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Pedestal modelling is crucial to predict the performance of future fusion devices.
Current modelling efforts suffer either from a lack of kinetic physics, or an excess
of computational complexity. To ameliorate these problems, we take a first-principles
multiscale approach to the pedestal. We will present three separate sets of equations,
covering the dynamics of edge localised modes (ELMs), the inter-ELM pedestal and
pedestal turbulence, respectively. Precisely how these equations should be coupled
to each other is covered in detail. This framework is completely self-consistent;
it is derived from first principles by means of an asymptotic expansion of the
fundamental Vlasov–Landau–Maxwell system in appropriate small parameters. The
derivation exploits the narrowness of the pedestal region, the smallness of the thermal
gyroradius and the low plasma β (the ratio of thermal to magnetic pressures) typical
of current pedestal operation to achieve its simplifications. The relationship between
this framework and gyrokinetics is analysed, and possibilities to directly match
our systems of equations onto multiscale gyrokinetics are explored. A detailed
comparison between our model and other models in the literature is performed.
Finally, the potential for matching this framework onto an open-field-line region is
briefly discussed.
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1. Introduction
The pedestal region of current fusion devices is both a boon and a serious

obstacle to achieving sustained fusion power. Discovered by pioneering work on
the ASDEX tokamak in Germany (Wagner et al. 1982; The ASDEX Team 1989),
the ‘H-mode edge pedestal’ or ‘edge transport barrier’ is a narrow region at the edge
of the tokamak where extremely steep gradients can be maintained (thus improving
confinement) but which intermittently relaxes through the release of large amounts of
hot plasma, known as ‘edge localised modes’(Zohm 1996) (henceforth ELMs). The
dichotomy between the confinement that can make a tokamak into a smaller and
more efficient reactor and the ELMs that can severely damage that reactor has led to
a vast amount of study of pedestals since their discovery.

Enormous strides have been made, including understanding of the fundamental
instabilities that are responsible for ELMs (Connor et al. 1998; Snyder et al. 2002)
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and incorporating this knowledge into successful analysis of experiments (Snyder
et al. 2007, 2011). Experimentally, analyses have been made from data acquired on
multiple machines (Beurskens et al. 2011), but the narrowness of the pedestal and
the difficulty of making these measurements has hampered making predictions for
future devices. Indeed, recent results and analyses (Hatch et al. 2017; Kotschenreuther
et al. 2017) suggest that the scaling of the pedestal width with fundamental plasma
parameter from current machines to ITER may be in doubt. More detailed modelling
is thus essential.

Edge modelling comprises both first principles analysis and a large and established
effort in trying to understand existing devices through interpretative modelling. Many
difficulties arise in modelling this region of the plasma; any model must be able
to handle large, rapidly evolving perturbations associated with ELMs as well as
small-scale fluctuations that may regulate the residual transport through the inter-ELM
pedestal. In addition, the collisionality of the plasma may vary by orders of magnitude
across the pedestal. Taking data from a multi-machine comparison (Militello &
Fundamenski 2011), the collisionality at the pedestal top for the joint European
torus (JET) is ν∗e ≈ 4 × 10−3 climbing to ν∗e ≈ 0.13 at the separatrix. Using the
predictions for ITER in the same paper, the collisionality at the pedestal top is now
ν∗e ≈ 4 × 10−4 and still ν∗e ∼ 0.2 at the separatrix. This indicates a trend towards
increasingly collisionless pedestals as machines get larger, driven in part by divertor
heat load requirements preventing a high separatrix temperature. Suitable modelling
must therefore be able to transition from collisionless to collisional physics across
the pedestal region.

