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Solid convergence spaces

M. Schroder

The category of solid convergence spaces is introduced, and

shown to l ie strictly between the category of al l convergence

spaces and that of pseudo-topological spaces. A wide class of

convergence spaces, including the e-embedded spaces of Binz, is

then characterized in terms of this concept. Finally, several

illustrative examples are given.

The categories L of convergence spaces, P of principal convergence

spaces (also known as pseudo-topological spaces) and T of topological

spaces are a l l more or less familiar. It is well known that any

topological space is completely determined by the collection of a l l i t s

open covers. After having introduced an analogous concept for convergence

spaces (namely, indexed cover), we find instead that only some convergence

spaces can be so determined. Such spaces are called solid. Some

properties of solid spaces are listed, and i t is shown that the inclusions

P c 5 c i. are both proper, where S denotes the category of solid spaces.

In addition, using these ideas we discuss in more detail a more

restricted class of spaces, obtaining as a special case the internal

characterization of e-embedded convergence spaces given independently by

Muller [6]. This states that a space is e-embedded iff i t is Hausdorff,

solid and u-regular (this last term generalizing complete regularity for

topological spaces). Finally, examples are given showing among other

things that these three conditions are independent of one another.

1. Introductory concepts

The reader is assumed to be familiar with the concepts of convergence
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444 M. Schroder

structure (Limitierung) and convergence space (Limesraum), as well as with

i n i t i a l and final convergence structures. See [4] or [3; paragraphs 0 .1 ,

0 . 1 , 0.3(1) and 0.3(2) respectively], for example. Convergence spaces will

usually be denoted by symbols such as X , or (X, Y) if the convergence

structure y is to be explicitly mentioned. For brevity, the word

'convergence' is often deleted from a l l the above terms.

DEFINITIONS, (i) Let X be a se t , <J> a f i l t e r on X and A <= X .

We say that <J> has a trace on A i f F n A is non-void, for a l l F € <|> .

In this case, the symbol <j> n A denotes the f i l t e r {F n A : F € <(>} on

A .

( i i ) Suppose a space (X, y) be given. Then the sentence 'x$ is a

pair from (X, y) ' is defined to mean that x € X and <f> is a f i l t e r on

X such that <j> converges to x in (X, y) .

( i i i ) A collection £ of subsets of a space (X, y) is said to be

an indexed cover for (X, y) if i t is the image of a map associating with

each pair x(j) from {X, y) a subset S , of X , such that S , € <(> .

(iv) The space (X, y) is called the special inductive limit of the

family {[X-, y-) : £ € ! " } of convergence spaces i f the following

condit ions a l l hold:

1. [X., y.) i s a subspace of (X, y) , for a l l i £ I ,

2. the collection {x. : i € i} is directed upwards by inclusion,

with X = UX. , and

3. Y is the final structure on X induced by the family

{j. : X. •*• X). _ of inclusion maps.

REMARK I . I . Let X and X be convergence spaces and f : X + Y a

continuous map. Then each indexed cover Z for 1 induces an indexed

cover /~1(£) for X . Hamely, if x<j> is a pair from X then /($)

converges to /(x) in Y , since / is continuous. Now by defining

^ ( ^ a n d

= {T. : x<t> i s a pa i r from x) ,
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Solid convergence spaces 445

we construct the indexed cover f (E) .

Recalling that a space {X, y) is called compact i f every u l t r a -

f i l t e r on X converges to some point of (X, y) , and that a subset A of

X is compact i f i t is compact as a subspace of {X, y) , we say that

{X, y) is locally compact i f i t possesses an indexed cover consisting

entirely of compact subsets. Equivalently, (X, y) is locally compact i f f

i t is the special inductive limit of i t s compact subsets.

Almost exactly as in topology, one proves that compact spaces are

characterized by the Heine-Borel property. In fact , the following

conditions on a space X are equivalent:

( i ) X is compact,

( i i ) every f i l t e r on X has a non-void cluster s e t , and

( i i i ) for each indexed cover £ for X there is a f ini te subset

lQ of I , with X = UEQ .

