From No. 15 we get the theorem:-If from any point M on a conic, a tangent be drawn meeting a confocal in N, the product of the perpendicular from the centre on the tangent at \mathbf{N} by the intercept on the normal at N between the tangents at M and N is constant.

Mr J. S. Mackay gave a synopsis of Frans Schooten's "Geometry of the Rule," as it is contained in the second book of the Exercitationes Mathematicae, Leyden, 1657.

Mr P. Alexander contributed a note on the two definite integrals

$$
\int_{0}^{\infty} \sin n x d x \text { and } \int_{0}^{\infty} \cos n x d x
$$

Sixth Meeting, April 10th, 1885.
A. J. G. Barclay, Esq., M.A., President, in the Chair.

Note on the evaluation of functions of the Form 0°.
By T. B. Sprague, M.A., F.R.S.E.
Let $f(t), \phi(t)$, be two functions of t, such that they both vanish with t, that is, $f(0)=0, \phi(0)=0$; and put $z=\{f(t)\}^{\Phi t}$.
Then, in order to find the limiting value of z when $t=0$, we proceed as follows:-

$$
\log z=\phi(t) \cdot \log f(t)=\frac{\log f(t)}{\frac{1}{\phi(t)}}
$$

This fraction takes the form $-\infty$ when $t=0$, and we therefore have

