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IN MEMORIAM: GERALD E. SACKS, 1933–2019

Gerald E. Sacks, age 86, Professor Emeritus of Mathematics at Harvard and
M.I.T., passed away at his home in Falmouth, Maine, after a long illness.
Sacks was born in Brooklyn and graduated from Brooklyn Technical High
School. He initially was an engineering major, but interrupted his college
studies at Cornell University to serve in the U.S. Army from 1953 to 1956.
After returning to Cornell, he developed an interest in Mathematical Logic
and continued his studies in that area, receiving his Ph.D. in 1961 as a student
of J. Barclay Rosser. He began his academic career at Cornell University, but
moved to M.I.T. in 1966, and later accepted a joint appointment at M.I.T.
and Harvard. During his career, he held visiting positions at The Institute
for Advanced Study and several prestigious universities.

Sacks had a brilliant mind for Mathematics and an abiding curiosity about
it. In addition, he had a magnetic personality, and was always a center of
attention. He was a captivating speaker, and a witty and deep thinker. His
knowledge and interests were broad, covering not only his field of expertise
but also the major developments in mathematics as a whole and in the
world at large. His interests were varied; he enjoyed reading and had an
extensive library, wrote poetry, and was a movie buff with a fantastic recall
of highlights of movies. He gave willingly of his time and encouragement
to his students, colleagues, and friends, and that encouragement frequently
bore fruit. One cannot overestimate the effect he had on his main area of
interest, Computability Theory, not only through his innovative work, but
also through the work of his more than 30 students and more than 750
mathematical descendents.

Sacks began his work in Classical Computability Theory when the field
was in its infancy. Kleene and Post had begun the study of degrees of
unsolvability, or Turing degrees, and Post the study of the computably
enumerable Turing degrees. The results of Friedberg and independently
Muchnik (incomparable computably enumerable Turing degrees) and
Spector (minimal degrees) stimulated interest in the area. But it was the
pioneering work of Sacks in his monograph, Degrees of Unsolvability [1] that
generated an exhaustive study of those degrees. Sacks’ work in that mono-
graph covered many aspects of degree theory, and his innovative techniques
produced several theorems that bear his name. Moreover, the importance of
the results was equalled by the importance of the techniques he introduced.

The degrees of unsolvability form an algebraic structure that provides a
measure of the complexity of information inherent in an oracle attached
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to a computer. One asks if the information coded into a set A (the oracle)
is sufficient for a computer program with access to that information to
compute a different set B. The computably enumerable degrees are a subset
of these degrees containing the sets that are outputs of computer programs
which do not have access to an oracle. Friedberg and Muchnik introduced a
novel technique, the priority method, to show that there were incomparable
computably enumerable Turing degrees, and thereby answered a question
raised by Post that had become a central open question in the area. The
priority method at the time was understood as a tool, but the true nature of
priority arguments was not understood until later; the priority arguments
introduced by Friedberg and Muchnik were later classified as Σ0

1, but at the
time, the method was known as the finite injury method. In his monograph,
Sacks extended this method to Δ0

2 through his Sacks-preservation strategy;
he showed that a noncomputable, computably enumerable set can be split
into two sets of lesser information content, which together can compute the
original set. This theorem is now known as the Sacks Splitting Theorem.
He [2] and Shoenfield independently introduced the Π0

2 method. Sacks used
this technique to prove the Sacks Jump Theorem, which characterizes the
greatest degree that can be computable enumerable using a fixed computably
enumerable set as an oracle, as those degrees that are computably enumerable
over 0′, the greatest degree of a computably enumerable set.

Sacks’ monograph dealt with aspects of degree theory other than
computable enumerability. He generalized Spector’s construction of a
minimal degree (the degree of a non-computable set A whose information
content can only compute sets that are of the same degree as A or which are
themselves computable) by showing that there is a minimal degree below 0′.
This proof combined the techniques of Spector with the priority method.
He pioneered the use of category and measure to characterize the sparseness
of classes of degrees, such as the class of all sets minimal degree which has
cardinality of the continuum, but has measure 0.