(Fischer [4] proved the equivalence of ( i ) and ( i i ) . }

PROPOSITION 1.2. The special inductive limit of a family of locally

compact spaces is locally compact. More generally, suppose that a

collection {X-, : X € A} of locally compact spaces is given, and for each

\ € A , a map f,:X->-*X. Then (X, y) is locally compact, where y

denotes the final structure on X induced by the collection

{fx •• * € A} .

The proof of this proposition is omitted, being straightforward though

slightly messy. (Note that as there are k-spaces which are not locally

compact, this proposition is not true in the category of topological

spaces.)

2. Solid spaces and solidifications

Using indexed covers, we associate with each space its solidification

and its strong solidification, the space being called solid if it coincides

with its solidification. It is shown later that not all spaces are solid,

but that many are, including all topological spaces.
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To each space X = (X, y) are assigned its solidification

sX = (.X, ay) and i t s strong solidification s'X = (X, a'y) . These a r e

defined as follows:

( l ) <(>->• x in sX i f for each indexed cover £ for X there is a

f in i te s e t , say <|> <J> , of f i l t e r s on X , a l l converging

to x in X , such that

(2 ) <J> -»• x i n s'X i f f o r e a c h i n d e x e d c o v e r E f o r X t h e r e i s a

f i n i t e s e t , s a y x-,'l>
1> • • • > * <t> . o f p a i r s from X such t h a t

n n
x £ (1 S , a n d U S , € <)> .

1 Vi 1 *i*i

The basic properties of solidifications are now summarised, those

marked * being also true of strong solidifications.
2

THEOREM 2 . 1 . (i) All solidifications are solid, that is, s = s .

(ii) * If f : X -*• X is continuous, then so is f : sX •*• sY .

(iii) * sA is a subspace of sX , if A is a subspace of X .

(iv)* If X is the special inductive limit of the family

{x. : i € 1} , then sX is the special inductive limit of \sX. : i (. i] .

(v) If X is T then sX and s'X coincide.

Proof. (i) Left to the reader as an exercise.

(ii) Let x<j> be a pair from sX . I t must be shown that /(<j>)

converges to f{x) in sY . Now by Remark 1.1, each cover Z for v

induces an indexed cover / (2) for X . By definition of sX , there

are f i l t e r s <J> , . . . , <|> , converging to x in X , with

T . u . . . u T €<f>. But

f
n

S,
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the former set belonging to /(<!>) . Thus the l a t t e r also belongs to

/(4>) , showing that /(4>) •+ f(x) in s i , as required.

(iii) By part (ii) , the inclusion j : sA •*• sX is continuous. On

the other hand, suppose that x 6 A and <(> i s a f i l t e r on A such that

j(<t>) -*• x in sX . To prove the claim, i t i s enough to show that <j> •* x

in sA . Let £ be a cover for A . We extend I to a cover £_ for £

as follows: for any pair yty from X ,

(a) i f y £ A and ty has a trace on A , l e t S . = S u

(3) i f y € A and ty does not have a trace on A , l e t S . =

and

(Y) i f y M , le t

Since j(4>) -*• x in sX , there are f i l t e r s <|> , , ()> converging

to x in AT , with S u . . . u 5 € j(<()) . Without loss of

generality, we suppose that <(>• has a trace on A if i 5 m , and that
If

(j>. does not have a trace on 4 i f i > m . Thus as

m
U 5 us.

and the f i l t e r s <b. n A a l l converge to x in A , we have shown that

(J> -»• a; in sA .