Several main branches of research into near-edge (i.e. regions at the edge of
the plasma, but still inside the closed-field-line region) modelling currently exist.
The most experimentally successful approach has been that taken by the EPED
collaboration (Snyder et al. 2011, 2007). This consists of linear magnetohydrodynamic
(MHD) modelling (with the ELITE code) of the peeling-ballooning mode to determine
the onset of an ELM, the use of the infinite-n ballooning stability criterion as a proxy
for the stability of the inter-ELM pedestal to microturbulence and an assumption that
the pedestal is pinned to this stability threshold between ELMs. Despite the success
of this model, the ad hoc marginal stability criterion is required to constrain the width
of pedestals, the linear stability calculation may neglect important kinetic effects and
the model has no capacity for handling time-dependent inter-ELM dynamics. The
dominant paradigm for first-principles edge modelling is that of ‘drift reduced’ or
other anisotropic fluid equations (Zeiler, Drake & Rogers 1997). These are the basis
of many current simulation codes, such as GBS (Ricci et al. 2012), and also older
two-dimensional codes including SOLPS and others (Schneider et al. 2006), and
have been used to study the pedestal directly (Nielsen 2016). Gyrofluid equations,
originally developed for the core (Hammett et al. 1993) have also found much
use in edge modelling (Scott 1997, 2007). Gyrofluid models are derived by taking
moments of gyrokinetic equations and then applying one of a variety of closure
conditions. These models have the advantage that a limited number of fluid moments
is numerically tractable even in complex edge geometries. However, the strong
requirements on collisionality for Braginskii equations to be applicable are often
not satisfied in high-performance pedestals. Gyrofluid equations at low collisionality
become increasingly plagued by questions of the validity of the chosen closure
scheme, and lack a first-principles justification for the closures used. Thus, to handle
a potentially trans-collisional pedestal region, we will take a kinetic approach.

Recently, kinetic simulations of the plasma edge have been performed. The first
category of these are the global gyrokinetic simulations (Ku et al. 2006; Chang et al.
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2017; Shi et al. 2017). These endeavour to capture all the dynamics of the edge
region, from the macro scales down to the ion gyroradius scale. The computational
expense is titanic, and thus parameter scans, and predictive modelling are currently
out of reach for most applications. The second category of kinetic simulations only
seeks to tackle turbulence in the edge, and have shed some light upon the inter-ELM
pedestal (Dickinson et al. 2012, 2013; Hatch et al. 2017; Kotschenreuther et al. 2017).
These simulations have been conducted despite the fact that the levels of E×B shear
and flow velocities in the pedestal are not consistent with the assumptions under
which gyrokinetics is usually derived (Abel et al. 2013). Thus, we seek to embed
gyrokinetics within a more complete pedestal model.

Bridging the gap between fluid models that cannot fully capture the kinetic physics,
and gyrokinetic modelling that is extremely expensive and hard to interpret, we instead
use a first-principles multiscale approach. Our formulation neatly separates the physics
of ELMs, coherent oscillations and inter-ELM turbulence. This permits models for
each component that are only as complex as needed, rather than a model that
endeavours to rigorously include all possible physics. This conceptual simplification
should enable more detailed studies of each separate part of the pedestal physics
than is currently possible. However, in this paper we only present a new model for
the pedestal, which, in this work, we consider to be the steep gradient part of the
closed-field-line region – we leave the issues of extending this to an open-field-line
region at the top of the scrape-off layer to future work.

The structure of the remainder of the paper, which lays this model out in detail,
is as follows. In § 2 we discuss the physics needed to capture ELMs. Our physical
requirements are translated into formal ordering assumptions in § 2.1. In § 2.2 we
follow the well-trodden paths of asymptotic theory to turn our ordering assumptions
into a closed set of equations for ELM dynamics.

Proceeding to the longer, inter-ELM, time scale in § 3 we follow the same
procedure, presenting our orderings in § 3.1 and the equations for the inter-ELM
evolution in § 3.2. However, in this procedure we have to introduce an explicit
multiple-scales approach to handle inter-ELM turbulence – governed in turn by
orderings and equations that are detailed in § 3.3.

Finally, in § 4 we make detailed contact between our model and existing models
of the pedestal. In § 4.1 we describe how our model can be integrated with existing
validated models for the core and scrape-off layer, acting as a boundary condition for
both. Then, in § 4.4, we compare our model to the models currently used to study the
pedestal. Ultimately, we end the paper with a summary of our results in § 5 and some
discussion of exploration of new avenues this model may open up.

