent production of pressure anisotropy and the excitation of rapidly growing,
micro-scale kinetic instabilities:

(i) collisionless linearly polarized Alfvén waves with amplitudes satisfying (δB⊥/B0)
2 �

2/βi0 retard their own propagation and spur their own viscous decay (Squire et al.
2016, 2017a);

(ii) collisionless IAWs with amplitudes satisfying |δn/n| � 2/βi0 avert their otherwise
potent Landau damping and propagate in a manner akin to sound waves in a weakly
collisional fluid (Kunz et al. 2020);

(iii) collisionless NP modes with amplitudes satisfying |δB‖/B0| � 0.4 and wavelengths
λ‖ � 104β

1/2
i0 ρi0 are predicted to interrupt their transit-time damping and behave

similarly to MHD entropy modes (at smaller wavelengths, these large-amplitude
NP modes have been shown to decay via transit-time damping, which is sustained
against its nonlinear saturation by weak mirror-induced collisionality) (this paper);
and

(iv) collisionless fast waves with amplitudes satisfying |δB/B0| � 2/βi0 and wavelengths
λ⊥ � 102βi0ρi0 acquire an effective adiabatic index of 5/3 and therefore propagate
and nonlinearly steepen at single-adiabatic rates (this paper).
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Notwithstanding the somewhat narrow focus on the behaviour of isolated eigenmodes,
the simple demonstration that micro-scale physics effectively filters out what kinds of
macro-scale fluctuations are allowed in a high-β plasma is of broad relevance to observed
space and astrophysical systems, and to theories for electromagnetic turbulence. The most
immediate application to the former is the near-Earth solar wind. For example, Verscharen
et al. (2016) used linear theory to conjecture that plasma instabilities could be driven
by compressive fluctuations in the β � 1 solar wind through the adiabatic production of
pressure anisotropy, leading to ‘collisionless isotropization’ of solar-wind protons. Our
work supports this idea quantitatively from first principles. Verscharen, Chen & Wicks
(2017) then measured the polarization of compressive fluctuations within the solar wind
at 1 au using data from the Wind spacecraft, finding that the eigenmode relationships
detected were best represented by MHD, rather than collisionless, slow modes. Coburn,
Chen & Squire (2022) approached this same issue from a different angle, measuring
the dispersion relation of compressive modes in the solar wind and determining which
scattering rates best reproduced them. They concluded that the mean free path predicted
by their wave measurements is ∼103 times smaller than that set by Coulomb collisions,
finding that the dispersion relation of the measured fluctuations most closely resembles
that of Braginskii-MHD slow modes. Both of these observational results find a natural
explanation in the context of our paper, at least for those portions of the wind having
β � 1 that have been measured to be constrained by the firehose and mirror instability
thresholds (Kasper, Lazarus & Gary 2002; Hellinger et al. 2006; Bale et al. 2009; Chen
et al. 2016).

To the extent that nonlinearly interacting fluctuations in strong electromagnetic
turbulence retain some characteristics of their linear eigenmodes, the above conclusions
cast doubt on whether some well-established pillars of MHD and gyrokinetic turbulence
theory (Goldreich & Sridhar 1995; Lithwick & Goldreich 2001; Schekochihin et al. 2009;
Schekochihin 2022) are applicable to high-β plasmas. For example, with each fluctuation
generating and responding to pressure anisotropy in an amplitude-, wavelength- and
polarization-dependent way, it is suspect that inertial-range compressive fluctuations are
simply passively mixed by the Alfvén-wave cascade and, in turn, exert no back-reaction
on the Alfvénic fluctuations. Likewise, shorter-wavelength fluctuations would reside
within (and be altered by) a patchy, yet locally uniform, pressure anisotropy produced
by the ensemble of much longer-wavelength fluctuations, implying a loss of strict
locality in the turbulent cascade. While the question of how a background pressure
anisotropy affects electromagnetic kinetic turbulence has been addressed using reduced
(gyrokinetic) models (Kunz et al. 2015, 2018), those studies did not address this potential
non-locality, nor did they incorporate the impact of kinetically unstable fluctuations and
the associated anomalous scattering. At this point, it is unclear how all this additional
physics plays out within a turbulent cascade governed by a scale-by-scale ‘critical balance’
between the characteristic linear and nonlinear frequencies, an organizing principle for
strong turbulence that appears to hold (albeit in a modified form) even in the presence
of strong pressure anisotropies (Bott et al. 2021; Squire et al. 2023). The mutual
interactions between what are conventionally considered to be energetically decoupled
cascades, and the impact of this coupling on the constant flux of energy, the locality
of interactions and the universality of critical balance, ought to be investigated. Some
progress on this front has recently been made by Arzamasskiy et al. (2023), who showed
using hybrid-kinetic simulations that strong Alfvénic turbulence with (δB⊥/B0)

