ON THE LIOUVILLE PROPERTY FOR DIVERGENCE FORM OPERATORS

MARTIN T. BARLOW

ABSTRACT. In this paper we construct a bounded strictly positive function σ such that the Liouville property fails for the divergence form operator $L = \nabla(\sigma^2 \nabla)$. Since in addition $\Delta \sigma / \sigma$ is bounded, this example also gives a negative answer to a problem of Berestycki, Caffarelli and Nirenberg concerning linear Schrödinger operators.

1. **Introduction.** In a paper on the qualitative properties of solutions of non-linear PDE of the form $\Delta u + F(u) = 0$, Berestycki, Caffarelli and Nirenberg posed the following problem. (See [BCN, Theorem 1.7]).

PROBLEM 1. Let *V* be a smooth bounded function on \mathbb{R}^d , and let K = K[V] be the (Schrödinger) operator

$$K = -\Delta - V.$$

Suppose that a bounded and sign-changing solution u exists to Ku = 0. Set

$$\lambda_1(K) = \inf \left\{ \int_{\mathbb{R}^d} |\nabla \psi|^2 - V |\psi|^2 : \psi \in C_0^{\infty}, \|\psi\|_2 = 1 \right\}.$$

Then is $\lambda_1(K) < 0$?

[BCN, Theorem 1.7] proved that if d = 1 or 2 then the answer to Problem 1 is "yes". In [GG] Ghoussoub and Gui proved that the answer is "no" if $d \ge 7$, and made explicit the connection (implicit in the proof of [BCN, Theorem 1.7]) between Problem 1 and the following question on the Liouville property for divergence form operators.

PROBLEM 2. Let σ be a strictly positive C^2 function on \mathbb{R}^d , and let $L = L[\sigma]$ be the divergence form operator $L = \nabla(\sigma^2 \nabla)$. Let ψ be a solution to $L\psi = 0$. If $\sigma\psi$ is bounded, then is ψ constant? (If this is the case we will say that *L* has the Liouville property).

It is well-known that if σ is uniformly bounded away from 0 (so that $\sigma > \epsilon > 0$) then $L[\sigma]$ has the Liouville property. The proof of [BCN, Theorem 1.7] implies that the answer to Problem 2 is "yes" if d = 1, 2, while [GG] give an example which proves that the answer to Problem 2 is "no" if $d \ge 7$. In those spaces to which the answer to Problem 1 is "yes" this result provides a powerful technique for the study of non-linear PDE—see [GG].

Received by the editors January 8, 1998; revised March 5, 1998.

Research partially supported by a NSERC (Canada) grant.

AMS subject classification: Primary: 31C05; secondary: 60H10, 35J10.

[©] Canadian Mathematical Society 1998.

⁴⁸⁷

To see the connection between the two problems note first that if $\sigma > 0$ is C^2 then

(1.1)
$$L[\sigma]\varphi = -\sigma K[-\sigma^{-1}\Delta\sigma](\sigma\varphi).$$

THEOREM 1 ([GG, PROPOSITION 2.3, LEMMA 2.1]). Let V be smooth and bounded. (a) If a bounded non-zero C^2 solution u to K[V]u = 0 exists, then $\lambda_1(K[V]) \le 0$. (b) $\lambda_1(K[V]) < 0$ if and only if K[V]u = 0 has no positive solutions.

THEOREM 2. (See [GG, Proposition 2.8], [BCN, Theorem 1.7]).

(a) Let V be bounded and smooth, and suppose a bounded sign-changing solution u to K[V]u = 0 exists. If $\lambda_1(K[V]) = 0$ then the equation $K[V]\sigma = 0$ has positive solutions, and for any positive solution σ the Liouville property fails for $L[\sigma]$.

(b) Let $\sigma > 0$ be smooth, and such that $V = -\sigma^{-1}\Delta\sigma$ is bounded. Suppose there exists a sign-changing function φ such that $\sigma\varphi$ is bounded, and $L[\sigma]\varphi = 0$. Then there exists a sign-changing solution u to K[V]u = 0, but $\lambda_1(K[V]) = 0$.

PROOF. (a) If K, u, σ are as above, set $\varphi = u/\sigma$. By (1.1) $L[\sigma]\varphi = 0$, while φ is sign-changing, and therefore non-constant.

(b) Set $u = \sigma \varphi$: by (1.1) u is a bounded sign-changing solution to K[V]u = 0. So, by Theorem 1(a) $K[V] \le 0$. On the other hand since $\sigma > 0$ also satisfies $K[V]\sigma = 0$, by Theorem 1(b) $\lambda_1(K[V]) = 0$.

