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Abstract

Nonlinear co-integration is studied for score-driven models, using a new multivariate dynamic conditional
score/generalized autoregressive score model. The model is named -QVARMA (quasi-vector autoregres-
sive moving average model), which is a location model for the multivariate -distribution. In t-QVARMA,
I(0) and co-integrated I(1) components of the dependent variables are included. For --QVARMA, the
conditions of the maximum likelihood estimator and impulse response functions (IRFs) are presented.
A limiting special case of t-QVARMA, named Gaussian-QVARMA, is a Gaussian-VARMA specification
with I(0) and I(1) components. As an empirical application, the US real gross domestic product growth, US
inflation rate, and effective federal funds rate are studied for the period of 1954 Q3 to 2020 Q2. Statistical
performance and predictive accuracy of t--QVARMA are superior to those of Gaussian-VAR. Estimates of
the short-run IRF, long-run IRE and total IRF impacts for the US data are reported.

Keywords: Nonlinear co-integration, nonlinear common trends, dynamic conditional score (DCS), generalized autoregres-
sive score (GAS), quasi-vector autoregressive moving average (QVARMA)
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1. Introduction

In this paper, the quasi-vector autoregressive moving average location model (hereinafter,
t-QVARMA) is presented for the multivariate ¢-distribution, to study relationships among I(0)
and co-integrated I(1) macroeconomic variables. The t--QVARMA model is a dynamic conditional
score (DCS) model (Harvey and Chakravarty (2008), Harvey (2013)) or generalized autoregres-
sive score (GAS) model (Creal et al. (2008, 2011, 2013)). Score-driven models are nonlinear
observation-driven state space models, which are updated using the conditional score of the log-
likelihood (LL) (hereinafter, score function). The score functions are nonlinear transformations
of the dependent variables. Thus, for the co-integrated I(1) variables, a new form of nonlinear
common trends (e.g. Escribano (2004), Escribano et al. (2006), (2008), Escanciano and Escribano
(2008)) is considered in this paper.

The t-QVARMA(p,q,r) model of the present paper is in relation to the works of Harvey
(2013) and Creal et al. (2014). The t-QVARMA(p,q,r) model is an extension of the DCS model
for the multivariate ¢-distribution (Harvey (2013)), which is abbreviated as t-QVAR(1). The
t-QVARMA (p,q,r) model is also an extension of the t--QVARMA(p, g) factor model of Creal et al.
(2014), because the latter is a model for I(0) dependent variables, while the former is a model
for I(0) and co-integrated I(1) dependent variables (Granger (1981), Engle and Granger (1987)),
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and because in t-QVARMA(p,q,r) less restrictions are imposed on the parameters of the multi-
variate score-driven filter than in the work of Creal et al. (2014). Thus, dynamic interaction effects
among variables are more completely measured in our work than in the score-driven factor model
of Creal et al. (2014).

As further contributions to the literature, for +-QVARMA(p,q,r), technical details of the
model formulation for I(0) and co-integrated I(1) dependent variables, first-order repre-
sentation, impulse response analysis, and statistical inference procedures are presented. We
present conditions of the asymptotic properties of the maximum likelihood (ML) estimator for
t-QVARMA(p,q,r). We provide conditions for the convergence of the multivariate I1(0) filter of
t-QVARMA to a stationary and ergodic sequence, using the results from the works of Brandt
(1986), Elton (1990), and Straumann and Mikosch (2006). We also provide conditions for the
identification of the parameters of t--QVARMA, using the results of Liitkepohl (2005). As a further
empirical contribution, we present a macroeconomic application of t-QVARMA with identified
structural shocks for US macroeconomic data.

The t-QVARMA(p,q,r) model includes I(0) and co-integrated I(1) filters, which is simi-
lar to the Granger representation of VAR models. For t-QVARMA(p,q,r), technical details of
reduced-form and structural-form representations, and sign restrictions-based impulse response
functions (IRFs) are presented in our paper. If the degrees of freedom parameter v — 0o, then
the -QVARMA model will converge to a Gaussian-QVARMA specification with I(0) and I(1)
components.

The empirical application uses quarterly data for the US real gross domestic product (GDP)
growth, US inflation rate, and effective federal funds rate for period: 1954 Q3-2020 Q2. Estimation
and forecasting results for --QVARMA, Gaussian-VAR, and co-integrated Gaussian-VAR for
vector error correction model (VECM) representation are presented. For the empirical applica-
tion, (i) the statistical performance of +-QVARMA is superior to the statistical performance of
Gaussian-VAR, and (ii) the out-of-sample multistep-ahead predictive accuracies of t-QVARMA
are superior to those of Gaussian-VAR. We report the short-run IRE long-run IRFE and total IRF
estimates for the US data.

The remainder of this paper is organized as follows: Section 2 reviews the literature.
Section 3 presents the reduced-form representation of +-QVARMA and its statistical infer-
ence. Section 4 presents the structural-form representation of t-QVARMA and the tools of
IRF analysis. Section 5 presents an illustrative empirical application of t-QVARMA. Section 6
concludes. Technical details of the statistical inference and model specifications, and IRF esti-
mates for t-QVARMA, Gaussian-QVARMA, and Gaussian-VAR are presented in Supplementary
Material.

2. Review of the literature

Score-driven time series models are observation-driven (Cox (1981)) state space models of
univariate or multivariate time series variables, which are estimated using the ML method.
Score-driven models can be applied to the study of variables with different orders of inte-
gration, for example, I(0) variables (e.g. financial return; GDP growth) or I(1) variables
(e.g. currency exchange rates). An example of univariate score-driven models is the quasi-
AR (QAR) model (Harvey (2013)), which is a nonlinear outlier-robust alternative to the
ARMA model (Box and Jenkins (1970)). Another example of univariate score-driven models
is the Beta---EGARCH (exponential generalized autoregressive conditional heteroskedastic-
ity) model (Harvey and Chakravarty (2008)), which is an alternative to the GARCH (Engle
(1982), Bollerslev (1986, 1987)) and EGARCH (Nelson (1991)) models. Due to the score-
driven updating mechanism, the information gain in the filters is optimal in Beta-t-EGARCH,
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according to the Kullback—Leibler divergence in favor of the true data generating process
(Blasques et al. (2015)).

