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ON THE LIOUVILLE PROPERTY
FOR DIVERGENCE FORM OPERATORS

MARTIN T. BARLOW

ABSTRACT. In this paper we construct a bounded strictly positive function õ such
that the Liouville property fails for the divergence form operator L ≥ r(õ2r). Since
in addition ∆õÛõ is bounded, this example also gives a negative answer to a problem
of Berestycki, Caffarelli and Nirenberg concerning linear Schrödinger operators.

1. Introduction. In a paper on the qualitative properties of solutions of non-linear
PDE of the form ∆u+F(u) ≥ 0, Berestycki, Caffarelli and Nirenberg posed the following
problem. (See [BCN, Theorem 1.7]).

PROBLEM 1. Let V be a smooth bounded function on Rd, and let K ≥ K[V] be the
(Schrödinger) operator

K ≥ �∆ � V.

Suppose that a bounded and sign-changing solution u exists to Ku ≥ 0. Set

ï1(K) ≥ inf
²Z

Rd
jr†j2 � Vj†j2 : † 2 C10 , k†k2 ≥ 1

¦
.

Then is ï1(K) Ú 0?
[BCN, Theorem 1.7] proved that if d ≥ 1 or 2 then the answer to Problem 1 is “yes”.

In [GG] Ghoussoub and Gui proved that the answer is “no” if d ½ 7, and made explicit
the connection (implicit in the proof of [BCN, Theorem 1.7]) between Problem 1 and the
following question on the Liouville property for divergence form operators.

PROBLEM 2. Let õ be a strictly positive C2 function on Rd, and let L ≥ L[õ] be the
divergence form operator L ≥ r(õ2r). Let † be a solution to L† ≥ 0. If õ† is bounded,
then is † constant? (If this is the case we will say that L has the Liouville property).

It is well-known that if õ is uniformly bounded away from 0 (so that õ Ù è Ù 0)
then L[õ] has the Liouville property. The proof of [BCN, Theorem 1.7] implies that the
answer to Problem 2 is “yes” if d ≥ 1, 2, while [GG] give an example which proves
that the answer to Problem 2 is “no” if d ½ 7. In those spaces to which the answer to
Problem 1 is “yes” this result provides a powerful technique for the study of non-linear
PDE—see [GG].
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To see the connection between the two problems note first that if õ Ù 0 is C2 then

(1. 1) L[õ]ß ≥ �õK[�õ�1∆õ](õß).

THEOREM 1 ([GG, PROPOSITION 2.3, LEMMA 2.1]). Let V be smooth and bounded.
(a) If a bounded non-zero C2 solution u to K[V]u ≥ 0 exists, then ï1(K[V]) � 0.
(b) ï1(K[V]) Ú 0 if and only if K[V]u ≥ 0 has no positive solutions.

THEOREM 2. (See [GG, Proposition 2.8], [BCN, Theorem 1.7]).
(a) Let V be bounded and smooth, and suppose a bounded sign-changing solution u

to K[V]u ≥ 0 exists. If ï1(K[V]) ≥ 0 then the equation K[V]õ ≥ 0 has positive solutions,
and for any positive solution õ the Liouville property fails for L[õ].

(b) Let õ Ù 0 be smooth, and such that V ≥ �õ�1∆õ is bounded. Suppose there
exists a sign-changing function ß such that õß is bounded, and L[õ]ß ≥ 0. Then there
exists a sign-changing solution u to K[V]u ≥ 0, but ï1(K[V]) ≥ 0.

PROOF. (a) If K, u, õ are as above, set ß ≥ uÛõ. By (1.1) L[õ]ß ≥ 0, while ß is
sign-changing, and therefore non-constant.

(b) Set u ≥ õß: by (1.1) u is a bounded sign-changing solution to K[V]u ≥ 0. So,
by Theorem 1(a) K[V] � 0. On the other hand since õ Ù 0 also satisfies K[V]õ ≥ 0, by
Theorem 1(b) ï1(K[V]) ≥ 0.