2. Fast and furious: the physics of edge localised modes
As alluded to in the introduction, ELMs are the large-amplitude convulsions of the

edge pedestal that pose a great threat to current fusion devices. For this reason, ELM
stability must be comprehensively addressed in any plausible pedestal model. To this
end, in § 2.1 we codify the physics of ELMs in terms of the temporal and spatial
scales of interest, and relations between plasma parameters. These are then applied in
§ 2.2 to obtain the dynamical equations governing ELMs.

2.1. Orderings for ELM dynamics
ELMs are now well understood to be nonlinear peeling-ballooning modes (Connor
et al. 1998). These modes are driven by the combination of edge current density,
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curvature and pressure gradients. They naturally occur on an Alfvénic time scale, that
is one which is comparable to L‖/vA, where L‖ is the typical length scale of the
instability along a field line and vA is the Alfvén velocity. In this work we will use
Gaussian units throughout and so, explicitly, vA = B/

√
4π
∑

s msns where B is the
magnetic field strength, and the plasma is composed of several species with masses,
ms, and densities, ns. The parallel length scale L‖ will be taken to be the longest length
scale in our system, and is comparable to the connection length of the magnetic field.
In general this means that the defining relationship is L‖ ∼ (b · ∇ ln B)−1, whereas L‖
is only ever used in our asymptotic orderings prefactors of order unity do not matter
and will be neglected.

In order to cause such violent instabilities, the pressure gradients must be large,
with the pressure varying over a distance L⊥ � L‖ perpendicular to the field
lines. Indeed, pedestals are observed to be extremely narrow structures in current
experiments (Beurskens et al. 2011). Hence we adopt

ε =
L⊥
L‖
� 1, (2.1)

as our fundamental small parameter.
The most basic stability limit for the ballooning part of the peeling-ballooning

mode is a limit on β = 8π
∑

s nsTs/B2, with Ts the temperature of species s.1 This
limit derives from the constraint that the energy required to bend field lines must be
comparable to the energy released by relaxing the pressure gradient (Freidberg 2014).
Estimating this balance, we obtain

β ∼
L⊥
L‖
, (2.2)

which immediately implies that β must be small in these systems. Note, in our slightly
unconventional usage a ∼ b means that a and b are of the same asymptotic order
as ε→ 0, but may differ by numerical prefactors of order unity. It is also important
at this stage to note that we are expanding in the ratio of the pedestal width to the
magnetic scale length, not in the aspect ratio of the magnetic surfaces.2

At this point, we shall not distinguish between profiles and fluctuations in terms of
frequencies and length scales. Thus, all gradients will be ordered as L−1

⊥ or L−1
‖ . This

is consistent with our next assumption: that the kinetic plasma variables (e.g. density,
pressure) will have O(1) variation. This is physically reasonable as ELMs are observed
to result in filaments of hot dense plasma erupting into much colder, lower density
regions. To support finite density variations on times comparable to the electron transit
time L‖/vthe , we require that the electrostatic potential also support large variations

eϕ
Te
∼ 1. (2.3)

Strong radial electric fields are known to play a role in pedestals, and many
empirical measurements find these electric fields to be present in the absence of large

1We will later discover that our orderings do not constrain all species to be in local thermal equilibrium.
Thus β should really be defined instead in terms of the pressure of species s perpendicular to the field lines.
As we are only interested in asymptotic orderings in this section, we will retain Ts as a useful placeholder,
that can be thought of as a mean kinetic energy per particle if species s is not in thermal equilibrium.