The DCS model for the multivariate t-distribution (Harvey (2013, p. 210)) which is an
alternative to the VARMA model (Tiao and Tsay (1989), see also Liitkepohl (2005)), and the
t-QVARMA (p,q) model of Creal et al. (2014) which uses I(0) variables, are extended in the present
paper. The --QVARMA (p,q,r) model is for I(0) and co-integrated I(1) variables, in which an out-
lier in any variable influences the other variables through the covariance matrix of the errors.
The measurements of dynamic interaction effects are less distorted by outliers than the same
measurements for the Gaussian linear alternatives.

In the literature, several works suggest outlier-robust methods for integrated and co-integrated
time series. For example, the pseudo-likelihood ratio (PLR) test of Lucas (1997) is an outlier-
robust test of co-integration for I(1) time series. See also the related works of Lucas (19954),
(1995b), (1998), Franses and Lucas (1998), and de Jong et al. (2007). Based on those works,
Bosco et al. (2010) suggest outlier-robust co-integration tests using the Student’s ¢-distribution.
Furthermore, Escribano et al. (2011) suggest the use of median filters for outlier-robust tests
of co-integration. The t-QVARMA of the present paper is an alternative to those outlier-robust
frameworks.

3. t-QVARMA
3.1 Reduced-form representation
For the dependent variables y; (K x 1) with t=1..., T, it is assumed that K* variables are I(0)
and K™ variables are I(1) and co-integrated. The K = K* + K dependent variables are ordered in
such a way that the first K* variables are I(0), and the remaining K T variables are I(1).

The reduced-form representation of t--QVARMA(p,q,r) is

yi=C et v =ct+uf +uf + v, (1)
P q
wi=)_Ofui i+ Y Wu, ()
i=1 j=1
r
i =l + Wluy, 3)
=1
v~ tk(Oxx1, B, v) = tx [0, 71 Q') v] id, (4)
where ¢* (K x 1), ®},..., @} (all K x K), ¥}, ..., ¥F (all K x K), ¥, .., @K x K), Q7!
(K x K), and v are constant parameters. In the work of Creal et al. (2014), ®7,..., CD; and
WT,..., Wy are diagonal matrices. In the present paper, the “final equations form” restriction
for ®7,..., CD; (Lutkepohl (2005)) is used, according to which the K x K parameter matri-
ces ®7,..., Py in (2) are replaced by the scalar parameters ¢, ..., ¢;. The final equations
form ensures the identification of parameters in 1, and full matrices for Wf, ..., W7 are used.

Moreover, 1] is in the final equations form of representation.

Variable u; (K x 1) is the scaled score function, and it is defined in Section 3.2. Vector uy
includes I(0) variables, and vector ;LZ includes co-integrated I(1) variables. In this way, y; is
decomposed into I(0) and I(1) components in a way that is similar to the Granger representa-
tion of VAR (Johansen (1995)). The reduced-form error term v; represents the unexpected part of
¥1» since the conditional mean of the dependent variables is E(y;|y1, . . ., yi—1, 47> /,LD =c"+u =

i+l
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Filters p} and MI are initialized using their unconditional means. For the first max (p, q)
observations of the sample, pf is initialized using Ok 1. For the first  observations of the sam-

ple, [LI is initialized using Ox 1. All elements of ®7, ..., <I>; and ¥, ..., \I/;‘ are real numbers.
For each of the matrices \IJI ,..., W, all elements in the first K* rows and all elements in the
first K* columns are restricted to zeros. For each of the matrices \III s \IJI , the rank of the
quadratic submatrix formed by the elements of the last K™ rows and the last K* columns is
1<R<K"

The positive-definite matrix ¥ is estimated using the Cholesky decomposition 7 (Q271)". The
degrees of freedom parameter v is jointly estimated using the rest of the parameters, where v > 2
to ensure that the covariance matrix of v; is well defined.

3.2 Scaled score function
In this section, the updating term u; that updates the I(0) and I(1) components of --QVARMA is
defined. The log of the conditional density of y; given F;_1 = (y1, .. ., yr—1, 47> “D is

v+ K v K
1m@magn_mr(2 )—mr6>—5mmm, (5)
1 K ok /271 ok
BRI s lnp+}% )T —c u»]
2 2 v
where ® = (®, ..., Qg)’ is the vector of time-invariant parameters. The partial derivative of the

log of the conditional density with respect to p; is

’Zlvt>_1 v+ K

V.
1+ -t =— > xouy, (6)

3 Inf(y | Fi—1;9) _ U+K2_1 o (
v

But Vv

(Harvey (2013)), where v, = y; — ¢* — us. The scaled score function u; is defined in (6) using
the reduced-form error term, where v; is multiplied by [1 + (vgilv_lvt)/v]_1 =v/(v+ V;EV_IW) €
(0, 1). Therefore, the scaled score function is bounded by the reduced-form error term: |u;| < |v¢|.
The scaled score function u; is multivariate i.i.d. with mean zero and a covariance matrix (Harvey
(2013)):

91 Fi-130) a1l Fi1;0 K
Var(ut)=E|: nf(yelFi-1 )x n f (ye| Fi—1 )i|_ v+ )
VFK+2

= L 7)
Gy Ot

3.3 First-order representations of the score-driven filters
The first-order representation of filter p} is

MY = "M WU, ®)

where the dimensions of the matrices of (8) are M} [K(p+q—1) x 1], ®* [K(p+g9— 1) x K(p +
qg—1], ¥* [K(p+q—1)xK(p+q—1)], and U}, [K(p+q—1) x 1], and the elements of
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those matrices are defined as follows:

~ _ CD’I‘ @3‘ CD;LI @; 3 ‘-IJ; "'\I’;—l \IJZ]k
* |
M Ix Oxxkx -+ Ogxk!Ogxk --+ -++ Oxxk
* |
My Okxx Ik Oxxk ! OxxK
MWipi1 | = | Okxk - Okxk Ik OKxKﬂOKxK--- -+ OKxK
Ur—1 OKxK +++ -+ o0 OgukOkxK *** +++ OKxK
OkxKk -+ -+ - Ogxx! Ik -+ -+ Okxk
i utiq+1 ) . i o« .
[ Okxk -+ =00 oo Okxk(Okxk - - Ix Okxk |
_M*l_ W Okxk -+ Okxk!OKxK -+ OKxK Ui-1
t— :
W Ok xk Oxxk -+ Okxk!'OkxK -+ Okxk OKx1
t— |
. Okxk Okxk **+ OkxKk OKxK *** OKxK Ok x1
Ik Okxk -+ Okxk!OKxK -+ OKxK Ok x1
Ur—2 |
Oxxk OkxK *** OkxK!0kxK *** OkxK Oxx1
L H=q | Oxxk OkxK -+ OK><K§0K><K o OkxK | | Oy

If the maximum modulus of eigenvalues, denoted C;, of ®* is less than 1, and W* is non-zero,
then M is covariance stationary.

The first-order representation of filter ] is
Mf=o'M  +v'Ul |, 9)

where the dimensions of the matrices of (9) are M (Kr x 1), ®% (Kr x Kr), ¥' (Kr x Kr), and
U[T_1 (Kr x 1), and the elements of those matrices are defined as follows:

Ik (W) - W wf
B 7 S A B
i : My
....... OKXKJOKXK OKXK v
-1 | _ | Okxk! Ix Okxk -+ Okxk =2 | 4
0K xK
_ut—r—i-l_ ...i... “ e PN P _ut—r_
_0K><K§0K><K <o+ Ik Ogxk |
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t o
W, 10kxk * - Okxk U1

Ix 0gxk - Okxk Ok x1

Orxk'Okxk - Oxxk Ok x1

Orkxk!Okxk - Okxk Orx1

3.4 ML estimator
The parameters of t-QVARMA are estimated using the ML method, as follows:

T

OmL = arg mgx LL(y1,...,y1:0) =arg m@:)ix ; In f(y¢| Ft—1;0), (10)

where LL is log-likelihood. The asymptotic covariance matrix of parameters Oy is estimated
using the inverse information matrix (Creal et al. (2013), Harvey (2013), Blasques et al. (2017)).
The conditions of the asymptotic properties of ML are presented in Supplementary Material A.

4. Dynamic interaction effects
4.1 Structural-form representation
First, the variance of the reduced-form error term v; ~ tx(0, X, v) is factorized, as follows:

172 b\ 12
) xe@yc() (an

v—2 v—2

Var(v;) = X X Y =< 5

Based on that, the following multivariate i.i.d. structural-form error term ¢; is introduced:

v 1/2
Vy = < ) Q_l X €4, (12)
v—2

where E(¢;) =0, Var(e;) =Ix and e ~tx[0,Ix x (v —2)/v,v]. This gives the following
structural-form representation of t-QVARMA:

~1/2
(viz) Q= (13)

—1/2 —1/2 —1/2 —1/2
v * * T v
= ( ) Qc* + ( ) Qu; + ( ) Qu, + (—) Qv =
v—2 v— v— v—2

—1,2 —1,2 —1,2
(-2 Qc* + Qui + Y Qul + ¢
v—2 v—2 t v—2 £

4.2 IRF analysis

<
<

[\S}
[\S}

<

The dynamic interaction effects of y; are studied for the nonlinear t-QVARMA:

¢
Oyerj iy n by n Ve
e, e de; de;

IRFj; = for j=0,1,...,00. (14)
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The first and second terms of (14) are zero for j =0, since both u¥ and u] include lags of €.
Those terms represent the short-run dynamic interaction effects IRF;}, and the long-run dynamic

interaction effects IRF}:t, respectively. The third term of (14) is zero for j > 0, and it represents the
contemporaneous interaction effects IRF]VJ. Under this notation,

IRFj; = IRF}, + IRF], + IRF}, for j=0,1,...,00. (15)

With respect to IRF;.‘}, if C; < 1, then

M; = Uk(prg-1) — ®*LIT W UF, (16)
x .
My =Y (@YWrUr (17)
j=0
e .
IM; = J(@ YW TUE, (18)
=0

where ] = (I, Ok xk, - - + » Okxk) is [K x K(p + g — 1)]. Then,

0 e°]
wi =D J@Y U =) J@Y W (v - 2] 27 x

j=0 j=0

€t—1—j
v—24 e;_l_jet_l_j'

(19)

Therefore, the IRF for short-run interaction effects is given by:

IRF, = pufy /e = J(@*Y W [(v —2)v]?Q7'Dy for j=1,...,00, (20)

€ dll,t ce dlK,t
—24¢€
D=2 = (21)
Bet
dKl,t e dKK,t

™ v—2+e€je 267,

—2€1 €21

(v—2-+€jer)?
—2€t€1,t

(v—2+€,€1)?
v—2+4€/ei—2€3,

_ (v—2+€,€1)?

—2€K €1t
L (v—2+€/€)?

(v—2+€,€r)?

—2€] €K t
(v—2+€€r)?

u—2+e[’6t—2612<t

(v—2+€€r)?

With respect to IRFL, component 1] is expressed from (3) by recursive substitution as:

wf=Wlue g + (U] + WD+ (W L+ Dk
W+ Y ek (Y g
FWT WL Dukr 4 (W] W+ W
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Table 1. Sign restrictions on impact responses

Supply shock  Demand shock  Monetary policy shock

US real GDP growth y; ¢ + + —
US inflation rate y, ¢ - + -
Effective federal funds rate y3 ¢ unrestricted + aF

Notes: Gross domestic product (GDP).

Therefore, the IRF for long-run interaction effects is given by:

IRFl, =aul, /oe =V [(v—20]"2Q D,
IRE], = aul,,/9e = (W] + W) —2v]"2Q7 1D,
: (23)
IREL_,, = 0ul ¢ /06 = (W] +... + ¥} ) —2w]"2Q7'D,
IRF), = 0uf, /0e=W] +.. .+ W) -20]"2Q7'D; for j=K.