(iv) Let X' be the inductive limit of the collection

{sX. : i i i] . By (ii), the inclusion maps j • : sX- -*• sX are a l l

continuous, and consequently, so is id : X' -*• sX . Conversely, l e t

4> •+ x in sX . Since X is an inductive l imit , every convergent f i l t e r

on X has a base on some X. . Thus the family \X. : i € j} can be made

into an indexed cover for X , by means of the axiom of choice. Hence

x £ X- € (j) , for some index i . But sX • is a subspace of 8/ , showing

that $ n X; •*• x in sX^. . I t follows that

•* x i n X' .
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This proves that X' = sX ; that is, sX is the special inductive

limit of the family {sX. :.i (. l] .

Is

(v) We r eca l l that a space X i s T, i f y •* x in X implies

x = y , for a l l x, y € X . (The symbol y denotes the u l t r a f i l t e r
{A : A c X and y € A] .) Trivial ly , for a l l spaces X the identi ty maps
X •* sX •*• s'X are both continuous.

On the other hand, l e t X be T. and <J> -»• x in s'X . With each

indexed cover E for X i s associated a cover E* : for each pair yif)

from X ,

(a) i f y = x , then S* = 5 . , and

(3) otherwise, S*. = S ^Ux} .

(That th is i s a cover for X follows from the fact that in a 2". space

one point sets are closed.) Using th is construct, one can now easi ly show

t h a t Q •*• x in sX .

The next theorem is mostly an immediate corollary of the foregoing.

THEOREM 2.2. (i)* Subspaces, products, and special inductive limits

of solid spaces are solid.

(ii) In the category of T convergence spaces, solidity and strong

solidity are equivalent.

(iii) Every principal convergence space, and in particular every

topological space, is solid.

Proof. To prove that products of solid spaces are solid, i t i s only

necessary to use the universal property of products, and Theorem 2.1 (ii) ,

which i s l e f t as an exercise for the reader.

Final ly, a space X i s called principal i f for each point x € X

there i s a f i l t e r $ on X such that $ •* x in X exactly when

<f> > <j> . Let X be pr incipal , and $ -»• x in sX . For each f f if ,

an indexed cover Z i s defined by

sft = X , i f ip -»• y in X and y * x ,
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and

S^ = F , if * - x in X .

Using t h i s cover, one can see that F 6 <j> . Consequently <j> 2 <f> , showing

that X i s so l id .

3. 4-embedded and e-embedded spaces

The main result of this section is an internal characterization of

e-embedded convergence spaces resembling that obtained independently by

Mliller [6]. As a corollary, we give a simple condition for the special

inductive limit of a family of e-embedded spaces to be e-embedded.

In what follows, any statement referring to the 'scalar field F ' is

true for both the real field R and the complex field C . Further, F

will always carry i t s usual metric topology, generated by the closed unit

ball D .

Let X be a convergence space, whose structure is Y • Then Cx

denotes the set of a l l continuous functions taking (X, y) to F , and

(JJY the in i t i a l topology on X induced by the family Cx , with WX

standing for the topological space (X, wry) • Similarly if A c CX , one

obtains the topology u,Y and the space W.X . The space X i s called

w .-regular i f (f> •+ x in X , for each pair x<f> from X . (Here <f

denotes that f i l t e r on X having {F : F £ <j>} as base, with being

the closure operator in W.X . J

For each subset A of CX there is a coarsest structure Y on A

c

making the evaluation map fi : A x X •*• F continuous, where fi(/, x) is

defined to be f(x) , for a l l / € A and x f X , [3]. This structure is

called the structure of continuous convergence. For brevity, the spaces
[A, y) and [CX, y ) are denoted by A and C X . Clearly A is ac c c c c

subspace of C X . Kote that 6 •*• f in A exactly when ft(6x<j>) -»• f(x)

in F , for each pair x<t> from X .

We now give the f i r s t of a sequence of technical lemmas.
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LEMMA 3 . 1 . The spaces C X , C sX and C s'X are the same, for

all convergence spaces X .

Proof. Since the space F i s both Hausdorff and topological, i t i s

strongly sol id . Thus by Theorem 2.1 (ii) , the sets CX, CsX and Ce'X

are equal. Also, the ident i ty maps X •* sX •*• s 'X being continuous, so are

the maps id* = id : C^'X •* C^s* and id* = id : CosX •* Q.QX . (For any

spaces y and Z , a continuous map f ;-Y •*• Z induces a continuous map
/* : CoZ •+ CaY , defined by f*{g) = g o / , for a l l g € CZ , [3].)