2Hence, our ordering for β is compatible with the usual tokamak estimate β . (r/q2R) dp/dr as r/R and
q are taken to be O(1).
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plasma flows. The simplest and most plausible mechanism for this to occur is that
diamagnetic flows, for the bulk ion species, are comparable to, and may sometimes
cancel, the E × B flow in the pedestal. To permit such cancellation we require the
diamagnetic flow to be of the same order as the E×B flow:

Ts

msΩsL⊥
∼ uE, (2.4)

with Ωs = ZseB/msc the cyclotron frequency of species s, c the speed of light and
Zse the charge of species s in terms of the unit charge e. Note that this is also the
ordering that follows from (2.3) and assuming that ϕ varies on the L⊥ scale. In this,
we assume Zs ∼ 1 with respect to the ε� 1 expansion. Thus, this ordering does not
describe the behaviour of an impurity species that is so highly charged that Zs∼ ε

−1 or
even greater. We also will assume that all temperatures are comparable, in particular
Te ∼ Ti, and will not keep track of factors of Ti/Te in our orderings.

Next, requiring that the system be fully nonlinear, the typical decorrelation rate due
to the E×B nonlinearity should be comparable to the frequency of interest, ω:

uE

L⊥
∼ω. (2.5)

Hence our frequencies are comparable to the diamagnetic drift frequency ω∗

ω∼ω∗ =
cTe

eB
1

L2
⊥

. (2.6)

Using our assumption of Alfvénic time scales

ω∼
vA

L‖
, (2.7)

and our ordering for β, we have

ω∗ ∼
vA

L‖
∼
√
ε
vthi

L⊥
, (2.8)

which immediately gives

ρi

L⊥
∼
√
ε. (2.9)

Similarly, we see that our frequencies are small compared to the cyclotron frequency

ω

Ωs
∼
ρ2

i

L2
⊥

∼ ε. (2.10)

Substituting the definition of ε from (2.1) into (2.9) gives an estimate for the typical
pedestal scale L⊥ in terms of L‖∼R (a typical tokamak estimate, where R is the major
radius of the device) and ρi:

L⊥ ∼
3

√
ρ2

i R. (2.11)
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With this ordering in hand, we can also relate our ε to the ratio of the gyroradius to
the system size:

ε ∼
(ρi

R

)2/3
. (2.12)

Let us discuss the impact of the scaling (2.11). Firstly, we note that our orderings
have given us a pedestal width where diamagnetic stabilisation of the ballooning
mode may be important for ELM stability (Rogers & Drake 1999). This scaling is
more optimistic for future devices than a naïve neoclassical scaling which would
predict a pedestal width L⊥ comparable to the poloidal Larmor radius3ρθ – in our
orderings the poloidal Larmor radius is equivalent to ρi – but much less optimistic
than the experimental results which typically show remarkably little dependence upon
ρi (Beurskens et al. 2011).

One might take these experimental data as discouragement from believing our
orderings. At the same time some pedestals appear to be dominated by neoclassical
transport. These two can be reconciled by noting that in current devices ρθ is not
much smaller than the pedestal width. In addition ρ

2/3
i qR is not much larger than

ρθ . Both of these relationships need to be well satisfied for our theory to be valid.
Hence, it is very likely that current machines do not operate at a small enough value
of ε to see the asymptotic scaling in (2.11). Thus, (2.11) is a prediction for machines
where ρi/R is smaller, with a prefactor that could be determined by simulation of the
equations presented herein.

We still have a couple of parameters to order with respect to ε. Firstly, we choose
to retain electron parallel kinetic effects (Landau resonances etc.) upon the ELMs and
so order

me

mi
∼ β ∼ ε, (2.13)

resulting in vthe ∼ vA. Secondly, in order to straddle the divide between collisional and
collisionless physics, we make the maximal ordering of

νee ∼
vthe

L‖
∼ω, (2.14)

which naturally results in νii ∼ vthi/L‖. This concludes the ordering for the ELMs.
Before moving on to turning these orderings into dynamical equations, we must
consider the possibility of the existence of small-scale turbulence being present whilst
an ELM is occurring.

2.1.1. Orderings for pedestal turbulence
Foreshadowing the results of § 3.3, it will turn out that our pedestal supports

turbulent fluctuations, and the inter-ELM transport is dominated by them.4 The effects
3This being the width required to increase ion neoclassical transport to the level where it can provide

transport on the vthi/L‖ time scale. This is necessary if one wishes to match to an open-field-line region,
where parallel losses to material surfaces occur on this time scale. Such a scaling is also predicted for the
near-plasma scrape-off layer from drift-orbit estimates in Goldston (2012). The full neoclassical theory for such
a pedestal is detailed in Kagan & Catto (2008, 2010) and related publications.