The IRFs in (20) and (23) depend on Dy, that is, those IRFs are time-varying. Motivated by the
estimation of IRF for a nonlinear model in the work of Herwartz and Liitkepohl (2000), in the
present paper, the sample average of the IRFs is used. In t-QVARMA, v; and ¢; are multivari-
ate i.i.d. error terms; hence, they are strictly stationary and ergodic. According to White (1984,
Theorem 3.35), a nonlinear measurable function transforms strictly stationary and ergodic vari-
ables into new strictly stationary and ergodic variables. Therefore, all elements of D; are strictly
stationary and ergodic, and E(D;) can be estimated using the sample average due to the ergodic
theorem. An alternative to the use of E(IRF;}) and E(IRFL) is the period-by-period estimation

of IRFJ’; and IRF}:t, respectively. In those applications, both IRF]’-‘; and IRFJT’t may be averaged for

several subsample periods, and the resulting IRF estimates may be compared. Finally, with respect
to IRF! :
Jst

it =

, bo\1/2 . ‘
IRF!, = 5 Q for j=0. (24)

4.3 Identification of the IRFs using sign restrictions

IRFs are identified using the sign restrictions, which is based on simulations of matrix Q71,
according to the following procedure: first, the ML estimates of 27! are used. Second, a K x K
matrix K of independent N(0, 1) numbers is simulated. Third, the QR decomposition of K is per-
formed (Rubio-Ramirez et al. (2010)), and the resulting matrices are denoted as Q and R. Fourth,
we define Q 1=Q ! x Q/ . For each simulation of Q_l, sign restrictions are used in accordance
with Table 1 (i.e. in this paper, we impose sign restrictions on the contemporaneous effects of
structural shocks). For the IRFs, 1 million simulations of K are generated, and only those simu-
lations are used that satisfy the sign restrictions, and for each simulation Q! is replaced by 2~
in equations (14) to (23). For the simulations that satisfy the sign restrictions, we report the 10%,
50%, and 90% percentiles of the IRFs.

5. Empirical application
5.1 Data

Quarterly data from seasonally adjusted (SA) US real GDP growth y;;, SA US inflation rate
y2.+» and non-SA effective federal funds rate y3; are used for 1954 Q3 to 2020 Q2 (data source:
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(a) US real GDP growth yi ¢

1955 1960 1966 1971 1976 1981 1987 1992 1997 2002 2008 2013 2018

(b) US inflation rate y2 ¢

o
1955 1960 1966 1971 1976 1981 1987 1992 1997 2002 2008 2013 2018

(C) Effective federal funds rate y3 ¢

o
1955 1960 1966 1971 1976 1981 1987 1992 1997 2002 2008 2013 2018

Figure 1. Evolution of US real GDP growth, US inflation rate, and effective federal funds rate from 1954 Q3 to 2020 Q2.
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Federal Reserve Economic Data). The use of those variables is motivated by the work of
Christiano et al. (1999) for structural VAR (SVAR) models. The evolution of y; s, y2, and y3; is
shown in Figure 1. The co-integration test results for y,; and y3; are summarized as follows: First,
the Engle-Granger co-integration test (Engle and Granger (1987)) is applied for 3 = (y21, y3.1)
using the augmented Dickey-Fuller (ADF) test (Dickey and Fuller (1979)). In Table 2, results for
the two steps of the Engle-Granger test are reported: (i) the ADF test results are reported for y;;
and y3; (Panel A of Table 2), which suggest that both variables are I(1). (ii) The existence of a
co-integration relationship between y,; and y3 is equivalent to the rejection of the unit root null
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Table 2. Descriptive statistics

A. Summary statistics USreal GDP growthy;;  USinflationratey,;  Effective federal funds rate ys s
Start date 1954 Q3 1954 Q3 1954 Q3
T 2020Q2 o Q2 SR S 2020Q2 R
Sample size 264 264 264
Minimum —10.0275 0.2616 0.0600
T e e
Mean 2.9455 3.1082 4.7419
Standard deviation 2.4139 2.1252 3.5797
T T B
Excess kurtosis 3.0183 1.6377 1.2248
ADF with constant —3.1656**(0.0221) —1.2512(0.6543) —1.8336(0.3645)
B. Optimal lag-order, VAR(p) AIC BIC HQC
p= 6.5328 6.7028 6.6012
p:2 ......................... A
p=4 6.0151 6.5676 6.2375
p:5 ...................................... o R
p=1 5.7743 6.7094 6.1507
p:8 .................. e ot
p=10 5.6614 6.9790 6.1918
p=11 ....... S i

C. Co-integration tests for j: = (v2,¢, y3,¢)’

Engle-Granger co-integration test statistic (p-value):
ADF with constant on residuals

Nyblom-Harvey common trends test statistic:

Lags m =30
Lags m =40 0.0882
e Lagsm: 50 ............................ 00839
. Lagsm= 100 s — 01377

Lucas outlier-robust (t-distribution) co-integration test statistic:
Hy: rank(IT)=1; Hy: rank(IT)=2 0.2182

Source of data: Federal Reserve Economic Data, https://fred.stlouisfed.org.

Notes: Gross domestic product (GDP); vector autoregression (VAR); Akaike information criterion (AIC); Bayesian information criterion (BIC); Hannan-
Quinn criterion (HQC); augmented Dickey-Fuller (ADF); not available (NA). All variables are measured in percentage points. Bold numbers indicate
the optimal lag-order, which is p =2 according to BIC. For all ADF tests of the table, the lag-orders are selected by using BIC, and p-values are
presented in parentheses. * and ** indicate significance at the 10% and 5% levels, respectively. For the Engle-Granger test, the significant co-
integration is found. For the Nyblom-Harvey test, the test statistic for the possibility of serial correlation in the error term is reported, the 90%,
95%, and 99% level critical values are 0.162, 0.218, and 0.383, respectively, and results for different bandwidths m are presented. According to Ho
of the Nyblom-Harvey test, j: has one common trend for m = 30, 40, 50, and 100. For the outlier-robust co-integration test of Lucas, the pseudo-
likelihood ratio (PLR) test statistic is reported for the multivariate t-distribution, and the 90%, 95%, and 99% level critical values are 4.3114, 5.7948,
and 10.5151, respectively. The estimated degrees of freedom parameter is ¥ = 2.0691, for which the critical values are obtained by using a linear
approximation from the critical values of Lucas (1997, p. 159), which indicate that Hy cannot be rejected for the PLR test.
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hypothesis of the ADF test for the residuals of the linear regression y3; = o + B1y2,+ + €. The test
results indicate that US inflation rate and effective federal funds rate are co-integrated (Panel C of
Table 2).