REMARKS. 1. The proof above is given in [GG], but is included here for completeness.

In this paper we give an example which shows that the answer to Problems 1 and 2 is "no" for $d \ge 3$. In view of Theorem 2 we can concentrate on the Liouville property, and seek a bounded function $\sigma > 0$ such that $\Delta \sigma / \sigma$ is bounded, but $L[\sigma]$ has non-trivial bounded harmonic functions. Our intuition and proofs are probabilistic. Associated with $\frac{1}{2}L[\sigma]$ is a diffusion process $\tilde{X} = (\tilde{X}_t, t \ge 0, \mathbb{P}^x, x \in \mathbb{R}^d)$, such that $\frac{1}{2}L[\sigma]\varphi = 0$ if and only if $\varphi(\tilde{X}_t)$ is a \mathbb{P}^x -martingale for all $x \in \mathbb{R}^d$. (For accounts of the connection between elliptic operators and diffusions see for example the books [Bas], [RW]). Suppose that there exist open disjoint regions D_1 , D_2 in \mathbb{R}^d such that if $G_i = {\tilde{X}_t \in D_i \text{ for all sufficiently large } t}$ then

(1.2) $0 < \psi_i(x) = \mathbb{P}^x(\tilde{X}_t \in D_i \text{ for all sufficiently large } t) < 1, \quad i = 1, 2,$

for some (and so all) $x \in \mathbb{R}^d$. Then since ψ_i are bounded and harmonic (with respect to *L*), by the martingale convergence theorem

$$\psi_i(\tilde{X}_t) \longrightarrow I_{G_i}$$
 as $t \longrightarrow \infty$, $\mathbb{P}^x - a.s.$

Thus ψ_i are non-constant, and it is easy to construct from them a bounded sign-changing *L*-harmonic function: $\psi = \psi_1 - \psi_2$, for example.

For the regions D_i we will take $D_1 = \{x \in \mathbb{R}^d : x_1 > 0\}, D_2 = \{x : x_1 < 0\}$. If we take σ small in a neighbourhood of $\{x_1 = 0\}$ this creates a (partial) barrier to the process \tilde{X} crossing between the regions D_1 and D_2 : note that \tilde{X} satisfies the SDE

(1.3)
$$d\tilde{X}_t = \sigma(\tilde{X}_t)^2 d\tilde{B}_t + \sigma(\tilde{X}_t) \nabla \sigma(\tilde{X}_t) dt,$$

where \tilde{B} is a *d*-dimensional Brownian motion. If $\sigma(x) \to 0$ sufficiently fast as $|x| \to \infty$ on the set $\{x : x_1 = 0\}$, then this barrier is strong enough so that \tilde{X} only crosses between the regions D_i a finite number of times, a.s. (More precisely, with probability 1 there are only finitely many *n* such that \tilde{X}_t , crosses between the regions D_i between times *n* and n + 1). The fact that \tilde{X} is transient is of course crucial here. So $\mathbb{P}(G_1 \cup G_2) = 1$, while $G_1 \cap G_2 = \emptyset$, and this, (with symmetry) proves (1.2) for x = 0.

THEOREM 3. (a) Let $d \ge 3$. There exists a smooth strictly positive bounded function σ on \mathbb{R}^d such that $V = -\sigma^{-1}\Delta\sigma$ is bounded, and the equation $\nabla(\sigma^2\nabla\varphi) = 0$ has a bounded sign-changing solution φ .

(b) If $K = -\Delta - V$, then Ku = 0 has a bounded sign changing solution u, and $\lambda_1(K) = 0$.

In Section 2 we collect together some (mainly standard) properties of Bessel processes and related diffusions, and in Section 3 we give the construction of the function σ .

We use c_i to denote fixed positive real constants, whose value only depends on the dimension *d*, and *c*, *c'* etc. to denote positive constants (depending only on *d*) whose value may change from line to line. We write $x \in \mathbb{R}^d$ as $x = (x_1, x^{(1)})$, where $x^{(1)} = (x_2, \ldots, x_d) \in \mathbb{R}^{d-1}$. All the functions on \mathbb{R}^d in this paper will depend on *x* only through $u = x_1, y = |x^{(1)}|$. λ_d denotes *d*-dimensional Lebesgue measure, and $a \wedge b = \min(a, b)$.

2. **Some preliminary estimates.** We begin by collecting some estimates on Bessel processes and related potentials.