4Whilst it is often presumed that all turbulence is suppressed after a low to high confinement (L–H)
transition, this is only possible for a pedestal that is on the scale of the (poloidal) gyroradius. For a pedestal
that is asymptotically wider than this, turbulence is required to carry a finite heat flux through the pedestal.
See the discussion at the end of § 2
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of the turbulence are, a priori, strong enough that they could influence ELM evolution.
In order to consistently include these effects, we will state here the assumptions we
make about such turbulence. These assumptions will be justified in § 3.3.

The fluctuations are small, with

δfs

fs
∼

eδϕ
Te
∼
√
ε, (2.15)

and

δB
B
∼ ε. (2.16)

The fluctuations will have typical length scales, perpendicular to the field, given by

∇⊥ ln δfs ∼ ρ
−1
i , (2.17)

and along the field given by

b · ∇ ln δfs ∼
(
L⊥L‖

)−1/2
. (2.18)

One might worry that the large drive in the pedestal will cause turbulence from k⊥ρi∼

1 to reach larger scales. However, in our ordering, this has already occurred. These
fluctuations are naturally electron-scale fluctuations, forced out to ion scales by the
strong drive. Indeed, the time scale of these fluctuations is assumed to be

∂

∂t
ln δfs ∼

vthe√
L⊥L‖

. (2.19)

As these fluctuations are faster than the ELMs and on a smaller scale, by the usual
method of introducing intermediate temporal and spatial length scales we can assume
the existence of an averaging operation

〈
·
〉

turb such that

δfs = f̃s −
〈

f̃s
〉

turb, (2.20)

where f̃s is the exact (inclusive of fluctuations) distribution function. The averaged
quantities are assumed to obey the orderings given above, and so we will use an
undecorated notation for the averaged quantities, e.g.

fs =
〈

f̃s
〉

turb. (2.21)

We note that, in these orderings,
√
ε ∼ ρi/L⊥, and that L⊥ is the appropriate local

scale length for the physics that drives the turbulence. Thus, our orderings say that
the fluctuations are small in ρ∗ ≡ ρi/L⊥. It is this relationship that will give rise to
the similarity between the equations governing the turbulence and gyrokinetics.
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2.2. Dynamical equations
Having argued for our consistent orderings for the ELM dynamics, we now apply
them to the governing equations of the plasma to obtain our reduced model. The
fundamental equations we will work from are the Vlasov–Landau equation for the
exact distribution function f̃s, in terms of the exact fields Ẽ and B̃:

∂ f̃s

∂t
+ v · ∇ f̃s +

Zse
ms

(
Ẽ+

1
c
v× B̃

)
·
∂ f̃s

∂v
=C

[
f̃s
]
+ Ss, (2.22)

where v is the particle velocity and the collision operator on the right-hand side is
the Landau operator. We have also added an arbitrary source Ss that we will keep in
our inter-ELM equations (using the maximal ordering Ss∼ fsvthi/L‖ so that the source
can compete with inter-ELM transport). We will assume a non-relativistic plasma and
also that all frequencies are low compared to the plasma frequency and all lengths
long compared to the Debye length. Thus, to close the system for the fields, we have
the quasineutrality constraint ∑

s

Zsens = 0, (2.23)

and the pre-Maxwell Ampère’s law:

∇× B̃=
4π

c
j̃. (2.24)

Averaging these equations over any possible fast fluctuations, we have as our
fundamental kinetic equation:

∂fs

∂t
+ v · ∇fs +

Zse
ms

(
E+

1
c
v×B

)
·
∂fs

∂v
=C

[
fs
]

−
Zse
ms

〈(
δE+

1
c
v× δB

)
·
∂δfs

∂v

〉
turb

+
〈
C
[
δfs
]〉

turb, (2.25)

and as the field equations are linear, they apply separately to the averaged and
fluctuating fields.