Second, the common trends test of Nyblom and Harvey (2000) is applied for 7 = (y2,1, ¥3,)’:
¥t = fis + n1,s where 1 ~ N(021, X1,5) is serially correlated, (25)

fit = fis—1 + n2,s where 15 ~ N(02x1, X55) is serially independent. (26)

Under Hy, rank(X, ;) = 1, that is, y»; and y3; have one common trend. Test statistics for band-
widths m = 30, 40, 50, 100 and critical values are reported in Table 2. According to those results,
there is a common trend in US inflation rate and effective federal funds rate (Panel C of Table 2).

Third, the outlier-robust co-integration test of Lucas (1997) is applied for y; = (y2¢, y3,¢)’ > using
the multivariate ¢-distribution for the error term in the following model:

Ay =Ty 1 +T1Ay 1+ ...+ Tp 1AV py1 + V1, (27)

where IT (2 x 2), I't, ..., I'p—1 (each 2 x 2) are time-invariant parameters. Ho and H; for this
test are presented in Table 2. For the co-integration test of Lucas, the PLR test statistic for the
multivariate ¢-distribution is reported. According to the results, rank(IT) = 1 (Panel C of Table 2).
Thus, US inflation rate and effective federal funds rate are co-integrated.

5.2 In-sample ML estimates

Results for the --QVARMA(1,1,1), t--QVARMA(2,1,1), and -QVARMA(3,1,1) specifications are
presented in this section, where the t-QVARMA(2,1,1) specification is formulated as follows:

Y1t CT /J'T,t /"LIJ Vit
e |=16 |+ M>2k,t + M;,t + 1 var |- (28)
Y3t C; /L;[ i L M;t V3t
* * * N B * * *
it H1—1 H1t—2 Vi Yin Y Ur—1
* — h* * * % * * *
Mot =9 Ho—1 +é; Moeo | T | Wi Wian Yins W1 | > (29)
* k k * * *
M3t H3—1 Miep | | Wis1 Wis2 Wiss Us,r—1
V“I,t V“Jlr,t—l 0 0 0 Uy -1
Tol= +10 wi Wl (30)
Mot M1 1,22 1,23 Uzt—1 |»
“’g,t _M;t—l 0 :32\1"122 :52‘1'123 U3 t—1
0 Q7 0 0 Q' Q! @3
vi~ts o] @ ey o [ x| 0 ey |y iid (31)
-1 =1 -1 -1
0] | 25 25 Q55 0 0 Q5

The specification of W] ensures that R = 1. Variables 1} and y| are initialized by using 3 x 1
vectors of zeros. The co-integrating vector for y,; and y3 is given by ( — B, 1). An alternative
way of ensuring the same rank is to use the parametrization of the VECM representation of VAR
models: lIllT = «aff’, where @ and B (both K x R) are parameter matrices (Liitkepohl (2005)). For
both parametrizations identical results were obtained, hence only the results for (30) are reported
in this paper.
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Table 3.

Parameter estimates and model diagnostics

t-QVARMA(1,1,1)

t-QVARMA(2,1,1)

t-QVARMA(3,1,1)

t-QVARMA(2,1,1) B =1 Gaussian-QVARMA(2,1,1)

Gaussian-VAR(2)

Gaussian-VAR(2) VECM

2.1301*%%(0.4497)
0.7334(5.7496)
1.4490(7.9636)
0.8371***(0.0291)
NA
NA
1.3447*%(0.0719)
—0.2580(0.2985)
0.1619(0.1437)
0.0091(0.0200)
—1.3387*%(0.4649)
—0.5969***(0.1692)
—0.0151(0.0510)
—3.7277%%(0.7721)
0.7504***(0.2739)
2.9390***(0.4883
0.7201***(0.1797
1.3793*%(0.1606
1.1674%(0.0433
0.0021(0.0189)
0.3146***(0.0168)
0.2000***(0.0581)
)
)

)
)
)
)

0.1359***%(0.0438
0.7098***%(0.0204
44.0938***(3.3988)

1.9066™*(0.4519)
0.7181(0.5320)
0.9254(0.7833)
0.8849**%(0.0258)
—0.0531**(0.0259)
NA
1.2618"*(0.0733)
—0.2216(0.2848)
0.2415%(0.1367)
0.0176(0.0187)
—1.1919*%(0.5239)
—0.7391**%(0.2271)
—0.0194(0.0457)
—3.9209**%(0.8832)
0.3416(0.3805)
2.7393**%(0.5485)
0.8764**%(0.2408)
1.5457"%(0.1614)
1.1645"%(0.0430)
0.0095(0.0189)
0.3084***(0.0158)
0.2105***(0.0602)
0.1363***(0.0446)
0.7333**%(0.0194)
96.6340***(12.3807)

2.5447%%%(0.3275)
0.9513**(0.4060)
0.7923(0.7625)
0.9518***(0.0183)
—0.0428*(0.0236)
—0.0656***(0.0231)
1.2573*(0.0794)
—0.2596(0.2876)
0.3009**(0.1343)
0.0284(0.0214)
0.60817(0.3926)
—1.4523***(0.3397)
—0.0269(0.0466)
—1.7727**(0.7786)
—1.4886*(0.7966)
0.9092**(0.4025)
1.5909%*(0.3538)
2.0668***(0.2144)
1.1386™(0.0450)
0.0219(0.0217)
0.3173*%(0.0174)
0.2526***(0.0662)
0.1129%*(0.0442)
0.7244***(0.0225)
78.3488***(8.9625)