LEMMA 2.1. Let $d \ge 3$ and X be a Bes(d) process. Then

(2.1)
$$\mathbb{P}^{x}(X_{s} \leq y \text{ for some } s \geq t) \leq t^{-1/2}y.$$

PROOF. Using a comparison theorem for SDEs (see [IW, p. 353]) we can assume that x = 0 and d = 3. By Pitman's decomposition [P] we can write $X_t = 2M_t - B_t$, where B_t is a one-dimensional Brownian motion with $B_0 = 0$, and $M_t = \sup_{s \le t} B_s$. Then $\inf_{s \ge t} X_s = M_t$. By the reflection principle $\mathbb{P}(B_t^+ > y) = 2\mathbb{P}(B_t > y) = \mathbb{P}(|B_t| > y)$, so

$$\mathbb{P}^{x}(X_{s} \leq y \text{ for some } s \geq t) = \mathbb{P}(|B_{t}| \leq y) \leq 2yt^{-1/2}(2\pi)^{-1/2} < t^{-1/2}y.$$

LEMMA 2.2. Let U_t be a 1-dimensional diffusion with generator $Lf(u) = \frac{1}{2}(\sigma^2(u)f'(u))'$, where $\sigma(u) > \varepsilon > 0$. If 0 < x < y then

(2.2)
$$\mathbb{P}^{x}(U \text{ hits } 0 \text{ before } y) = \frac{\Phi(x)}{\Phi(0)}$$

where $\Phi(x) = \int_x^y \sigma^{-2}(u) du$.

PROOF. Writing $\varphi(x) = \mathbb{P}^x(U \text{ hits } 0 \text{ before } y)$, we have that $L\varphi = 0$, so that $\varphi'(x) = -c\sigma^{-2}(x)$. Since $\varphi(0) = 1$, $\varphi(y) = 0$, (2.2) follows.

Let *G* be the usual Green operator on \mathbb{R}^d , given by

$$G\mu(x) = \int |x - x'|^{2-d} \mu(dx'),$$

where μ is a measure on \mathbb{R}^d . Set

$$J(a,r) = \{x = (x_1, x^{(1)}) : |x_1| \le a, r-a \le |x^{(1)}| \le r+a\}.$$

LEMMA 2.3. Let ν be Lebesgue measure restricted to J(a, r). Then $G\nu$ is symmetric in x_1 , and $x_1(\partial G\nu/\partial x_1) \leq 0$. Also $G\nu$ depends on $x^{(1)}$ only through $y = |x^{(1)}|$. If $r \geq \max(4a, a^2)$ then there exist constants c_1 , c_2 such that

(2.3)
$$c_1 a^2 \le G \nu(x) \le c_2 a^2 \quad if |x| < \frac{1}{2}r,$$

(2.4)
$$c_1 a^2 \log r \le G\nu(x) \le c_2 a^2 \log r \quad \text{if } x \in J(a, r)$$

(2.5)
$$G\nu(x) \le c_2 a^2 (|x|/r)^{2-d} \quad \text{if } |x| > 2r.$$

PROOF. The first two properties of $G\nu$ are clear from the definition and the symmetry of *J*.

We have $ca^2 r^{d-2} \le \nu (J(a, r)) \le c'a^2 r^{d-2}$, and $\frac{3}{4}r \le |x| \le \frac{3}{2}r$ for $x \in J(a, r)$. So if $|x'| \le \frac{1}{2}r$, $ca^2 \le G\nu(x') \le c'a^2$, proving (2.3).

Let $x \in J(a, r)$. Then

$$G\nu(x) = \int_J |x - x'|^{2-d} \, dx' \ge \int_{J \cap B(x, 2a)^c \cap B(x, r)} |x - x'|^{2-d} \, dx'.$$

If a < s < r then $\lambda_{d-1} (\partial B(x, s) \cap J) \ge ca^2 s^{d-3}$, so that

$$G\nu(x) \ge \int_a^r ca^2 s^{-1} ds = ca^2 \log(r/a)$$

Also, if $r \ge a^2$ then $\log(r/a) \ge \log r^{1/2} = \frac{1}{2} \log r$. A similar calculation proves the other bound in (2.4).

For (2.5), since $|x - x'| \ge \frac{1}{2}|x|$ for $x' \in J$, and |x| > 2r, we have

$$G\nu(x) \ge ca^2 r^{d-2} \Big(\frac{1}{2}|x|\Big)^{2-d} \ge c'a^2 (|x|/r)^{2-d}.$$

Now set $n_k = e^{2^k}$, $a_k = 2^{k+1}$, and let $J_k = J(a_k, n_k)$ for $k \ge 0$. Set $A = \bigcup_{k=3}^{\infty} J_k$.