REMARKS. 1. The proof above is given in [GG], but is included here for complete-
ness.

In this paper we give an example which shows that the answer to Problems 1 and 2
is “no” for d ½ 3. In view of Theorem 2 we can concentrate on the Liouville property,
and seek a bounded function õ Ù 0 such that ∆õÛõ is bounded, but L[õ] has non-trivial
bounded harmonic functions. Our intuition and proofs are probabilistic. Associated with
1
2 L[õ] is a diffusion process X̃ ≥ (X̃t, t ½ 0, Px, x 2 Rd), such that 1

2 L[õ]ß ≥ 0 if and only
ifß(X̃t) is a Px-martingale for all x 2 Rd. (For accounts of the connection between elliptic
operators and diffusions see for example the books [Bas], [RW]). Suppose that there exist
open disjoint regions D1, D2 in Rd such that if Gi ≥ fX̃t 2 Di for all sufficiently large tg
then

(1. 2) 0 Ú †i(x) ≥ Px(X̃t 2 Di for all sufficiently large t) Ú 1, i ≥ 1, 2,

for some (and so all) x 2 Rd. Then since †i are bounded and harmonic (with respect to
L), by the martingale convergence theorem

†i(X̃t) ! IGi as t !1, Px � a.s.

Thus †i are non-constant, and it is easy to construct from them a bounded sign-changing
L-harmonic function: † ≥ †1 � †2, for example.

For the regions Di we will take D1 ≥ fx 2 Rd : x1 Ù 0g, D2 ≥ fx : x1 Ú 0g. If we
take õ small in a neighbourhood of fx1 ≥ 0g this creates a (partial) barrier to the process
X̃ crossing between the regions D1 and D2: note that X̃ satisfies the SDE

(1. 3) dX̃t ≥ õ(X̃t)2dB̃t + õ(X̃t)rõ(X̃t) dt,
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where B̃ is a d-dimensional Brownian motion. If õ(x) ! 0 sufficiently fast as jxj ! 1
on the set fx : x1 ≥ 0g, then this barrier is strong enough so that X̃ only crosses between
the regions Di a finite number of times, a.s. (More precisely, with probability 1 there are
only finitely many n such that X̃t, crosses between the regions Di between times n and
n + 1). The fact that X̃ is transient is of course crucial here. So P(G1 [ G2) ≥ 1, while
G1 \ G2 ≥ ;, and this, (with symmetry) proves (1.2) for x ≥ 0.

THEOREM 3. (a) Let d ½ 3. There exists a smooth strictly positive bounded function
õ on Rd such that V ≥ �õ�1∆õ is bounded, and the equation r(õ2rß) ≥ 0 has a
bounded sign-changing solution ß.

(b) If K ≥ �∆ � V, then Ku ≥ 0 has a bounded sign changing solution u, and
ï1(K) ≥ 0.

In Section 2 we collect together some (mainly standard) properties of Bessel processes
and related diffusions, and in Section 3 we give the construction of the function õ.

We use ci to denote fixed positive real constants, whose value only depends on the
dimension d, and c, c0 etc. to denote positive constants (depending only on d) whose
value may change from line to line. We write x 2 Rd as x ≥ (x1, x(1)), where x(1) ≥
(x2, . . . , xd) 2 Rd�1. All the functions on Rd in this paper will depend on x only through
u ≥ x1, y ≥ jx(1)j. ïd denotes d-dimensional Lebesgue measure, and a ^ b ≥ min(a, b).

2. Some preliminary estimates. We begin by collecting some estimates on Bessel
processes and related potentials.

LEMMA 2.1. Let d ½ 3 and X be a Bes(d) process. Then

(2. 1) Px(Xs � y for some s ½ t) � t�1Û2y.