1.6628"%(0.4477)
0.6101(0.4995)
1.4791*(0.7840)
0.8797**%(0.0243)
—0.0257(0.0212)
NA
1.3003**(0.0697)
—0.1958(0.2840)
0.1925(0.1362)
0.0150(0.0186)
—2.3649**%(0.7122)
—0.5653**(0.2330)
—0.0129(0.0420)
—3.6147**%(0.7273)
0.9644**%(0.2293)
3.9639**%(0.7387)
0.6896**(0.2489)
NA
1.1765"%(0.0418)
0.0057(0.0185)
0.3151**%(0.0143)
0.1974***(0.0560)
0.1288***(0.0477)
0.7281***(0.0190)
105.1299***(13.8536)

1.6107**%(0.5309)
0.7303%(0.4863)
0.7828(0.7508)
0.9297%(0.0177)
—0.0661%*%(0.0238)
NA
1.2382*%%(0.0730)
—0.0666(0.3101)
0.1813%(0.1127)
0.0261%(0.0180)
—1.2749%(0.6586)
—1.1929*(0.3348)
0.0229(0.0484)
—4.0340**(1.1356)
—0.8029(0.5962)
2.7345%(0.6783)
1.3077**%(0.3416)
1.6673**(0.1649)
1.2424**(0.0410)
0.0250(0.0190)
0.3065**(0.0163)
0.2332%%(0.0642)
0.1445**%(0.0471)
0.7722*%(0.0189)
NA

C1

(&)

C3
@111
@712
@113
D751
D12
D123
D131
D132
@133
D11
®y12
@713
D301
D722
D323
D331
@732

@333

0.6430***(0.1987)
—0.0166(0.0576)
—0.2405(0.1983)
1.2739%(0.0704)
—0.2008(0.2621)
0.0855(0.1562)
0.0192(0.0224)
1.4194%*(0.0646)
0.0701**(0.0323)
0.08837(0.0598)
0.23317(0.1566)
1.0955%(0.0614)
—0.4696***(0.0733)
0.1932(0.2585)
—0.1023(0.1478)
0.0031(0.0204)
—0.4385***(0.0626)
—0.0688**(0.0305)
0.0074(0.0549)
—0.1123(0.1772)
—0.1854***(0.0596)
1.2082***(0.0450)
0.0188(0.0204)
0.3142***(0.0173)
0.2402***(0.0616)
0.1547***(0.0493)
0.7389***(0.0219)

C1
ay
o3
B2
1
112
1,13
121
12
123
131
1,32
[133
iy
&
0y
@5
@

=i
Q33

2.9519%%*(0.1118)
0.0057(0.0079)
—0.0920***(0.0201)
—1.5346***(0.1410)
0.8356***(0.0984)
0.55267(0.3360)
0.6616***(0.1413)
0.0104(0.0160)
0.4581***(0.0516)
0.0809***(0.0231)
0.0374(0.0390)
0.19287(0.1304)
0.2534**%(0.0608)
2.0448***(0.0877)
0.0537**%(0.0199)
0.3120**%(0.0111)
0.3101**%(0.0481)
0.1430**%(0.0399)
0.7417%%(0.0254)

14%4
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Table 3. Continued

t-QVARMA(1,1,1) t-QVARMA(2,1,1) t-QVARMA(3,1,1) t-QVARMA(2,1,1) 8, =1 Gaussian-QVARMA(2,1,1) Gaussian-VAR(2) Gaussian-VAR(2) VECM
LL —2.9802 —2.9537 —2.9543 —2.9755 —3.0327 LL —2.9855 LL —3.5085
AIC 6.1346 6.0892 6.0980 6.1252 6.2396 AlC 6.1756 AIC 7.1609
BIC 6.4462 6.4142 6.4366 6.4368 6.5511 BIC 6.5413 BIC 7.4183
HQC 6.2598 6.2198 6.2340 6.2504 6.3648 HQC 6.3226 HQC 7.2643
C; 0.8371 0.8849 0.9518 0.8797 0.9297 C1 0.9430 C1 1.0000

Notes: Quasi-vector autoregressive moving average (QVARMA); vector error correction model (VECM); not available (NA); log-likelihood (LL); Akaike information criterion (AIC); Bayesian information criterion (BIC);
Hannan-Quinn criterion (HQC). Bold numbers indicate superior statistical performance. For the empirical estimation, C; < 1 suggests covariance stationarity for x;. Notice that t-QVARMA(2,1,1) is not a special case
of t-QVARMA(3,1,1), because different initializations for 11; and /LI are used. Hence, the LL of t-QVARMA(3,1,1) is not necessarily superior to the LL of t-QVARMA(2,1,1). Standard errors are in parentheses. *, *, ** and ***
indicate significance at the 15%, 10%, 5%, and 1% levels, respectively.
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Figure 2. Location components u} and u;r, and irregular component v; for t-QVARMA(2,1,1) from 1954 Q3 to 2020 Q2.
Notes: US real GDP growth ;th is not presented, since y1 + does not include an /(1) component.

Parameter estimates for the t-QVARMA(1,1,1), --QVARMA(2,1,1), and t-QVARMA(3,1,1)
specifications are presented in Table 3. Several parameters for ¢}, W, and \II;r are statistically
significant, which indicates that there are significant short-run dynamics in US real GDP, and
there are significant short-run and long-run dynamics in US inflation rate and effective federal
funds rate.

To compare the statistical performances of alternative models, the mean LL (LL/T), Akaike
information criterion (AIC), Bayesian information criterion (BIC), and Hannan-Quinn crite-
rion (HQC) metrics are used. For the lag-order selection of t-QVARMA and Gaussian-VAR, the
specific-to-general procedure is applied, by using the AIC, BIC, and HQC metrics. The use of the
likelihood-based model selection metrics for the selection of lag-orders of score-driven models is
motivated in the work of (Harvey, 2013, p.75). The results indicate that the statistical performance
of t-QVARMA(2,1,1) is superior to --QVARMA(1,1,1) and t--QVARMA(3,1,1).