PROPOSITION 2.4. There exists $\varphi > 0$ on \mathbb{R}^d with the following properties.

- (a) φ is superharmonic, and $\Delta \varphi = 0$ on A^c .
- (b) $\varphi \geq 1$ on A.
- (c) $x_1 \partial \varphi / \partial x_1 > 0.$
- (d) φ depends on x only through $u = x_1$, $y = |x^{(1)}|$.

(e) If $\gamma(t)$ is any path in \mathbb{R}^d such that $\limsup_{t\to\infty} |\gamma(t)| = \infty$ then $\liminf_{t\to\infty} \varphi(\gamma(t)) = 0.$

PROOF. Let ν_k be Lebesgue measure restricted to J_k , and

$$\varphi_k = c_1^{-1} a_k^{-2} (\log n_k)^{-1} G \nu_k$$

By Lemma 2.3 we have $\varphi_k \ge 1$ on J_k , and $\varphi_k(x) \le c(\log n_k)^{-1} = c2^{-k}$, provided $|x| \le \frac{1}{2}n_k$. Set

$$\varphi(x) = \sum_{k=3}^{\infty} \varphi_k(x).$$

Clearly $0 < \varphi(x) < \infty$ for all *x*. Since each φ_k is superharmonic, and harmonic on J_k^c , φ clearly satisfies (a) and (b). (c) and (d) follow from the corresponding property for $G\nu_k$.

To prove (e), let $x_k \in \mathbb{R}^d$ be such that $|x_k| = \frac{1}{2}n_{k+1}$. Then by Lemma 2.3, if $i \le k$,

$$\varphi_i(x_k) \le c(\log n_i)^{-1}(|x_k|/n_i)^{2-d} \le c(2n_k/n_{k+1}) = c'e^{-2^k}$$

while $\varphi_i(x_k) \leq c 2^{-k}$ if $i \geq k+1$. So,

$$\varphi(x_k) \le cke^{-2^k} + c'2^{-k}.$$

Since $|\gamma(t)| = \frac{1}{2}n_{k+1}$ for infinitely many *t*, it follows that

$$\liminf_{t\to\infty}\varphi(\gamma(t))\leq \liminf_{k\to\infty}\varphi(x_k)=0.$$

Let X_t , $t \ge 0$ be a process in \mathbb{R}^d . We define the event

$${X \text{ ultimately avoids } A} = \bigcup_{n=0}^{\infty} {X_t \notin A \text{ for all } t \ge n}$$

COROLLARY 2.5. Let B be a Brownian motion in \mathbb{R}^d . Then $\mathbb{P}^x(B$ ultimately avoids A) = 1.

PROOF. $\varphi(B_t)$ is a positive supermartingale, and so converges a.s. Using Proposition 2.4(e) we see that $\lim_{t\to\infty} \varphi(B_t) = 0$ a.s. Since $\varphi(x) \ge 1$ on *A*, it follows that *B* ultimately avoids *A*, a.s.

3. The counterexample. Let $\sigma > 0, f$ be functions on \mathbb{R}^d which depend on *x* only through *u* and *y*. Then if $L[\sigma] = \nabla(\sigma^2 \nabla)$,

(3.1)
$$\frac{1}{2}L[\sigma]f = \frac{1}{2}\sigma^2(f_{uu} + f_{yy}) + \sigma\sigma_u f_u + \left(\sigma\sigma_y + \sigma^2 \frac{d-2}{2y}\right)f_y.$$

We will restrict our attention to operators on \mathbb{R}^d of this form. Recall the definitions of n_k , J_k , A from Section 2. For $k \ge 1$ let

$$\bar{\sigma}_k(u) = 1 \wedge n_k^{-1} e^{|u|}.$$

MARTIN T. BARLOW

Let $\bar{\sigma}(u, y)$ be given by

(3.2)
$$\bar{\sigma}(u, y) = \bar{\sigma}_k(u), \ n_{k-1} + 2^{k-1} \le y \le n_k, \ k \ge 4$$

(3.3)
$$\bar{\sigma}(u, y) = 1 \wedge \exp\left(-2^{k-1} + |u| - (y - n_{k-1})\right), n_{k-1} \le y \le n_{k-1} + 2^{k-1}, k \ge 4,$$