Finally, i t must be shown that id : C X •*• C 8 'X i s continuous. To

prove t h i s , i t i s enough to show that Q(Qx<S>) •* Si(f, x) = f(x) in F , for

each pair /6 from C X and xfy from s'X . However, since 6 •*• f in

C X , for each pair yip from X and each positive real number £ , there

are T . € 6 and P ^ € * such that

In th i s way, for each e > 0 we construct a cover £ for X . As a
n

r e s u l t , t h e r e a re p a i r s a: <(> , . . . , x i>n from X with x € D P ̂  , and
-L Is 1*

n n
P^ = U P p , A € (() . Now l e t Tc= U Tcm ^ . C l e a r l y Tc € 6 , and

This being true for each E > 0 , we see that ft( Q*<S>) * / (x) in F ,

completing our proof.

Let us fix now on a space X = (X, y) and a subset A of CX . As

in [?] , there are continuous maps i : J1 + C C X and i . : X •*• C A , the

former defined by i(x)(f) = fix) , for- a l l f Z CX and x € X , and the
l a t t e r by i . = j * o i , where j . : A •* C X i s the inclusion map. For

simplici ty , both i{x) and i,(x) are usually shortened to x ; that i s ,
n

x{f) = /(a;) , for a l l f .

By the previous lemma, i t does not matter whether we regard A as a
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subspace of C X ,' or C sX , or C s'X . This proves:
C G G

LEMMA 3 . 2 . 2%e maps i : sX + C C X , a n d i : s ' X + C C X a r er a a c c

c o n t i n u o u s , a s a r e i . : sX •* C A a n d i . : s ' X ->• C AA c a A o a

Let y. be the i n i t i a l structure on X induced by the map i . , and

aAX denote the result ing space [X, yA) . (if A = CX , we write aX

instead of ccifi •) We c a l l °AX the A-embedded space associated with

X , and say that X i s A-embedded i f y = y. . I t i s easy to see that

(f> •* x in cAX exactly when n(9x(})) •*• f(x) in F , for each pair /9

from A . Clearly id : X -»• c.X i s continuous, showing that Cc.X i s a
G /I /i

subalgebra of CX . Despite t h i s ,

LEMMA 3 . 3 . A is a subspace of C c.X .
G G n

Proof. First we must show that A c Cc.X . Take f € A , and define

/ : C A -+ F by /(F) = F(/) , for all F € CA . By LI, Lemma 6] the map

G G G

/ is continuous. Thus / : c.X -*• F is continuous, since / is clearly

the composite / o i of two continuous maps. That is, / € Cc.X , as

claimed.

Next, since the identity id : X •*• c.X is continuous, so is the

inclusion j = id* : C c.X -»• C X . Consequently, A inherits a finer

structure from C c.X than from C X . To complete the proof, we need
G ri G

only show the converse, namely, that the inclusion j' : A -*• C c.X is
continuous. However, the diagram

(X, f) HH- f(x)

(X, f)

commutes. As a result, j is continuous, being the composite of two
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continuous maps. Thus by the universal property of the structure of

continuous convergence [3, Satz 2] , j ' i tself is continuous.

REMARK. This lemma clearly justif ies our having called o.X the

/4-embedded space associated with X , for i t shows that o&X is an

^-embedded space.

The following two propositions are an attempt to characterize

d-embedded spaces, but without complete success, for i t is convenient to

place certain algebraic restrictions on A .

PROPOSITION 3.4. The space c^X is w -regular and strongly solid.