2.2.1. The magnetic field
The first problem we tackle is that of the structure of the magnetic field. As β ∼

L⊥/L‖� 1, we naturally expect the time-dependent piece of the magnetic field to be
small compared to the background, confining, field. To investigate this, we first take
the msv moment of (2.25), and sum over all species to obtain

∂

∂t

∑
s

nsmsus +∇ ·
∑

s

Ps =−∇

(
B2

8π

)
+

1
4π

B · ∇B+∇ ·
〈
δBδB

4π
− I |δB|2

〉
turb

,

(2.26)

where

Ps =

∫
d3v msvvfs, (2.27)

is the full pressure tensor of species s.
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Estimating the size of each term in this equation, the magnetic pressure force is
larger than all other terms by one power of ε, due to the small β. Thus, we conclude
that the time-dependent piece of the magnetic field must be small compared to the
background, confining, field, and so we make the split

B=B0 +B1, (2.28)

where B1 ∼ εB0. Note that, despite this decomposition, we will define parallel and
perpendicular components of vectors with respect to the total field B.

With this ordering in hand, we can solve the lowest-order equation

∇⊥B2
0 =O(ε), (2.29)

by insisting that B0 vary only on the long L‖ scale.
We note that the size estimate for B1 is the same as what one would obtain by

assuming the field follows the fluid flow and so can be displaced at most L⊥ in the
perpendicular direction, and that this displacement occurs after following the perturbed
field for a distance L‖:

B1 ∼
L⊥
L‖

B0. (2.30)

This is also the estimate one would obtain by insisting that B1 · ∇⊥ ∼B0 · ∇.
Given that b · ∇b∼ L−1

‖ by definition of the parallel scale, one might be tempted to
conclude that B0 only varies on the L‖ scale. However, we can still admit a large
magnetic shear. That is, the tensor ∇⊥b0 may have large components. As will be
argued later, these cannot be as large as O(L−1

⊥ ) because it would entail an infeasibly
strong electron current. However we will retain the possibility that the shear length
Ls of B0 is as short as O(

√
L⊥L‖).

Given this decomposition of the magnetic field into fixed and time-dependent pieces,
we introduce the vector potential A for B1 only:

B1 =∇×A, (2.31)

and we will work in Coulomb gauge ∇ ·A= 0.
The piece of B1 that will turn out to be important is the change in the direction of

the magnetic field, thus we make the natural decomposition A= A‖b+A⊥ to find

B1 =∇A‖ × b+B1 · bb. (2.32)

From here on in, we will define perpendicular and parallel components of vectors
with respect to the total large-scale field B, inclusive of B1 but not of any possible
turbulent magnetic field. If we at any point we only wish to consider the static field
B0 we will denote that explicitly with a subscript 0 on the appropriate terms.

2.2.2. Kinetic variables
It will be simplest, despite not retaining finite gyroradius effects, to follow the

gyrokinetic literature and transform to guiding centre variables for our derivations. To
simplify later derivations, we will also use a peculiar velocity relative to the mean
E × B velocity w = v − uE. It is important to note that uE = cE × b/B is defined
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10 I. G. Abel and A. Hallenbert

using the total mean B including B1. Hence, w‖ = v‖ exactly. Thus, we move from
(r, v) to the Catto-transformed variables (Rs, εs, µs, ϑ, σ ):

Rs = r−
1
Ωs

b×w, (2.33)

εs =
1
2 msw2 (2.34)

µs =
msw2

⊥

2B
+O(ε), (2.35)

where ϑ is the gyrophase, σ is the sign of the parallel velocity and perpendicular and
parallel components are taken with respect to the total mean magnetic field B. We take
the magnetic moment µs to be exact adiabatic invariant of the Larmor motion that is
conserved to all orders in ε (Kruskal 1958; Berkowitz & Gardner 1959).5

Finally, the gyrophase ϑ is defined by

w=w‖b+w⊥(cos ϑ e2 − sin ϑ e1), (2.36)

where e1 and e2 are mutually orthogonal basis vectors that satisfy b= e2 × e1

We will find it convenient to average over this gyrophase at various points in this
work. All of these gyroaverages are taken at constant Rs, εs and µs; we denote the
gyroaverage by