PROOF. Using a comparison theorem for SDEs (see [IW, p. 353]) we can assume
that x ≥ 0 and d ≥ 3. By Pitman’s decomposition [P] we can write Xt ≥ 2Mt � Bt,
where Bt is a one-dimensional Brownian motion with B0 ≥ 0, and Mt ≥ sups�t Bs. Then
infs½t Xs ≥ Mt. By the reflection principle P(B+

t Ù y) ≥ 2P(Bt Ù y) ≥ P(jBtj Ù y), so

Px(Xs � y for some s ½ t) ≥ P(jBtj � y) � 2yt�1Û2(2ô)�1Û2 Ú t�1Û2y.

LEMMA 2.2. Let Ut be a 1-dimensional diffusion with generator Lf (u) ≥
1
2

�
õ2(u)f 0(u)

�0
, where õ(u) Ù ¢ Ù 0. If 0 Ú x Ú y then

(2. 2) Px(U hits 0 before y) ≥
Φ(x)
Φ(0)

,

where Φ(x) ≥
R y
x õ

�2(u) du.

PROOF. Writing ß(x) ≥ Px(U hits 0 before y), we have that Lß ≥ 0, so that ß0(x) ≥
�cõ�2(x). Since ß(0) ≥ 1, ß(y) ≥ 0, (2.2) follows.
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Let G be the usual Green operator on Rd, given by

Gñ(x) ≥
Z
jx � x0j2�dñ(dx0),

where ñ is a measure on Rd. Set

J(a, r) ≥ fx ≥ (x1, x(1)) : jx1j � a, r � a � jx(1)j � r + ag.

LEMMA 2.3. Let ó be Lebesgue measure restricted to J(a, r). Then Gó is symmetric
in x1, and x1(∂GóÛ∂x1) � 0. Also Gó depends on x(1) only through y ≥ jx(1)j. If r ½
max(4a, a2) then there exist constants c1, c2 such that

(2.3) c1a2 � Gó(x) � c2a2 if jxj Ú
1
2

r,

(2.4) c1a2 log r � Gó(x) � c2a2 log r if x 2 J(a, r),

(2.5) Gó(x) � c2a2(jxjÛr)2�d if jxj Ù 2r.

PROOF. The first two properties of Gó are clear from the definition and the symmetry
of J.

We have ca2rd�2 � ó
�
J(a, r)

�
� c0a2rd�2, and 3

4 r � jxj � 3
2 r for x 2 J(a, r). So if

jx0j � 1
2 r, ca2 � Gó(x0) � c0a2, proving (2.3).

Let x 2 J(a, r). Then

Gó(x) ≥
Z

J
jx � x0j2�d dx0 ½

Z
J\B(x,2a)c\B(x,r)

jx � x0j2�d dx0.

If a Ú s Ú r then ïd�1

�
∂B(x, s) \ J

�
½ ca2sd�3, so that

Gó(x) ½
Z r

a
ca2s�1 ds ≥ ca2 log(rÛa).

Also, if r ½ a2 then log(rÛa) ½ log r1Û2 ≥ 1
2 log r. A similar calculation proves the other

bound in (2.4).
For (2.5), since jx � x0j ½ 1

2 jxj for x0 2 J, and jxj Ù 2r, we have

Gó(x) ½ ca2rd�2
�1

2
jxj
�2�d

½ c0a2(jxjÛr)2�d .

Now set nk ≥ e2k
, ak ≥ 2k+1, and let Jk ≥ J(ak, nk) for k ½ 0. Set A ≥

S1
k≥3 Jk.

PROPOSITION 2.4. There exists ß Ù 0 on Rd with the following properties.
(a) ß is superharmonic, and ∆ß ≥ 0 on Ac.
(b) ß ½ 1 on A.
(c) x1∂ßÛ∂x1 Ù 0.
(d) ß depends on x only through u ≥ x1, y ≥ jx(1)j.
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(e) If ç(t) is any path in Rd such that lim supt!1 jç(t)j ≥ 1 then
lim inf t!1 ß

�
ç(t)

�
≥ 0.

PROOF. Let ók be Lebesgue measure restricted to Jk, and

ßk ≥ c�1
1 a�2

k (log nk)�1Gók.