P r o o f . By Lemma 3 - 3 , A i s a s u b s p a c e o f C o.X , a n d s o
G G /i

i . : s'o.X •+• C A i s cont inuous, by Lemma 3 .2 . I t follows t h a t
A A G G

id : s'o.X •+• o.X i s a l s o c o n t i n u o u s , b y t h e u n i v e r s a l p r o p e r t y o f o.X .
A A A

Thus o.X i s s t r o n g l y s o l i d .

Secondly, W . - r e g u l a r i t y . Suppose t h a t $ -* x in o.X . I t must be

shown t h a t <J> •* x in o.X as w e l l . For each p a i r / 6 from A and
A G

each positive rea l number e , there are T € 6 and F£ 6 <t> with

n[T^Fz) cf(x) + eD .

Each g € A being continuous in the topology oĵ y , t>y i t s definition, if

g € T then

This shows that Sl[T *F~) C f(x) + eD . Thus <f •*• x in ê X , completing

our proof.

We do not know if the converse is true in general; we can only prove

i t under certain conditions. We assume

(i) that A is a vector subspace of CX containing the constant

function 1 , and

(ii) that | / | f A for all / d A .
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Under these c o n d i t i o n s , i f C i s c losed in w.X and x (. X\C , then the re

i s f Z A such t h a t / = | / | and 0 2 f(y) 5 1 for a l l y •€ X , and in

a d d i t i o n , f{x) =-1 and f{y) = 0 i f y € C .

PROPOSITION 3.5. Let A satisfy the above conditions. Then X is

A-embedded if it is w -regular and strongly solid.
n

Proof. By con t inu i ty of id : X -*• o.X , t o prove the p ropos i t i on i t

i s enough to show t h a t every f i l t e r which converges in o.X a l so converges

in X . Accordingly, l e t <J> •+ x in o.X . Then every open neighbourhood

of x i n w.X belongs t o <J> , s ince id : a.X •*• w X i s cont inuous.

Let Z be an indexed cover for X . By w ^ - r e g u l a r i t y , i|/ -»• y in

X whenever ^ -*• y in X . Thus we can choose a subset C of S

yf yf
w h i c h is closed in w.X and b e l o n g s to l̂  . Now w e set S ' . = C , for

y Y

all pairs yty from X , and so obtain an indexed cover 2' for X

refining £ , and consisting entirely of sets closed in w.X .

A f i l ter 6 converging to 0 in A is now constructed: let

for each pair yip from X , and 8 be that f i l t e r on A generated by

{eS ^ : yi> is a pair from X and e > o} .

This means that ft(0x<j)) •+ 0 in F , as (j> -»• x in a^X . In par t icular ,

there are T i 6 and F € (fi such that

(*) nCZXF) c D .

As T i 6 , there is a positive real number e and a finite
n

collection h-A>x> • • • > y ^ °f pairs from X with T 3 fi e£ .

Without loss of generality, we assume that i f i 2 m then x belongs to
n

S' , whereas x j: S' i f i > « , Consequently X \ U S' . i s an
v yH y^i

https://doi.org/10.1017/S0004972700042738 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700042738


4 5 4 M. Schroder

open neighbourhood of x in W.X . Thus

n
G = F \ U S' . € ( ( ) .

m+1 ^i/i

m
Suppose if possible that there is a point y € G \ U S' . . Then by our

n
conditions on A , we can find a function f i A , vanishing on U 5' . ,

with f{y) = 1 . Since all scalar multiples of / belong to T and y

to F , this contradicts (*). Thus

m
Gc U S' , .

From this i t is clear that (j) -»• x in 81* , or in other words, a.X is

the strong solidification of X . Hence X is i4-embedded, being strongly-

solid.

Binz [1] introduced the idea of c-embedded convergence spaces, the

definition reading that a space X is o-embedded if the map

i : X •+• C C X is an embedding (he considered F = R only, but the same
C G

class of spaces is obtained by using F = C ). The preceding results allow

us to characterize e-embedded spaces as follows:-

THEOREM 3.6. A convergence space is c-erribedded if and only if it is

Eausdorff, w-regular and solid.