The evolution of the time series components p}, ,u,j, and v, for t- QVARMA(Z 1,1) are pre-
sented in Figure 2, according to which the time variation in ,u2t and /,L3t indicates how the
common factor captures structural changes for the US inflation rate and effective federal funds
rate. For example, Mz,t show high positive values during the two oil crises, 1973 Q4 to 1974 Q1, and
1979 Q1 to 1981 Q4, respectively. This indicates that --QVARMA is robust to structural changes
in the dependent variables.

The discounting of extreme observations by the nonlinear transformation of the scaled score
function u; is studied for t-QVARMA(2,1,1) in Figure 3, in which all elements of u; are presented,
as functions of € and €, (€3¢ is assumed to be zero in the figure). The figure indicates that
ujs —p 0 for j=1,2,3, as |e1¢| — 00 or |ey;| — 00, which can be described as an asymptotic
trimming of extreme values (Caivano and Harvey (2014)). Thus, t--QVARMA is robust to extreme
observations in the variables.
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(a) u1,+ as a function of € ¢ and ez ¢
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(b) uz ¢ as a function of € ; and ez,

Figure 3. Robustness to extreme values in the noise for t-QVARMA(2,1,1).
Notes: €3+ = 0 is assumed for this figure.

IRFs for short-run, long-run, and total interaction effects for --QVARMA(2,1,1) are presented
in Figures 4, 5, and 6, respectively, and similar IRFs for --QVARMA(1,1,1) and --QVARMA(3,1,1)
are presented in Supplementary Material B. US inflation rate shocks have positive short-run, long-
run, and total effects on the US real GDP growth (Figures 4, 5, and 6, respectively). US inflation
rate shocks have positive long-run and total effects on the effective federal funds rate (Figures 5
and 6, respectively). Effective federal funds rate shocks have negative short-run and total effects
on the US real GDP growth (Figures 4 and 6, respectively). Effective federal funds rate shocks have
a negative contemporaneous effect and a negative median estimate for short-run, long-run, and
total interaction effects for all lags on the US inflation rate (Figures 4, 5, and 6, respectively).
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Figure 4. Short-run IRFJ* + IRFj" with 10%,

50%, and 90% percentiles for t-QVARMA(2,1,1).
Notes: The confidence interval is for 9561 out of the 1 million simulations, for which the restrictions of Table 1 are satisfied.
GDP, INFL, and EFFR are US real GDP growth, US inflation rate, and effective federal funds rate, respectively.

(a) GDP ¢4 — INFL i}, (b) INFL 2,4 — INFL af (c) EFFR e, — INFL i}, |
, i q
“O 12 3 456 78910 12 14 16 18 20 gL)I 2 3456 7 8910 12 14 16 18 20 “O 12 3 45678910 12 14 16 18 20
(d) GDP 1, — EFFR 4}, | (e) INFL e — EFFR 4], | (f) EFFR 3 — EFFR 4],
R =
of 3
NI I B I BT A B R P e i B B i e PR Y

Figure 5. Long-run IRF]L with 10%, 50%, and 90% percentiles for t-QVARMA(2,1,1).
Notes: The confidence interval is for 9561 out of the 1 million simulations, for which the restrictions of Table 1 are satisfied.
GDP, INFL, and EFFR are US real GDP growth, US inflation rate, and effective federal funds rate, respectively.

Estimation results and IRFs for --QVARMA(2,1,1) under the restriction 8, =1 are presented
in Table 3 and Supplementary Material C, respectively. For the latter restriction, the co-integrating
vector ( — 1, 1), that is, the real interest rate is modeled. Estimation results and IRFs for a limiting
special case of --QVARMA(2,1,1) for v — oo, that is, Gaussian-QVARMA(2,1,1), are presented
in Table 3 and Supplementary Material D, respectively. Estimation results for Gaussian-VAR(2),
that is, unrestricted Gaussian-VAR(2) and co-integrated Gaussian-VAR(2) that is estimated by
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Figure 6. Total IRF}, + IRFjTt + IRFj‘/t with 10%, 50%, and 90% percentiles for --QVARMA(2,1,1).
Notes: The confidence interval is for 9561 out of the 1 million simulations, for which the restrictions of Table 1 are satisfied.
GDP, INFL, and EFFR are US real GDP growth, US inflation rate, and effective federal funds rate, respectively.

using the VECM representation, are presented in Table 3. The IRFs for Gaussian-VAR(2) are pre-
sented in Supplementary Material E. The lag-orders of all competing models are selected using the
AIC, BIC, and HQC criteria. The likelihood-based statistical performance of --QVARMA(2,1,1)
is superior to the statistical performances of all alternatives (Table 3).

5.3 Predictive accuracy

The predictive accuracies of --QVARMA(2,1,1), Gaussian-VAR(2), and Gaussian-VAR(2)-VECM
are compared by performing out-of-sample predictions of US real GDP growth, US inflation rate,
and effective federal funds rate for the period of 2010 Q1 to 2020 Q2 (42 quarters). In the forecast-
ing exercise, 42 rolling windows are used for parameter estimation, which are from the period of
1954 Q3 to 2009 Q4 until the period of 1964 Q4 to 2020 Q1 (there are Q = 222 observations within
each rolling window). For each rolling window, h =1, . . ., 6-step ahead out-of-sample forecasts
are computed.