〈· · ·〉R =
1

2π

∫ 2π

0
(· · ·)dϑ. (2.37)

We will also occasionally need a gyroaverage at fixed r, w‖, w⊥, which is denoted
by

〈· · ·〉r =
1

2π

∫ 2π

0
(· · ·) dϑ |r,w‖,w⊥ . (2.38)

The gyroaveraged (at fixed Rs) time derivatives of the gyrokinetic variables are
calculated in appendix A, and are found to be (cf. (A 3) and (A 5))

〈
Ṙs
〉

R =w‖b+
c
B

b×∇ϕ +O(ε3/2vthi), (2.39)

〈ε̇s〉R =−Zsew‖

(
b · ∇ϕ +

1
c
∂A‖
∂t

)
+O

(
√
ε
vthi

L‖
Te

)
(2.40)〈

ϑ̇
〉

R =Ωs +O(ε1/2Ωi). (2.41)

5The excessively cautious reader may wonder if the fact that the ε of this paper and the small parameter
of Kruskal (1958) differ will give rise to a problem in this argument. Thankfully, it is obvious that if a term
is small in our ordering then it will also be small in Kruskal’s – this follows from the fact that all of our
time variation is slow compared to the cyclotron frequency, and all spatial variation (at this point) is long
compared to the gyroradius. Extending these results to include a small component of the fields that has ρi-scale
variation can be done order by order. The magnetic moment including first-order gyrokinetic corrections for
electrostatic turbulence can be found in appendix A of Parra & Catto (2008).
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2.2.3. Kinetic equations
Rewriting (2.25) in the above variables, we obtain

∂fs

∂t
+ Ṙs ·

∂fs

∂Rs
+ ε̇s

∂fs

∂εs
+ ϑ̇

∂fs

∂ϑ
=C

[
fs
]

−
Zse
ms

〈(
δE+

1
c
v× δB

)
·
∂δfs

∂v

〉
turb

+
〈
C
[
δfs
]〉

turb. (2.42)

Applying our ordering for the ELM dynamics to this equation, we immediately see
that the lowest-order equation is

Ωs
∂fs

∂ϑ
= 0. (2.43)

Thus, both ions and electrons are immediately found to be gyrotropic at fixed Rs.
The size of the gyrophase-dependent corrections differs between species and so the
accuracy of this statement is

∂fi

∂ϑ
=O(εfi) and

∂fe

∂ϑ
=O(ε2fe). (2.44a,b)

Continuing to higher order in our expansion of (2.42), we find the kinetic equation
for the electrons

∂fe

∂t
+
(
w‖b+ uE

)
·
∂fe

∂Re
+ ew‖

(
b · ∇ϕ +

1
c
∂A‖
∂t

)
∂fe

∂εe
=C

[
fe
]
, (2.45)

where we note that the fluctuations from the pedestal turbulence are not strong enough
to affect fe on this time scale. This kinetic equation can, in principle, have solutions
with a non-zero parallel flow. This would, naturally, be of order nevthe . Such a strong
parallel flow is prohibited for two reasons. Firstly, the parallel current, estimated from
Ampère’s law and using the scaling for the magnetic shear posited above, results in

j‖ ∼
c

4π

B
Ls
∼

cmeB2

eBneTe

vthe

Ls
enevthe ∼ εenevthe, (2.46)

which is inconsistent with a strong electron flow (because j‖ ∼ eneu‖e). Secondly,
electron and ion velocities which have a relative drift comparable to the electron
thermal speed are strongly unstable to Debye-scale fluctuations (Jackson 1960). Thus,
we limit ourselves to only considering solutions to (2.45) that have no parallel flow
(as this equation is correct only to lowest order in

√
ε the vanishing of the flow

to this order simply means that the electron flow is at most comparable to the ion
thermal speed). The constraint equation is simply the w‖ moment of (2.45) and can
be written as an equation for the parallel vector potential A‖:

ene

(
b · ∇ϕ +

1
c
∂A‖
∂t

)
= b · ∇p‖e − (b · ∇ ln B)(p‖e − p⊥e). (2.47)