The theorems proved in the monograph also set the foundation for the
study of the global structure of the degrees. His characterization of the
partially ordered sets that can be embedded into the computably enumerable
degree led to a complete characterization of the existential theory of the
computably enumerable degrees, and the study he began of initial segments
of the degrees was later extended by others and became the basis of showing
that the Π0

2-theory of the Turing degrees is decidable, while the Σ0
3-theory

is not, and that the full theory is effectively isomorphic to second-order
arithmetic. The study of initial segments introduced the technique now
known as Sacks forcing, a technique that has been useful in Set Theory as
well as Computability Theory.

The influence of Sacks’ monograph should be measured not only by the
results it contained, as the lists of open question in the two editions were
every bit as influential in the development of the field. Several of these
questions were answered fairly quickly by Lachlan and Yates while Sacks
himself proved the density of the computably enumerable degrees. This last
result is well known as the Sacks Density Theorem and it required a further
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strengthening of the priority method to the Δ0
3-level. Over the following

decades most of the questions were solved but some remain open to this day.
One of the remarkable things about Sacks’ work was its innovation, not

only in the methods of proof he introduced, but also in the groundbreaking
work he began in other areas. After making an indelible imprint through his
work in degree theory, Sacks, partially under the influence of Kreisel, was
led to study a much broader question. He tried to understand the general
nature of computability in structures other than arithmetic, and this led
to an analysis of computability in terms of definability. He founded the
study of degree theory in α-Recursion Theory, or Computability Theory on
Admissible Ordinals, and set his students to try to prove counterparts of the
important theorems of Classical Computability Theory. The first challenge,
of course, was the Friedberg–Muchnik Theorem. Several of his students,
and others, worked on this problem and were able to get the counterpart for
special cases, but a proof for all admissible ordinals remained elusive. Finally,
Sacks, together with his student Stephen Simpson [9], was able to obtain a
solution combining the priority method with a method derived from model
theory, Skolem hulls. While the use of Skolem hulls was later replaced with
combinatorial methods, the insight and innovation of Sacks and Simpson led
to a deeper understanding of computation in terms of definability properties,
and in particular, definability properties of admissible ordinals, that had not
come to light beforehand. But once work in the field took hold, Sacks
jumped to the study of computation and definability on other structures,
first �-Recursion Theory (Computability Theory on Limit Ordinals) and
then to higher types and beyond.

Sacks finally did find what he had been seeking among the generalizations
of recursion theory. He wrote 14 papers and the final third of his book,
Higher Recursion Theory [6] about Kleene’s theory of recursive functionals
of finite type and its extension by Normann and Moschovakis to recursive
operations on arbitrary sets (E-recursion). The first of these papers, The
1-section of type n object [4], appeared in 1974 and the last, On the non-
enumerability of L [8], appeared in 2016, a span of more than 40 years. We
will give a brief summary here, with a few examples. Sacks’ 2013 survey
paper, E-Recursive Intuitions [7], is a revealing account of why he found the
topic so illuminating and appealing.

In Normann’s formulation, a partial function from sets to sets is E-
recursive relative to a predicate R when it can be defined inductively by
application of one of seven schemes. Such functions are indexed using the
instances of the schemes used to define them as {e}R. When {e}R = y, there
is a well-founded tree, the computation of {e}R on input x, which verifies
the equality. The function taking x to this tree is also E-recursive relative to
R. When {e}R is partial at x, the computation tree is not well-founded but
still E-recursively enumerable.

E-recursion theory captures a sizable fragment of the subject of effective
definability. A partial function from natural numbers to natural numbers
is E-recursive exactly when its graph is recursively enumerable. It is E-
recursive relative to the set parameter � exactly when its graph is Π1

1, which
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is equivalent to being Σ1-definable in L�CK1
. Say that a transitive set is E-

closed if it is closed under applications of the partial E-recursive functions.
In these last two cases, the E-recursively enumerable predicates are exactly
those which are Σ1-definable over the E-closures of their arguments.

This coincidence is not always the case and Sacks was fascinated by the
distinction between E-recursively enumerability and existential definability
over the collection of sets generated by the E-recursive functions. Sacks’ 2016
paper provides an interesting example. Membership in Gödel’s L has a natu-
ral existential definition since x ∈ L exactly when there is a set w that satisfies
V = L and x ∈ w. The main result in that paper is that membership in L is
E-recursively enumerable relative to some set parameter p if and only if
V = L. The argument is subtle when p is uncountable.