For --QVARMA, the h-step ahead forecast 1, is given by the following formulas:

p q

Hipn= Z O} i pi+ Z Wit (32)

i=1 j=1

r

T T T

Mg =Hipa t Z Wy trin-1 (33)
=1

Merh = Myy + “Lrh (34)
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Table 4. RMSE and Giacomini-White out-of-sample forecast performance test results for the period of 2010 Q1 to 2020
Q2

Panel A. t-QVARMA(2,1,1) Gaussian-VAR(2) Gaussian-VAR(2)-VECM

RMSE GDP INFL EFFR GDP INFL EFFR GDP INFL EFFR

1 1.8082 0.3401 0.2937 1.8277 0.3463 0.2776 3.3510 0.3418 0.3218

2 2.2607 0.4436 0.4580 2.3974 0.4556 0.5093 5.2463 0.4378 0.5981

3 2.3398 0.5413 0.6725 2.5769 0.5751 0.7916 6.7044 0.5455 0.9344
4 2.4800 0.6707 0.9082 2.7796 0.6981 1.0989 7.8704 0.6453 1.2898
5
6

2.5807 0.7536 1.0703 2.9058 0.7996 14211 8.8020 0.6979 1.6365
2.6271 0.9497 1.2739 2.9759 0.9331 1.7441 9.5672 0.7990 1.9849

Panel B. Gaussian-VAR(2) minus t-QVARMA(2,1,1)

GW test GDP INFL EFFR

1 1.0763(0.0658) 0.4479(0.0095) —0.7047(0.0130)
2 3.1780*%(0.2003) 0.4140(0.0261) 1.2660(0.0392)
3 3.4192**%(0.3409) 0.6884(0.0549) 1.6942%(0.1029)
4 3.0744*%(0.5124) 0.3823(0.0981) 1.8412%(0.2079)
5 2.6859**(0.6640) 0.4298(0.1662) 2.5239**(0.3462)
6 2.2675**%(0.8619) —0.1137(0.2743) 2.6426™*(0.5370)
Panel C. Gaussian-VAR(2)-VECM minus t-QVARMA(2,1,1)

GW test GDP INFL EFFR

1 4.6690%**(1.7048) 0.1396(0.0083) 1.1470(0.0151)
2 9.1757**(2.4426) —0.3881(0.0132) 2.2009**(0.0672)
3 10.7714%%*(3.6647) 0.1866(0.0246) 2.2997**(0.1830)
4 11.2813%**%(4.9456) —0.7946(0.0421) 2.1234**(0.3950)
5 10.8058***(6.5535) —1.2200(0.0663) 2.2545**(0.6797)
6 9.7992***(8.6363) —1.9932*%(0.1322) 2.1801**%(1.0627)

Notes: Quasi-vector autoregressive moving average (QVARMA); vector error correction model (VECM); root mean squared error (RMSE);
Giacomini-White (GW). In this table, GDP, INFL, and EFFR refer to US real GDP growth, US inflation rate, and effective federal funds rate,
respectively. The loss function is defined as L¢p, = (yesn — pen)? forh=1,...,6 and t=Q+h,..., T for the forecasting window, where 11,14
represents an h-step ahead forecast. For each variable and forecast horizon, a bold number indicates the lowest RMSE estimate. Significantly
positive GW test statistic indicates that the forecast performance of t-QVARMA(2,1,1) is superior to the forecast performance of Gaussian-VAR(2)
or Gaussian-VAR(2)-VECM. Robust standard errors of the GW test statistic are reported in parentheses. *, **, and *** indicate significance at the
10%, 5%, and 1% levels, respectively.

In (32)-(34), the estimates of M:‘Jrh_i, Utihjs /,L;r+h_1, and u;,p_; from the rolling window are
used for forecasting if those are available from the rolling window. If the estimates of xj, ;, ; and

[LI p_1 are not available from the rolling window, then those terms are replaced by their forecasts.
If the estimates of u;,j_j and u;yj_; are not available from the rolling window, then those terms
are omitted from the forecasting formulas (Harvey (2013)).

For Gaussian-VAR and Gaussian-VAR(2)-VECM, the h-step ahead forecast p,ij is
given by:

p
Mivh=C+ Z DQiytpn—i (35)
i=1
In (35), ys1,—; is used for forecasting when its observations are available from the rolling window.
Otherwise, y;1j; is replaced by its forecasts.
The root mean squared error (RMSE) of the prediction and a loss function are computed for
each forecast, where the loss function is defined as: L;, = (y;4n — isyn)* for h=1,...,6. The
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RMSE for the forecasting window is presented in Panel A of Table 4, where for each forecast hori-
zon h and for each variable, the lowest loss function estimate is highlighted. The difference of
the loss functions is computed for each period of the forecasting window: AL;, =Ly s, — Lyt
where L; ;) denotes the loss function of Gaussian-VAR(2) (Panel B of Table 4) or Gaussian-
VAR(2)-VECM (Panel C of Table 4), and L, denotes the loss function of t--QVARMA(2,1,1).
The significance of AL,y is studied using the predictive accuracy test of the work of Giacomini
and White (2006). The Giacomini-White test statistics are reported in Table 4. According to the
results, t--QVARMA(2,1,1) is superior to Gaussian-VAR(2) and Gaussian-VAR(2)-VECM for the
US real GDP growth and effective federal funds rate, and the predictive accuracies do not differ
significantly for the US inflation rate.

6. Conclusions

In this paper, t--QVARMA has been introduced for the analysis of dynamic interactions effects
among I(0) and co-integrated I(1) time series variables. The reduced-form and the structural-
form representations of --QVARMA have been presented, and tools have been provided for IRF
analysis. Conditions of the asymptotic properties of ML have been presented, and it has also been
shown that a limiting special case of t-QVARMA is the linear Gaussian-QVARMA.

An empirical application of --QVARMA to quarterly time series data on US real GDP growth,
US inflation rate, and effective federal funds rate for the period of 1954 Q3 to 2020 Q2 has been
performed. The estimates of different t-QVARMA specifications have been compared with the
estimates of multivariate linear Gaussian alternatives. For the empirical application, the results
have suggested that the statistical performance of t-QVARMA is superior to the statistical perfor-
mances of Gaussian-QVARMA, Gaussian-VAR, and Gaussian-VAR-VECM. The out-of-sample
predictive accuracies of --QVARMA, Gaussian-VAR, and Gaussian-VAR-VECM have been com-
pared for the period of 2010 Q1 to 2020 Q2. For the empirical application, the results have
suggested that the predictive accuracy of t-QVARMA is superior to the predictive accuracies of
multivariate linear Gaussian alternatives. These illustrative results of --QVARMA for the macroe-
conomic control data may motivate the practical consideration of the new model for 1(0) and
co-integrated I(1) time series variables.
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