2 � 2/βi0
self-consistently produces a parallel viscous scale comparable to the driving scale of the
cascade and involves non-local energy transfers in k space associated with the excitation
of ion-Larmor-scale kinetic instabilities. Incorporating compressive fluctuations into this
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study would be informative, not only with regards to the dynamics but also concerning the
partition of turbulent energy into ion versus electron heating (cf. Kawazura et al. 2020).
While the properties of isolated waves in collisionless, high-β plasmas have now been
elucidated, there is clearly much more work to be done.
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Appendix A. Hermite–Laguerre solution to linear KMHD

In this appendix, we detail our numerical method for calculating the time-dependent
pressure anisotropy generated by a linear NP mode. The task is to integrate the system
(2.1) numerically from an appropriate set of initial conditions. Before providing those
conditions, we take the time derivative of (2.1b) and use (2.1c) to obtain the following
wave equation for the E×B drift velocity:

(
d2

dt2
+ k2v2

A

)
u⊥=− ik⊥

min0

d
dt

(δp⊥i + Teδn) . (A1)

The right-hand side of this equation is calculated by taking the zeroth and second
moments of the linearized Vlasov equation (2.1a). After assuming an isotropic Maxwellian
background, F0 = FM(v), and rewriting the electric and magnetic-mirror forces using
(2.1c) and (2.1d), (2.1a) reduces to

(
∂

∂t
+ ik‖v‖

)
δf +

(
ik⊥u⊥

w2
⊥

v2
th,i

+ ik‖v‖
Te

Ti0

δn
n0

)
FM = 0. (A2)

Equations (A1) and (A2) are solved numerically as follows.
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We express the v‖ dependence of δf in terms of Hermite polynomials Hn and the w2
⊥

dependence in terms of Laguerre polymonials Lm:

δf (t, k‖, k⊥, v‖, w⊥) = FM(v)

∞∑
m,n=0

gm,nHn

(
v‖
vth,i

)
Lm

(
w2

⊥
v2

th,i

)
. (A3)

This spectral decomposition allows the required moments to be calculated simply as

δn
n0

= g0,0,
δp⊥i

pi0
= g0,0 − g1,0,

δp‖i

pi0
= g0,0 + 4g0,2, (A 4a–c)

so that (A1) becomes(
d2

dt2
+ k2v2

A

)
u⊥
vth,i

= − ik⊥vth,i

2
d
dt

[(
1 + Te

Ti0

)
g0,0 − g1,0

]
. (A5)

Because the Hermite and Laguerre polynomials form orthonormal bases with respect
to Gaussian and exponential weights, respectively, (A2) may be easily transformed to
Hermite–Laguerre space to find

dgm,0

dt
+ ik‖vth,igm,1 + i(δm,0 − δm,1)k⊥u⊥=0, (A6a)

dgm,1

dt
+ ik‖vth,i

(
2gm,2 + 1

2
gm,0

)
+ i

Te

2Ti0
δm,0g0,0 = 0, (A6b)

dgm,n

dt
+ ik‖vth,i

[
(n + 1)gm,n+1 + 1

2
gm,n−1

]
= −νn4gm,n, n ≥ 2. (A6c)

Note that the term k‖v‖δf representing the parallel phase mixing of the perturbed
distribution function couples together different Hermite moments, representing the
generation of fine scale structure in v‖. Because the magnetic field suppresses phase
mixing across the magnetic field, there is no cascade to higher w⊥ moments and only
the first two Laguerre polynomials (m = 0, 1) are needed. To the right-hand side of
(A6c), we have appended a fourth-order hyper-collision operator; the restriction of the
collision operator to n ≥ 2 guarantees that number and momentum are conserved. The
hyper-collisionality is added because only a finite number of Hermite polynomials are
usable, so the series must be truncated somewhere. A hard truncation in which the final v‖
moment is arbitrarily set to zero will result in numerical instability unless a collisionality
is employed to ensure the velocity-space cascade (associated with parallel phase mixing
of the perturbed distribution function) decays to zero amplitude before the last resolved
moment is reached.