(3.4) $\bar{\sigma}(u, y) = \bar{\sigma}_3(u), 0 \le y \le n_3.$

Let ψ be a symmetric C^{∞} function supported on $(-\frac{1}{2}, \frac{1}{2})$, and set

$$\sigma_k(u) = \int \psi(u-u')\bar{\sigma}(u')\,du', \quad \sigma(u,y) = \iint \psi(u-u')\psi(y-y')\sigma(u',y')\,du'\,dy'.$$

It is straightforward to verify

LEMMA 3.1. σ_k and σ are bounded smooth strictly positive functions on \mathbb{R} and $\mathbb{R} \times \mathbb{R}_+$ which satisfy:

(3.5) $\bar{\sigma}_k(u) = \bar{\sigma}(-u), \quad \sigma(u, y) = \sigma(-u, y),$

$$(3.6 |\Delta\sigma| \le c_3\sigma,$$

$$(3.7) u\sigma_u \ge 0, \quad \sigma_y = 0 \text{ on } A^c,$$

(3.8)
$$\sigma(u, y) = \bar{\sigma}_k(u) \quad \text{if } n_{k-1} + 2^k \le y \le n_k - 2^{k+1}$$

(3.9)
$$\int_{2^{k}-1}^{2^{k}} \sigma_{k}^{-2}(u) \, du \leq c_{4}, \quad \int_{0}^{1} \sigma_{k}^{-2}(u) \, du \geq c_{5} n_{k}^{2}.$$

Now let L_1 be the operator given by

(3.10)
$$L_{1}f = \frac{1}{2}\sigma^{2}(f_{uu} + f_{yy}) + \sigma\sigma_{u}f_{u} + \left(\sigma\sigma_{y} + \sigma^{2}\frac{d-2}{2y}\right)f_{y},$$

and set $L_2 = \sigma^{-2}L_1$. Let $Z_t = ((U_t, Y_t), t \ge 0, \mathbb{P}^z, z \in \mathbb{R} \times \mathbb{R}_+)$ be the diffusion associated with L_2 . Then *Z* is (the unique) solution to the SDE

(3.11)
$$dU_{t} = dB_{t} + \left(\frac{\sigma_{u}(Z_{t})}{\sigma(Z_{t})}\right) dt,$$
$$dY_{t} = dB'_{t} + \left(\frac{\sigma_{y}(Z_{t})}{\sigma(Z_{t})} + \frac{d-2}{2Y_{t}}\right) dt,$$

where *B*, *B'* are independent one-dimensional Brownian motions. Write $g(u, y) = \sigma_u(u, y) / \sigma(u, y)$: by (3.7) $g \ge 0$. Set $V_t = U_t^2$: then by Itô's formula

(3.12)
$$dV_t = 2V_t^{1/2} \operatorname{sgn}(U_t) dB_t + (1 + 2V_t^{1/2}g(V_t^{1/2})) dt$$
$$= 2V_t^{1/2} d\bar{B}_t + (1 + 2V_t^{1/2}g(V_t^{1/2})) dt.$$

Here

$$\operatorname{sgn}(x) = \begin{cases} 0 & \text{if } x \le 0\\ 1 & \text{if } x > 0, \end{cases}$$

and \bar{B}_t , given by

$$\bar{B}_t = \int_0^t \operatorname{sgn}(U_t) \, dB_t,$$

is another one-dimensional Brownian motion—see [RW, p. 63]. Let \bar{V} be the solution to

(3.13)
$$d\bar{V}_t = 2\bar{V}_t^{1/2}d\bar{B}_t + dt, \quad \bar{V}_0 = V_0.$$

By a comparison theorem for SDEs (see [IW, p. 353]) it follows that $\bar{V}_t \leq V_t = U_t^2$ for all $t \geq 0$. However, (3.13) implies that $\bar{V}^{1/2}$ is a Bes(1) process, and so equal in law to the absolute value of a Brownian motion. (See [RW, p. 69]).

Set

$$T_A = \inf\{t \ge 0 : (U_t, Y_t) \in A\},\ ar{T}_A = \inf\{t \ge 0 : (ar{V}_t^{1/2}, Y_t) \in A\}.$$

We have $\bar{T}_A \leq T_A$. From (3.7) and (3.11) we deduce that if \bar{Y} is the solution to

(3.14)
$$d\bar{Y}_t = dB'_t + \frac{d-2}{2\bar{Y}_t}dt, \quad \bar{Y}_0 = Y_0$$

then \bar{Y} is a Bes(d-1) process, and $\bar{Y}_t = Y_t$ for $0 \le t \le T_A$. Let also $\bar{Z}_t = (U_t, \bar{Y}_t)$, and $\bar{R}_t = (\bar{V}_t + \bar{Y}_t^2)^{1/2}$: then \bar{R} is a Bes(d) process, and $|\bar{Z}_t| \ge \bar{R}_t$.