By Lemma 2.3 we have ßk ½ 1 on Jk, and ßk(x) � c(log nk)�1 ≥ c2�k, provided
jxj � 1

2 nk. Set

ß(x) ≥
1X

k≥3
ßk(x).

Clearly 0 Ú ß(x) Ú 1 for all x. Since eachßk is superharmonic, and harmonic on Jc
k , ß

clearly satisfies (a) and (b). (c) and (d) follow from the corresponding property for Gók.
To prove (e), let xk 2 R

d be such that jxkj ≥
1
2 nk+1. Then by Lemma 2.3, if i � k,

ßi(xk) � c(log ni)
�1(jxkjÛni)

2�d � c(2nkÛnk+1) ≥ c0e�2k
,

while ßi(xk) � c2�k if i ½ k + 1. So,

ß(xk) � cke�2k
+ c02�k.

Since jç(t)j ≥ 1
2 nk+1 for infinitely many t, it follows that

lim inf
t!1

ß
�
ç(t)

�
� lim inf

k!1
ß(xk) ≥ 0.

Let Xt, t ½ 0 be a process in Rd. We define the event

fX ultimately avoids Ag ≥
1[

n≥0
fXt Û2 A for all t ½ ng.

COROLLARY 2.5. Let B be a Brownian motion in Rd. Then Px(B ultimately avoids
A) ≥ 1.

PROOF. ß(Bt) is a positive supermartingale, and so converges a.s. Using Proposi-
tion 2.4(e) we see that limt!1 ß(Bt) ≥ 0 a.s. Since ß(x) ½ 1 on A, it follows that B
ultimately avoids A, a.s.

3. The counterexample. Let õ Ù 0, f be functions on Rd which depend on x only
through u and y. Then if L[õ] ≥ r(õ2r),

(3. 1)
1
2

L[õ] f ≥
1
2
õ2(fuu + fyy) + õõufu +

�
õõy + õ2 d � 2

2y

�
fy.

We will restrict our attention to operators on Rd of this form. Recall the definitions of nk,
Jk, A from Section 2. For k ½ 1 let

ȭk(u) ≥ 1 ^ n�1
k ejuj.
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Let ȭ(u, y) be given by

(3.2) ȭ(u, y) ≥ ȭk(u), nk�1 + 2k�1 � y � nk, k ½ 4

(3.3) ȭ(u, y) ≥ 1 ^ exp
�
�2k�1 + juj � (y� nk�1)

�
, nk�1 � y � nk�1 + 2k�1, k ½ 4,

(3.4) ȭ(u, y) ≥ ȭ3(u), 0 � y � n3.

Let † be a symmetric C1 function supported on (� 1
2 , 1

2 ), and set

õk(u) ≥
Z
†(u� u0)ȭ(u0) du0, õ(u, y) ≥

Z Z
†(u� u0)†(y� y0)õ(u0, y0) du0 dy0.

It is straightforward to verify

LEMMA 3.1. õk and õ are bounded smooth strictly positive functions onR andRðR+

which satisfy:

(3.5) ȭk(u) ≥ ȭ(�u), õ(u, y) ≥ õ(�u, y),

(3.6 j∆õj � c3õ,

(3.7) uõu ½ 0, õy ≥ 0 on Ac,

(3.8) õ(u, y) ≥ ȭk(u) if nk�1 + 2k � y � nk � 2k+1

(3.9)
Z 2k

2k�1
õ�2

k (u) du � c4,
Z 1

0
õ�2

k (u) du ½ c5n2
k .

Now let L1 be the operator given by

(3. 10) L1f ≥
1
2
õ2(fuu + fyy) + õõufu +

�
õõy + õ2 d � 2

2y

�
fy,

and set L2 ≥ õ�2L1. Let Zt ≥
�
(Ut , Yt), t ½ 0, Pz, z 2 RðR+

�
be the diffusion associated

with L2. Then Z is (the unique) solution to the SDE

dUt ≥ dBt +
 
õu(Zt)
õ(Zt)

!
dt,

(3.11) dYt ≥ dB0t +
 
õy(Zt)
õ(Zt)

+
d � 2
2Yt

!
dt,

where B, B0 are independent one-dimensional Brownian motions. Write g(u, y) ≥
õu(u, y)Ûõ(u, y): by (3.7) g ½ 0. Set Vt ≥ U2

t : then by Itô’s formula

(3. 12)
dVt ≥ 2V1Û2

t sgn(Ut) dBt +
�
1 + 2V1Û2

t g(V1Û2
t )

�
dt

≥ 2V1Û2
t dB̄t +

�
1 + 2V1Û2

t g(V1Û2
t )

�
dt.