Proof. By Proposition 3-1*, using A = CX , one sees that X is

U-regular and solid if i t is c-embedded. Moreover, e-embedded spaces are

known to be Hausdorff.

Conversely, suppose X to be W-regular, solid and Hausdorff. The

f i rs t condition implies that for a l l x € X and y € {x} , the ultra-

f i l t e r y converges to x in X . Thus {x} = {x} , since X is

Hausdorff. However, {x}~ = {y 6 X : f(y) = f(x) , for al l / € CX} ,

showing that if x t y there is f (. CX with /(x) ? f{y) . Consequently

the map i : X -*• C C X is injective.
C G

Next, by Theorem 2 .2 (ii) , X i s s t rong ly s o l i d , and so ( t ak ing
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A = CX ) we see that X is C.X-embedded. This, combined with the fact

that the map i i s inject ive, proves that i i s an embedding.

NOTE. The topological space wX can be characterised internally as

follows: i t s topology is the topology associated with the finest

uniformity on X with the property that ((> is Cauchy for each pair x§

from X . Consequently the characterization of e-embedded spaces given

above is also in ternal .

I t is known [J , Korollar 22, 23] that subspaces and products of

e-embedded spaces are e-embedded. We investigate in a subsequent paper

the problem of when the special inductive limit of c-embedded spaces is

e-embedded, being content at this point just to s ta te a simple condition

for th is to be so.

COROLLARY 3.7. Let X be the special inductive limit of the family

{X- : i £ i] of c-embedded spaces. Then X is c-errbedded if

(i) each X. is closed in wX , and

(ii) each X. is a subspace of cX .

The proof is omitted, being t r i v i a l . In case each X. is compact

e-embedded, we can do rather be t te r . However, such spaces are compact

Hausdorff topological spaces [2, Satz 9 ] s so that one is actually

discussing the special inductive limit of a family of compact Hausdorff

topological spaces in this case.

COROLLARY 3.8. Let X be the special inductive limit of the family

{x. : i £ i] of compact Hausdorff topological spaces. Then X is locally

compact, and the following statements are equivalent:

(i) X is a-embedded,

(ii) each X. is a subspace of aX ,

(iii) each X- is a subspace of wX , and

(iv) CX distinguishes the points of X [that is, for all

x, y € X , if x * y there is f <L CX with f{x) t f(y) ) .

Proof. The equivalence of (i) with (iv) was f i r s t noted by Kutzler.
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The implications (i) =» (iv) , (iv) °* (Hi) and (iii) =* (ii) are a l l t r i v i a l ,

the f i r s t being a'lways t rue , and the second because (iv) implies that WX

i s Hausdorff. Last, (ii) =» (i). Suppose X is not e-embedded. Then i t

is not w-regular, by Theorem 3-6. This means that $ \ x in X , for

some pair x<p from X with x 6 X. 6 <}> , say. I t follows that X.

properly contains X. , and hence that WX can not be Hausdorff [for i f i t

were, the compact subset X. would be closed). Thus there are dis t inct

points y and s of X with f(y) = f{g) for a l l f € CX , and y •*• s

in aX by Proposition 3.U. Now both y and 3 belong to X., , for

some i 1 € J , and so i t is not possible for X., to be a subspace of

aX . This completes the proof.

We show in the next section that there are spaces which do not satisfy

these conditions.

4. Various examples

In th is section examples are given showing that the three conditions,

W-regularity, Hausdorff-ness, and so l id i ty , mentioned in Theorem 3.6 are

independent of each other. One of these examples perforce is of a non-

sol id convergence space. Thus the category 5 of solid spaces is a proper

subcategory of L . Similarly, examples of solid but not principal spaces

are easy to find, since every cvembedded space is solid but not

necessarily pr incipal .

EXAMPLE 4 . 1 . The two point indiscrete topological space is solid and

u-regular , but not Hausdorff.

EXAMPLE 4.2. There are Hausdorff topological spaces which are not

regular. Such a space is solid, but not W-regular.