A code was written in Fortran 90 to solve (A5) and (A6). Equation (A6) is solved and δf
updated in time using a semi-implicit Crank–Nicholson method; the moments g0,0 and g1,0
are then used in (A5) to update the drift velocity using centred differencing in time. The
discrete time axes on which gm,n and u⊥ are stored are staggered to maintain appropriate
centring for all derivatives. The matrix inversion needed to update gm,n is performed using
the Thomas tridiagonal matrix algorithm (TDMA).

For the initial conditions, we start from isothermal pressure balance, with g1,0 =
g0,2 = 0 and g0,0 �= 0 (but arbitrary). The reasoning behind this choice is discussed
in § 2.2.1. These initial conditions transition rapidly into the NP eigenmode by launching
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small-amplitude (relative to the amplitude of the NP mode) fast waves that facilitate the
adjustment. The linear evolution of the NP mode from this initial condition is shown in
figure 1 and discussed in § 2.1.3.

Appendix B. Magnetosonic modes with arbitrary scattering frequency

To obtain the linear dispersion relation of kinetic hydromagnetic modes at arbitrary
ν, we must use a model that accurately captures the effects of adiabatic invariants, heat
fluxes and collisional isotropization. One such model is given by the Chew, Goldberger &
Low (1956) equations supplemented by collisional isotropization and closed by so-called
Landau-fluid heat fluxes (Snyder, Hammett & Dorland 1997). Assuming isothermal
electrons, these equations are

Dn
Dt

= −n∇ · u, (B1a)

min
Du
Dt

= −∇
(

p⊥i + nTe + B2

8π

)
+ ∇ ·

[
b̂b̂
(

�pi + B2

4π

)]
, (B1b)

DB
Dt

= (B · ∇)u − B∇ · u, (B1c)

nB
D
Dt

(p⊥i

nB

)
= −∇ · (q⊥ib̂) − q⊥i∇ · b̂ − 1

3
ν�pi, (B1d)

n3

B2

D
Dt

(
p‖iB2

n3

)
= −∇ · (q‖ib̂) + 2q⊥i∇ · b̂ + 2

3
ν�pi, (B1e)

where D/Dt .= ∂/∂t + u · ∇ is the convective derivative for the bulk velocity u, b̂ .= B/B
is the unit vector in the direction of the local magnetic field, �pi

.= p⊥i − p‖i is the
dimensional ion pressure anisotropy, ν is the isotropizing collision frequency, and q‖i
and q⊥i represent the field-parallel flow of parallel and perpendicular ion heat. For linear
perturbations to the ion temperature (δT‖i, δT⊥i) and magnetic-field strength (δB‖) having
parallel wavenumber k‖, the latter may be adopted from (48) and (49) of Snyder et al.
(1997):

q‖i,k = − 4nv2
th‖,i

2
√

π|k‖|vth‖,i + (3π − 8)ν
ik‖δT‖i, (B2)

q⊥i,k = − nv2
th‖,i√

2π|k‖|vth‖,i + 2ν

(
ik‖δT⊥i + ik‖T⊥i�i

δB‖
B

)
. (B3)

These ‘3 + 1’ heat fluxes accurately reproduce the linear Landau–Barnes damping of the
kinetic hydromagnetic modes in the collisionless limit (Snyder et al. 1997, § VIII) and
take on a form akin to that obtained by Braginskii (1965) in the collisional limit. Because
Braginskii-MHD does not accurately capture the linear heat fluxes when ν � |k‖|vth,i, the
Landau-fluid CGL equations are used to describe the linear propagation of these modes
at arbitrary ν, bridging the gap between the fully collisionless (ν = 0) and the weakly
collisional (ν � k‖vth,i). Note that, in the absence of heat fluxes and collisionality, (B1d)
and (B1e) guarantee conservation of the adiabatic invariants μ and J associated with
Larmor gyrations and bounce motion. One of the advantages of using the Landau-fluid
CGL equations over a Vlasov approach is the former’s lack of dependence on the plasma
dispersion function Z(ζ ), whose dependence on ζ

.= ω/|k‖|vth,i can only be expressed
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analytically in the asymptotic limits ζ � 1 and ζ � 1. Instead, the ‘3 + 1’ heat fluxes
yield polynomial dispersion relations for the modes at all frequencies. As a result, if one
wishes to derive an analytic expression for the frequency and damping rate of the oblique
IAW, which has ζ ∼ 1 when Te/Ti0 ∼ 1, they can then do so with ease.