Now set

$$H_k(t) = \{(u, y) : n_{k-1} + 2^k \le y \le n_k - 2^{k+1}, |u| = t\}, \quad k \ge 4,$$

$$I_k = [-2^k, 2^k] \times [n_{k-1} + 2^k, n_k - 2^{k+1}], \quad k \ge 4,$$

$$H_3(t) = \{(u, y) : 0 \le y \le n_3, |u| = t\}.$$

Fix $k \ge 4$ and define stopping times S_i , T_i by

$$T_0 = 0, \ S_n = \inf\{t \ge T_{n-1} : Z_t \in H_k(2^k - 1)\}, \ T_n = \inf\{t \ge S_n : Z_t \in H_k(0) \cup H_k(2^k) \cup A\}.$$

Note that $Z_t \in I_k$ for $S_n \leq t \leq T_n$, and that if Z hits $H_k(0)$ and $T_A = \infty$ then $Z_{T_n} \in H_k(0)$ for some *n*.

LEMMA 3.2. On $\{S_n < \infty\}$,

$$(3.15) \mathbb{P}^{z}(Z_{T_{n}} \in H_{k}(0), T_{n} < T_{A} \mid F_{S_{n}}) \leq cn_{k}^{-2}.$$

PROOF. Using the Markov property of Z, we can assume n = 1 and $S_1 = 0$, $Z_0 = (u_0, y_0) \in H_k(2^k - 1)$. On $0 \le t \le T_1$ we therefore have that U satisfies the SDE

(3.16)
$$U_t = u_0 + B_t + \int_0^t g_k(U_s) \, ds,$$

where $g_k = \sigma_k^{-1} \partial \sigma_k / \partial u$. If U' is the solution to (3.16) for $0 \le t < \infty$, then U = U' on $[0, T_1]$. Set $T' = \inf\{t : U'_t \in \{0, 2^k\}\}$. So

$$\mathbb{P}(U_{T_1} = 0, T_1 < T_A) = \mathbb{P}(U'_{T_1} = 0, T_1 < T_A)$$

$$\leq \mathbb{P}(U_{T'} = 0)$$

$$\leq \int_{2^{k-1}}^{2^k} \sigma_k^{-2}(u) \, du \, \Big/ \, \int_0^{2^k} \sigma_k^{-2}(u) \, du \leq c_6 n_k^{-2}$$

Here we used Lemma 2.2 and the estimate (3.9) in the last line.

Now set

$$t_k = 4^k n_k^2, \quad m_k = k t_k^{1/2} = k 2^k n_k.$$

Lemma 3.3. On $\{T_{n-1} < \infty\} \cap \{T_{n-1} < T_A\} \cap \{|U_{T_{n-1}}| \ge 2^k\}$
$$\mathbb{P}^z(S_n - T_{n-1} > t_k \mid F_{T_{n-1}}) \ge c_7 t_k^{-1/2}.$$

PROOF. As in the previous proof, it is enough to obtain the estimate for $S_1 - T_0$ in the case when $Z_0 = (u_0, y_0) \in H_k(2^k)$. Using the comparison between U_t and $\bar{V}_t^{1/2}$ we have

$$\mathbb{P}(S_1 - T_0 > t_k) \ge \mathbb{P}(T_{-1}(\beta) > t_k),$$

where β is a one-dimensional Brownian motion started at 0, and $T_{-1}(\beta) = \inf \{s : \beta_s = -1\}$. However using the reflection principle as in Lemma 2.1,

$$\mathbb{P}(T_{-1}(\beta) > t) = \mathbb{P}(|B_t| < 1) \sim ct^{-1/2}, \quad \text{as } t \to \infty.$$

Set

$$N_k = \max\{n : S_n < \infty\},$$

 $G = \{U_{T_n} = 0 ext{ for some } n \le m_k \land N_k\},$
 $\eta = \max_{1 \le n \le N_k \land m_k} (S_n - T_{n-1}),$