EXAMPLE 4.3. Let X be the set N u {°°} , and $ the set of a l l

non- t r iv ia l u l t r a f i l t e r s on X together with °° . A convergence structure

Y on X is defined by

<t> •+ n in (X, Y) i f f <!> = « ,

and

<j> -f °° in (X, y) iff 4> = ^ A . . . A <j>n ,
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for some f in i te subset <L , . . . , $ of $ .

Clearly (X, y) is compact and Hausdorff. Moreover, (J)̂  =: A$ i s

the neighbourhood f i l t e r of °° in the usual one point compactification

(X, T) of N . I t is not hard to check that i f <j) , . . . , <j>n+1 i s a

n+1 n
finite subset of $ , then l\ §. is strictly coarser than /\ (j). .

1 v 1 l

Thus (X, Y ) is not principal and in particular, (j)̂  does not converge to

°° in {X, y) • Now let I be an indexed cover for (X, y) . We

construct a cover Z' by setting

S , i f x = » , and

By compactness, there is a finite collection of pairs , say
n

a; <JL , . . . , x <f> , from {X, y) such t h a t X = U S' . We assume t h a tl i n n ± x ^

x. = °° i f i S m , and that a;. € N i f i > m . I t follows that

m m
US , = U S' => {p i X : p > k) ,

m
for some fe € N . Hence U 5 , i 6 . This shows t h a t <t>_ •+ °° in

i HH m

(X,- ay) ; that is (X, y) is not solid, and [X, T) is i ts

solidification.

In fact, {X, Y) is also u-regular. To see th is , note first that

C(X, y) = C(X, T) , by Theorem 2.1 (ii). This implies that the topologies

T and UY coincide, being compact Hausdorff. Secondly, a subset A of

* is T-closed if and only if i t is

(i) f inite, or

(i i) contains » .

Suppose $ •*• x in (X, y) . First, if x € N then (f> = a; = 4>~ (the

denoting the T-closure operator), and so <j> •* x in (X, y) in this
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case. Secondly, if x = °° then the remark above shows that <f = <(> A <*> .

Thus <j>~ converges in this case as well.

To summarise, (X, y) is compact, Hausdorff, and U-regular, tu t not

solid.

The next two examples are of spaces to which Corollary 3.8 applies.

In addition, the f i r s t is a solid space which is not principal.

EXAMPLE 4.4. Let x be the usual Euclidean topology on R2 and i t s

subsets, and le t X = {0} u jx € R2 : x > 0 and |x| £ 1> . For a l l

n € N we put X = {x_ (. X : \x~\ 5 nx.} , observing that [X , x) is

compact. Thus Corollary 3-8 applies to the special inductive limit (X, y)

of the family {[x , x) : n € N} . However, the continuity of

id : (X, y) •*• (X, T) ensures that C(X, y) 3 C(X, T) , the inclusion being

actually proper. Hence condition (iv) of that corollary is satisfied,

showing the c-embeddedness of (X, y) . In particular, (X, y) is solid.

I t is left to the reader to prove that (X, y) is not principal.

EXAMPLE 4.5. Let X be the Urysohn-Hewitt 'spiral staircase' from

_oo to +°° [5] , and T i t s topology. The space (X, x) is compactly

generated, but C(X, x) does not distinguish the points -« and +°° .

Let (X, y) be the special inductive limit of the compact subsets of

(X, x) . Clearly C(X, y) = C(X, x) , and so {X, y) is not e-embedded,

again by Corollary 3.8.

As a final remark, we point out that though more f i l ters may converge

in the solidification of a space than in the space, this is not true for

u l t ra f i l t e r s . In fact, i f X is a space and <(> an ul t raf i l ter on X

then the following statements are equivalent:

(i) <f) ->- x in X ,

(i i) <(> •+ x in sX , and

( i i i ) <(> * x in s'X .

This is however not true of the principal space associated with X , as a

sl ight modification of Example k.3 will show. The reader will easily

verify these facts for himself.
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