Proceeding with the linear analysis, we assume zero background pressure anisotropy,
neglect all nonlinear terms, and Fourier transform (B1)–(B3) in space and time, so
that D/Dt → −iω and ∇ → ik. The result is a straightforward algebraic system, some
solutions of which are shown in figure 21. In total, there are eight modes associated with
eight unique time derivatives (∇ · B = 0 fixes one of the components of δB⊥). The modes
not displayed in figure 21 are the Alfvén waves (which would be lines at ζ = ±β

−1/2
i0 ) and

both fast waves (which are shown in figure 15). Considering that there exists one additional
time derivative in CGL-MHD than in collisional MHD due to the splitting of the thermal
pressure into two components, there should be a mode that vanishes in the collisional limit.
Indeed, after bifurcation, one branch of the oblique IAW becomes non-propagating and is
damped at a rate approximately equal to ν as ν → ∞. This strong damping is due to the
mode’s polarization, having opposing perpendicular and parallel pressure perturbations
that satisfy |δp⊥| � |δp‖| when k⊥ � k‖. Hence the reason we have termed this mode
the ‘anisotropy mode’ in figure 21: it remains anisotropic even at arbitrarily large ν,
causing it to damp increasingly fast. The NP mode has in some cases been attributed
to the collisionless limit of the MHD slow magnetosonic mode (e.g. Verscharen et al.
2017), hence its frequently being referred to as the collisionless slow mode. This may be
due to the fact that the Braginskii-MHD dispersion relation predicts a non-propagating
slow mode at sufficiently low ν, one which remains non-propagating as ν → 0. In reality,
the slow mode does propagate once again at sufficiently low collisionality, and the NP
mode is better identified as the kinetic extension of the MHD entropy mode. In the
MHD entropy mode, no pressure perturbation is permitted by the parallel momentum
equation, only a density perturbation. However, at lower scattering rates, the pressure
separates into its field-parallel and perpendicular components, and perpendicular pressure
balance becomes achievable (see (B1b)). The assertion that the NP mode is connected
to the MHD entropy mode, rather than the slow mode, is likely more desirable as it also
avoids degeneracy in different branches of the dispersion relation. Careful inspection of
figure 21 shows that there exists a band in which both the NP and oblique ion-acoustic
modes possess zero real frequency. If it were the case that the MHD slow mode became
the NP mode, this branch would have to cross with the kinetic entropy mode and both
would have identical decay rates, making them degenerate. Therefore, in our argument
for the behaviour of above-threshold NP modes in high-β plasmas, we expect that at very
large scale separation, and hence large ν/|k‖|vth,i, the NP mode will become more akin to
the MHD entropy mode.

The oblique ion-acoustic wave (IAW) also deserves special attention, not least because
it possesses a non-propagating band beginning near ν ∼ k‖vth,i. Somewhat paradoxically,
this is the collisionless extension of the MHD slow mode, never mind the fact that at
high β, it propagates faster than the Alfvén speed. Even in the collisionless Landau-fluid
CGL model, this mode evades a simple general expression for its frequency. However,
in the limit of k⊥ � k‖ and β � 1 with Te = Ti0, one can obtain the dispersion relation
numerically; we find that ζ ≈ 1 − 0.43i. This mode therefore has a very similar dispersion
relation to its parallel-propagating variant, especially with regards to its rapidly damped
nature. Asymptotic analysis for k⊥ � k‖ reveals that this mode develops a non-propagating
band when β � 7.1, occurring in the approximate range of scattering frequencies
satisfying ν/k‖vth,i ∈ [2, (3/4)

√
β]. When β ∼ O(1) and smaller, the Braginskii slow
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(b)

(a)

FIGURE 21. Linear dispersion relation of the Landau-fluid CGL-MHD (B1). The dimensionless
(complex) frequency ζ

.= ω/|k‖|vth,i is computed numerically as a function of collisionality
ν/|k‖|vth,i for k⊥ = 4|k‖|, βi0 = 16 and Te = Ti0.

mode smoothly transitions into the oblique IAW as ν → 0. However, at high β, an
increasingly large gap forms between the two propagating portions of this mode. This
phenomenon is not present in parallel-propagating IAWs at any β.