Sacks and his students developed a detailed account of the generation
of E(x), the E-closure of a set x. This included understanding when an
existential quantifier over E(x) is E-recursively enumerable from x. We can
summarize the situation as follows. Assume that x is transitive or replace
it with its transitive closure. E(x) has the form Lκx (x), where κx is the
supremum of the ordinals that are E-recursive in x and finitely many of its
elements. In the general case, κx is strictly greater than κx0 , which is the
supremum of the ordinals that are E-recursive in x alone. Say that � is x-
reflecting if every Σ1 statement about x which is true in L�(x) is also true
in Lκx0 (x). Then, let κxr be the supremum of the x-reflecting ordinals. In
many cases, such as when x is a set of ordinals or x = R, κx0 < κ

x
r < κ

x and
κxr + 1 is the ordinal at which a complete set of (Moschovakis) witnesses to
the divergence of {e}(x) is constructed from x, so the failure of reflection
takes a canonical form.

[6] and its 1977 sequel, The k-section of a type n object [7], were a tour
de force application of this structural view of computation and reflection.
Here, type n means an element of the nth iterate of the power set applied
to �. The k-section of a type n predicate R is the set of type k objects that
are E-recursive relative to R using the set of type n – 1 sets as a parameter.
Sacks addressed the fundamental question of whether the type of R was
evident is its sections of lower type. He gave a negative solution by showing
in [4] that every such 1-section object can be realized as the 1-section of
a type 2 object. He completed the analysis in [5] by showing that every
k-section of a type n object ( n > k) is the k-section of a type (k + 1)
object. One could say that the conclusion is reminiscent of Sacks’ theorem
that every countable admissible ordinal is the least admissible relative
to some real; however the proof is much more sophisticated. It involves
forcing, fine structure, reflection, and a mastery of recursion theoretic
thinking.

Sacks further explored the features of reflection and the appropriate
notions of forcing, priority arguments, and definability in infinitary
languages in several papers. They provide deep insight into the notion of
explicit computation and capture both its power and its limitations. Indeed,
they elevate recursion theory to high art.
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Sacks’ contributions to the Mathematical Logic community were broadly
recognized. He spent the academic years of 1961–62 and 1974–75 at the
Institute for Advanced Study in Princeton; he was a Guggenheim Fellow in
1966–67; he was invited to speak at the ICM in Nice (1970) and ICLMPS
in Bucharest (1971); and he was a Senior Fulbright-Hayes Scholar in
1979. Sacks took pride in his teaching, and the clarity of his exposition
extended to colloquium lectures in which he conveyed important advances
in all fields of Mathematical Logic to general mathematics audiences. He
published two important books in addition to Degrees of Unsolvability;
Saturated Model Theory [3] was a popular choice for a first course in
Model Theory for several generations of students; and Higher Recursion
Theory [6] is the introduction to, and bible for, those studying that topic.
His service as an editor of the Journal of Symbolic Logic in the late 1960s
was during its transformation from covering Symbolic Logic broadly to a
concentration on Mathematical Logic. He was a founding editor of the book
series, Perspectives in Mathematical Logic which published many important
books for those entering the field, and for use as reference texts by those
in the field. He chaired the first Prize Committee for the Association for
Symbolic Logic, and co-organized the first Computability Theory meetings
in Oberwolfach, meetings that brought together leaders in the field to foster
research collaboration, and have continued to this day. He also initiated
the Greater Boston Logic Conferences at M.I.T., meetings that took place
biennially for many years. He had more than 30 graduate students, and
populated some of the major universities with his students. His successful
mentoring of outstanding students led to the establishment of the Sacks
Prize, a prize awarded annually to the student writing the best Ph.D. thesis
in Mathematical Logic, now sponsored by the Association for Symbolic
Logic.

Survivors include his wife, Margaret D. Philbrick; his four children,
Matthew S. Sacks, Natalie R. Sacks, M.D. (John MacGregor, M.D.), and
Paul M. Sacks (Kristen Kaplan) with his former wife Naomi Lavori, and Ella
Raposo-Sacks with his former wife Luisa Raposo; three stepchildren, John
Philbrick, Katherine Vorenberg, and Louise Philbrick; five grandchildren,
Jacob S. MacGregor, Daniel, Kevin, and Harrison Philbrick, and Emma
Vorenberg; and his brother, Michael H. Sacks, M.D.
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