Then if $z \notin I_k$ and $k \ge 4$,

$$\mathbb{P}^{z}(Z \text{ hits } H_{k}(0), T_{A} = \infty)$$

= $\mathbb{P}^{z}(Z \text{ hits } H_{k}(0), G, T_{A} = \infty) + \mathbb{P}^{z}(Z \text{ hits } H_{k}(0), G^{c}, T_{A} = \infty).$
(3.17) $\leq \mathbb{P}^{z}(G, T_{A} = \infty) + \mathbb{P}^{z}(N_{k} > m_{k}, G^{c}, T_{A} = \infty)$

By Lemma 3.2 the first term in (3.17) is bounded by $c_2 m_k n_k^{-2}$. If $T_A = \infty$, then $Z = \overline{Z}$, and so $|Z_t| \ge \overline{R}_t$ for all *t*. We have

 $\mathbb{P}(N_k > m_k, G^c, T_A = \infty) = \mathbb{P}(N_k > m_k, |U_{T_n}| = 2^k \text{ for } 1 \le n \le m_k, \eta < t_k, T_A = \infty)$ (3.18) $+ \mathbb{P}(N_k > m_k, G^c, \eta \ge t_k, T_A = \infty).$

The first term in (3.18) is bounded by

(3.19)
$$\mathbb{P}(N_k > m_k, S_n - T_{n-1} < t_k \text{ for } 1 \le n \le m_k, G^c, T_A = \infty) \le (1 - c_7 t_k^{-1/2})^{m_k},$$

by Lemma 3.3. If $N_k > m_k$ and $\eta \ge t_k$ then $Z_{t_0} \in H_k(2^k - 1)$ for some $t_0 > t_k$. Since $|Z_{t_0}|^2 \le (2^k - 1)^2 + n_k^2 \le 4n_k^2$, we deduce from (2.1) that

$$\mathbb{P}^{\mathbb{Z}}(N_k > m_k, G^c, \eta \ge t_k, T_A = \infty) \le \mathbb{P}^{\mathbb{Z}}(\overline{R_t} < 2n_k \text{ for some } t \ge t_k) \le 2t_k^{-1/2}n_k$$

Collecting these estimates together, we have

(3.20)
$$\mathbb{P}^{z}(Z \text{ hits } H_{k}(0), T_{A} = \infty) \leq cm_{k}n_{k}^{-2} + (1 - c_{7}t_{k}^{-1/2})^{m_{k}} + 2t_{k}^{-1/2}n_{k}$$
$$\leq ck2^{k}n_{k}^{-1} + e^{-c_{7}k} + 2^{1-k} = \varepsilon_{k},$$

where $\sum_{k=2}^{\infty} \varepsilon_k < \infty$.

LEMMA 3.4. (a) Z ultimately avoids A, a.s.

(b) Z is transient.

(c) For any $z \in \mathbb{R} \times \mathbb{R}_+$,

 $\mathbb{P}^{\mathbb{Z}}(Z \text{ hits } H_k(0) \text{ for infinitely many } k, T_A = \infty) = 0.$

PROOF. (a) From the properties of the function φ in Proposition 2.4, we see that if $\bar{\varphi}(u, y)$ is the function such that $\varphi(x) = \bar{\varphi}(u(x), y(x))$, then $u\bar{\varphi}_u \ge 0$. Since on $A^c \bar{\varphi}$ satisfies

$$\frac{1}{2}(\bar{\varphi}_{uu}+\bar{\varphi}_{yy})+\frac{d-2}{2y}\bar{\varphi}_{y}=0,$$

we have on A^c

$$L_2\bar{\varphi}=\sigma^{-1}\sigma_u\varphi_u\leq 0.$$

So $1 \wedge \bar{\varphi}(Z_t)$ is a supermartingale, and so converges a.s. to some limit. But since $|Z_t| \ge |U_t| \ge \bar{V}_t^{1/2}$, and $\limsup_{t\to\infty} \overline{V}_t^{1/2} = \infty$, by Proposition 2.4(e) we have that the limit must be 0. Thus, as in Corollary 2.5, *Z* ultimately avoids *A*.

(b) This is immediate from (a).

(c) Since z is in at most one of the sets I_k , this is immediate from the estimate (3.20) and the Borel-Cantelli lemma.

THEOREM 3.5. *Z* ultimately avoids $\{u = 0\}$, \mathbb{P}^{z} -a.s.