Appendix C. Oblique IAWs and micro-instabilities

Of the collisionless hydromagnetic modes that do not propagate parallel to the
background magnetic field, we have yet to discuss one in the context of high-β plasmas
and micro-instabilities: the oblique IAW. Given that oblique IAWs share many traits
with their parallel propagating counterparts (§ B), generalizing the results of Kunz et al.
(2020) to the oblique case should not require dramatic changes. Even when propagating
across the background magnetic field, at high β, these waves are still largely driven by
a perturbation to the parallel pressure. As a result, the magnetic tension plays essentially
no role, and no interruption-like process can occur as in the case of linearly polarized
Alfvén waves. Furthermore, the oblique IAW generates equivalent positive and negative
pressure anisotropies (there is no pressure balance as in the NP mode). For this reason,
both mirror and firehose instabilities can be triggered by this mode. The only notable
difference between the oblique and parallel IAWs is the existence of a non-propagating
band at certain values of ν in the dispersion relation of the oblique mode. To see how this
difference affects propagation in the presence of instability-induced scattering, we perform
an analysis similar to that found in § 3.1.3.

Our first task is to determine the amplitude limit above which the anisotropic pressure
perturbation in the oblique IAW is unstable to both the mirror and firehose instabilities.
Taking the k⊥ � k‖ and β � 1 limit, the parallel and perpendicular temperature
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perturbations in the oblique IAW are

δT‖
Ti0

≈ −
[

2 +
(

1 + i
k‖vth,i

ω
√

π

)−1
](

1 + 2i
k‖vth,i

ω
√

π

)−1
δB‖
B0

, (C1a)

δT⊥
Ti0

≈
(

1 + i
k‖vth,i

ω
√

π

)−1
δB‖
B0

. (C1b)

Substituting in ω/k‖vth,i ≈ 1 − 0.43i, (C1) yields an ion pressure anisotropy � = (1.88 −
3.03i)(δB‖/B0). This implies the following amplitude threshold for oblique IAWs to trigger
both the firehose and mirror instabilities:∣∣∣∣δB‖

B0

∣∣∣∣ � 1
βi

(oblique IAW amplitude threshold). (C2)

We argue that, above this threshold, the scattering induced by micro-instabilities will be
that required to maintain marginal stability, or � ∼ β−1

i . Through the same logic as was
applied to the fast mode, this scattering rate is

ν ∼ Re
[

3ωβi

(
δB‖
B0

− 2
3

δn
n0

)]
≈ 3.7k‖vth,iβi

∣∣∣∣δB‖
B0

∣∣∣∣ . (C3)

As in the case of the fast wave, the above expression for the limiting collisionality is
only valid in the limit that ν � ω. This constraint is nearly satisfied at the amplitude
threshold; therefore, this scattering rate is likely to be a good approximation even for mode
amplitudes of only a few β−1

i .
With the scaling of the induced scattering rate now known, we may return to the

dispersion relation shown in figure 21 to surmise how micro-instabilities might modify
the propagation of oblique IAWs. Recall from Appendix B that the oblique IAW becomes
non-propagating for βi � 7.1 when ν/k‖vth,i ∈ [2, (3/4)

√
β]. The form of the effective

scattering rate (being dependent on δB‖) then suggests that the fate of an oblique IAW
rests on the amplitude of the initial perturbation. For amplitudes within the range β−1 �
|δB‖/B0| � β−1/2, the oblique IAW will become a viscously damped mode that does not
propagate, while above |δB‖/B0| � β−1/2, it will become a Braginskii-like propagating
sound wave. The latter of the two regimes is essentially the result obtained by Kunz
et al. (2020) for parallel-propagating IAWs. The former limit of moderate amplitude
becomes increasingly important at high β where its range of relevance increases. In
plasmas with β � 10, however (e.g. the solar wind), this range is either extremely narrow
or non-existent, leading to evolution closer to the parallel IAW. As in all cases, the action
of microinstabilities and their induced scattering can only be expected to last for as long as
the wave-associated pressure anisotropy is driven beyond the microinstability thresholds.
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