Here

sgn(x) ≥
(

0 if x � 0
1 if x Ù 0,
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and B̄t, given by

B̄t ≥
Z t

0
sgn(Ut) dBt,

is another one-dimensional Brownian motion—see [RW, p. 63]. Let V̄ be the solution to

(3. 13) dV̄t ≥ 2V̄1Û2
t dB̄t + dt, V̄0 ≥ V0.

By a comparison theorem for SDEs (see [IW, p. 353]) it follows that V̄t � Vt ≥ U2
t for

all t ½ 0. However, (3.13) implies that V̄1Û2 is a Bes(1) process, and so equal in law to
the absolute value of a Brownian motion. (See [RW, p. 69]).

Set

TA ≥ infft ½ 0 : (Ut, Yt) 2 Ag,

T̄A ≥ infft ½ 0 : (V̄1Û2
t , Yt) 2 Ag.

We have T̄A � TA. From (3.7) and (3.11) we deduce that if Ȳ is the solution to

(3. 14) dȲt ≥ dB0t +
d � 2

2Ȳt
dt, Ȳ0 ≥ Y0,

then Ȳ is a Bes(d � 1) process, and Ȳt ≥ Yt for 0 � t � TA. Let also Z̄t ≥ (Ut, Ȳt), and

R̄t ≥
�
V̄t + Ȳ2

t

�1Û2
: then R̄ is a Bes(d) process, and jZ̄tj ½ R̄t.

Now set

Hk(t) ≥ f(u, y) : nk�1 + 2k � y � nk � 2k+1, juj ≥ tg, k ½ 4,

Ik ≥ [�2k, 2k] ð [nk�1 + 2k, nk � 2k+1], k ½ 4,

H3(t) ≥ f(u, y) : 0 � y � n3, juj ≥ tg.

Fix k ½ 4 and define stopping times Si, Ti by

T0 ≥ 0,

Sn ≥ infft ½ Tn�1 : Zt 2 Hk(2k � 1)g,

Tn ≥ infft ½ Sn : Zt 2 Hk(0) [Hk(2k) [ Ag.

Note that Zt 2 Ik for Sn � t � Tn, and that if Z hits Hk(0) and TA ≥ 1 then ZTn 2 Hk(0)
for some n.

LEMMA 3.2. On fSn Ú 1g,

(3. 15) Pz(ZTn 2 Hk(0), Tn Ú TA j FSn ) � cn�2
k .

PROOF. Using the Markov property of Z, we can assume n ≥ 1 and S1 ≥ 0, Z0 ≥
(u0, y0) 2 Hk(2k � 1). On 0 � t � T1 we therefore have that U satisfies the SDE

(3. 16) Ut ≥ u0 + Bt +
Z t

0
gk(Us) ds,
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where gk ≥ õ�1
k ∂õkÛ∂u. If U0 is the solution to (3.16) for 0 � t Ú 1, then U ≥ U0 on

[0, T1]. Set T0 ≥ inf
n

t : U0
t 2 f0, 2kg

o
. So

P(UT1 ≥ 0, T1 Ú TA) ≥ P(U0
T1
≥ 0, T1 Ú TA)

� P(UT0 ≥ 0)

�
Z 2k

2k�1
õ�2

k (u) du
� Z 2k

0
õ�2

k (u) du � c6n�2
k .

Here we used Lemma 2.2 and the estimate (3.9) in the last line.
Now set

tk ≥ 4kn2
k , mk ≥ kt1Û2

k ≥ k2knk.