PROOF. Since $\mathbb{P}^{\mathbb{Z}}(Z \text{ ultimately avoids } A) = 1$, we have

(3.21)
$$0 = \lim_{n \to \infty} \mathbb{P}^{\mathbb{Z}}(Z_t \in A, \text{ for some } t \ge n) = \lim_{n \to \infty} \mathbb{E}^{\mathbb{Z}}(\mathbb{P}^{Z_n}(T_A < \infty)))$$

Note that $\{u = 0\} \subseteq \Gamma = A \cup \bigcup_{k=3}^{\infty} H_k(0)$. Set $F_n = \{Z_t \in \Gamma \text{ for some } t \geq n\}$, $F = \bigcap_{n=0}^{\infty} F_n$. Then

$$\mathbb{P}^{z}(F) = \mathbb{P}^{z}(F \cap \{T_{A} < \infty\}) + \mathbb{P}^{z}(F \cap \{T_{A} = \infty\}).$$

If *F* occurs then either *Z* hits infinitely many of the $H_k(0)$, or *Z* hits one of the components of Γ after time *n* for infinitely many *n*. But as *Z* is transient the second possibility has probability 0. So

$$\mathbb{P}^{\mathbb{Z}}(F \cap \{T_A = \infty\}) = \mathbb{P}^{\mathbb{Z}}(Z \text{ hits } H_k(0) \text{ for infinitely many } k, T_A = \infty) = 0$$

by Lemma 3.4(c).

So,

$$\mathbb{P}^{z}(F) = \mathbb{P}^{z}(F \cap \{T_{A} < \infty\}) \quad \text{for } z \in \mathbb{R} \times \mathbb{R}_{+}$$

But

$$\mathbb{P}^{z}(F) = \mathbb{E}^{z}(\mathbb{P}^{Z_{n}}(F)) = \mathbb{E}^{z}(\mathbb{P}^{Z_{n}}(F \cap \{T_{A} < \infty\})) \leq \mathbb{E}^{z}\mathbb{P}^{Z_{n}}(T_{A} < \infty),$$

which converges to 0 as $n \to \infty$ by (3.21). So $\mathbb{P}^{\mathbb{Z}}(F) = 0$.

By Theorem 3.5 we see that if $D_1 = \{u > 0\}$, $D_2 = \{u < 0\}$ and $G_i = \{Z_i \in D_i for all sufficiently large <math>t\}$, then $G_1 \cap G_2 = \emptyset$, while $\mathbb{P}^z(G_1 \cup G_2) = 1$. By symmetry $\mathbb{P}^0(G_i) = \frac{1}{2}$. Set $\psi_i(z) = \mathbb{P}^z(G_i)$. We have $\psi_1 + \psi_2 = 1$, $0 < \psi_i < 1$ and since $\psi_i(Z_t)$ is a martingale, by the martingale convergence theorem $\psi_i(Z_t) \rightarrow I_{G_i}$ a.s., which shows that ψ_i are non-constant. So $\psi = \psi_1 - \psi_2$ is a sign-changing function which is harmonic with respect to the operator L_2 . Hence $L_1\psi = \sigma^2 L_2\psi = 0$. We have proved:

COROLLARY 3.5. The equation $L_1\psi = 0$ has a bounded sign-changing solution.

PROOF OF THEOREM 3. Recall the notation $x = (x_1, x^{(1)}), u = x_1, y = |x^{(1)}|$. Let σ , ψ be as above, and define $\tilde{\sigma}(x) = \sigma(u(x), y(x)), \tilde{\psi}(x) = \psi(u(x), y(x))$. Then $\tilde{\sigma}$ and $\tilde{\sigma}^{-1}\Delta\tilde{\sigma}$ are bounded, and

$$L[\tilde{\sigma}]\tilde{\psi} = 2L_1\psi = 0,$$

so that $\tilde{\psi}$ is a bounded sign-changing solution of $\nabla(\tilde{\sigma}^2 \nabla \tilde{\psi}) = 0$. The final assertion in Theorem 3 is now immediate from Theorem 2.

REFERENCES

[Bas] R. F. Bass, Diffusions and Elliptic Operators. Springer, New York, 1997.

- [BCN] H. Berestycki, L. Cafarelli and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains. preprint.
- [GG] N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems. Math. Ann., to appear.
- [IW] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion processes. North-Holland, Kodansha, 1981.
- [P] J. Pitman, One dimensional Brownian motion and the three-dimensional Bessel process. J. Appl. Probab. 7(1975), 511–526.
- [RW] L. C. G. Rogers and D. Williams, Diffusions, Markov Processes, and Martingales, Volume I. (2nd edition), Wiley, 1994.

Department of Mathematics University of British Columbia Vancouver, British Columbia V6T 1Z2