LEMMA 3.3. On fTn�1 Ú 1g \ fTn�1 Ú TAg \ fjUTn�1 j ½ 2kg

Pz(Sn � Tn�1 Ù tk j FTn�1) ½ c7t�1Û2
k .

PROOF. As in the previous proof, it is enough to obtain the estimate for S1 � T0 in
the case when Z0 ≥ (u0, y0) 2 Hk(2k). Using the comparison between Ut and V̄1Û2

t we
have

P(S1 � T0 Ù tk) ½ P
�
T�1(å) Ù tk

�
,

where å is a one-dimensional Brownian motion started at 0, and T�1(å) ≥ inffs : ås ≥
�1g. However using the reflection principle as in Lemma 2.1,

P
�
T�1(å) Ù t

�
≥ P(jBtj Ú 1) ¾ ct�1Û2, as t !1.

Set

Nk ≥ maxfn : Sn Ú 1g,

G ≥ fUTn ≥ 0 for some n � mk ^ Nkg,

ë ≥ max
1�n�Nk^mk

(Sn � Tn�1),

Then if z Â2 Ik and k ½ 4,

Pz
�
Z hits Hk(0), TA ≥ 1

�
≥ Pz

�
Z hits Hk(0), G, TA ≥ 1

�
+ Pz

�
Z hits Hk(0), Gc, TA ≥ 1

�
.

� Pz(G, TA ≥ 1) + Pz(Nk Ù mk, Gc, TA ≥ 1)(3. 17)

By Lemma 3.2 the first term in (3.17) is bounded by c2mkn�2
k . If TA ≥ 1, then Z ≥ Z̄,

and so jZtj ½ R̄t for all t. We have

P(Nk Ù mk, Gc, TA ≥ 1) ≥ P(Nk Ù mk, jUTn j ≥ 2k for 1 � n � mk, ë Ú tk, TA ≥ 1)

+ P(Nk Ù mk, Gc, ë ½ tk, TA ≥ 1).(3. 18)
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The first term in (3.18) is bounded by

(3. 19) P(Nk Ù mk, Sn � Tn�1 Ú tk for 1 � n � mk, Gc, TA ≥ 1) � (1� c7t�1Û2
k )

mk
,

by Lemma 3.3. If Nk Ù mk and ë ½ tk then Zt0 2 Hk(2k � 1) for some t0 Ù tk. Since

jZt0 j
2 � (2k � 1)

2
+ n2

k � 4n2
k, we deduce from (2.1) that

Pz(Nk Ù mk, Gc, ë ½ tk, TA ≥ 1) � Pz(Rt Ú 2nk for some t ½ tk) � 2t�1Û2
k nk.

Collecting these estimates together, we have

Pz(Z hits Hk(0), TA ≥ 1) � cmkn�2
k + (1 � c7t�1Û2

k )mk + 2t�1Û2
k nk(3. 20)

� ck2kn�1
k + e�c7k + 21�k ≥ ¢k,

where
P1

k≥2 ¢k Ú 1.

LEMMA 3.4. (a) Z ultimately avoids A, a.s.
(b) Z is transient.
(c) For any z 2 R ð R+,

Pz(Z hits Hk(0) for infinitely many k, TA ≥ 1) ≥ 0.

PROOF. (a) From the properties of the function ß in Proposition 2.4, we see that
if ß̄(u, y) is the function such that ß(x) ≥ ß̄

�
u(x), y(x)

�
, then uß̄u ½ 0. Since on Ac ß̄

satisfies
1
2

(ß̄uu + ß̄yy) +
d � 2

2y
ß̄y ≥ 0,

we have on Ac

L2ß̄ ≥ õ�1õußu � 0.

So 1 ^ ß̄(Zt) is a supermartingale, and so converges a.s. to some limit. But since jZtj ½

jUtj ½ V̄1Û2
t , and lim supt!1 Vt

1Û2
≥ 1, by Proposition 2.4(e) we have that the limit

must be 0. Thus, as in Corollary 2.5, Z ultimately avoids A.
(b) This is immediate from (a).
(c) Since z is in at most one of the sets Ik, this is immediate from the estimate (3.20)

and the Borel-Cantelli lemma.

THEOREM 3.5. Z ultimately avoids fu ≥ 0g, Pz-a.s.

PROOF. Since Pz(Z ultimately avoids A) ≥ 1, we have

(3. 21) 0 ≥ lim
n!1

Pz(Zt 2 A, for some t ½ n) ≥ lim
n!1

Ez
�
PZn (TA Ú 1)

�
.

Note that fu ≥ 0g � Γ ≥ A [
S1

k≥3 Hk(0). Set Fn ≥ fZt 2 Γ for some t ½ ng,
F ≥

T1
n≥0 Fn. Then

Pz(F) ≥ Pz(F \ fTA Ú 1g) + Pz(F \ fTA ≥ 1g).
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If F occurs then either Z hits infinitely many of the Hk(0), or Z hits one of the components
of Γ after time n for infinitely many n. But as Z is transient the second possibility has
probability 0. So

Pz(F \ fTA ≥ 1g) ≥ Pz
�
Z hits Hk(0) for infinitely many k, TA ≥ 1

�
≥ 0

by Lemma 3.4(c).
So,

Pz(F) ≥ Pz(F \ fTA Ú 1g) for z 2 R ð R+.

But
Pz(F) ≥ Ez

�
PZn(F)

�
≥ Ez

�
PZn (F \ fTA Ú 1g)

�
� EzPZn (TA Ú 1),

which converges to 0 as n !1 by (3.21). So Pz(F) ≥ 0.
By Theorem 3.5 we see that if D1 ≥ fu Ù 0g, D2 ≥ fu Ú 0g and Gi ≥ fZt 2 Di

for all sufficiently large tg, then G1 \ G2 ≥ ;, while Pz(G1 [ G2) ≥ 1. By symmetry
P0(Gi) ≥ 1

2 . Set †i(z) ≥ Pz(Gi). We have †1 + †2 ≥ 1, 0 Ú †i Ú 1 and since †i(Zt) is a
martingale, by the martingale convergence theorem †i(Zt) ! IGi a.s., which shows that
†i are non-constant. So † ≥ †1�†2 is a sign-changing function which is harmonic with
respect to the operator L2. Hence L1† ≥ õ2L2† ≥ 0. We have proved:

COROLLARY 3.5. The equation L1† ≥ 0 has a bounded sign-changing solution.

PROOF OF THEOREM 3. Recall the notation x ≥ (x1, x(1)), u ≥ x1, y ≥ jx(1)j. Let õ,
† be as above, and define õ̃(x) ≥ õ

�
u(x), y(x)

�
, †̃(x) ≥ †

�
u(x), y(x)

�
. Then õ̃ and õ̃�1∆õ̃

are bounded, and
L[õ̃]†̃ ≥ 2L1† ≥ 0,

so that †̃ is a bounded sign-changing solution of r
�
õ̃2r†̃

�
≥ 0. The final assertion in

Theorem 3 is now immediate from Theorem 2.

REFERENCES

[Bas] R. F. Bass, Diffusions and Elliptic Operators. Springer, New York, 1997.
[BCN] H. Berestycki, L. Cafarelli and L. Nirenberg, Further qualitative properties for elliptic equations in

unbounded domains. preprint.
[GG] N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems. Math. Ann., to

appear.
[IW] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion processes. North-Holland,

Kodansha, 1981.
[P] J. Pitman, One dimensional Brownian motion and the three-dimensional Bessel process. J. Appl. Probab.

7(1975), 511–526.
[RW] L. C. G. Rogers and D. Williams, Diffusions, Markov Processes, and Martingales, Volume I. (2nd edi-

tion), Wiley, 1994.

Department of Mathematics
University of British Columbia
Vancouver, British Columbia
V6T 1Z2

https://doi.org/10.4153/CJM-1998-026-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-026-9