Note that we can neglect the time derivative of fe because the electron momentum
is negligible (due to both the small electron mass and the absence of sonic electron
flows) and the integral of the collision operator can be estimated as∫

d3ww‖C
[

fe
]
∼ νeine(u‖e − u‖i)∼ νeij‖/e∼

√
εne

Te

miL‖
, (2.48)

which is
√
ε smaller than the terms in (2.47).
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12 I. G. Abel and A. Hallenbert

For the ions, we have the simpler kinetic equation(
∂

∂t
+ uE ·

∂

∂Ri

)
fi = 0, (2.49)

so the ions are moved by the plasma flow, but do not spread thermally along field
lines and neither accelerate nor collide in one Alfvén time. This is easily seen to be
correct as all ion time scales (such as the ion streaming time, or ion–ion collision
time) are small compared to the Alfvén time (or the electron–electron collision time).

Finally, as we know that the distribution functions are independent of gyrophase to
leading order (cf. 2.44), we have that

Ps =ms

∫
d3w〈ww〉r fs = p⊥sI + (p‖s − p⊥s)bb+O(εnsTs), (2.50)

where the perpendicular and parallel pressures have their usual definitions

p⊥s =

∫
d3w

1
2

msw2
⊥

fs and p‖ =
∫

d3wmsw2
‖

fs, (2.51a,b)

respectively, and so the pressure tensors are also gyrotropic to leading order (the off-
diagonal terms are computed later in appendix B). Hence we can now write the largest
non-zero part of the momentum equation (2.26) as

∇⊥

(∑
s

p⊥s +
B0 ·B1

4π

)
= 0, (2.52)

which determines the time-dependent part of the total field strength.
We now have equations for the distribution functions, and the two fields that

comprise B1. All that remains is to derive an equation for ϕ.

2.2.4. The vorticity equation
As is common to many long-wavelength theories of a magnetised plasma, the

electrostatic potential is determined from the plasma vorticity equation. This is
derived in appendix B, with the final result that

∇ ·

{∑
s

nsms

B

[
∂

∂t
+ uE · ∇

] (
∇p⊥s

nsmsΩs
+

c∇ϕ
B

)}

= ∇ ·

[
−

j‖b
c

(
1− 4π

p‖ − p⊥
B2

)
− p⊥∇×

(
b0

B

)
−
∇× b0

B
(p‖ − p⊥)

]
+$, (2.53)

where $ is the possible contribution from turbulence, whose explicit expression is

$ =−
∑
s=i

Zie
2Ωi

{
∇∇ :

〈∫
d3w [(∇δϕ)w⊥ +w⊥ (∇δϕ)] δfi

〉
turb

}
. (2.54)

The parallel current in (2.53) is found from Ampère’s law:

j‖ =
c

4π
b · ∇×B=

c
4π
(b0 · ∇×B0 −∇

2
⊥

A‖). (2.55)
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The first term of this expression is due to the shear of the confining field. This first
term can be large when compared to the second, and thus the lowest order of (2.53)
is

∇ ·
(
bj‖
)
=

c
4π

(b0 + b1) · ∇ (b0 · ∇× b0)= 0. (2.56)

Taking the time-dependent piece of this equation, we have that

b0 · ∇ (b0 · ∇× b0)= 0. (2.57)

If we assume that B0 has magnetic surfaces labelled by ψ0 then this becomes a
constraint on the shear of B0:

(b0 · ∇× b0)=K(ψ0), (2.58)

and, from the time-independent piece of (2.56), we discover that

B1 · ∇ψ0
∂K
∂ψ0
= 0, (2.59)

so either K(ψ0) is constant on the spatial scale L⊥ or there are exact surfaces and
K=K(ψ). If K is approximately constant, then we have a strong, but unvarying shear
across the pedestal. If the field B0 does not have surfaces then naturally such a large
shear is forbidden and the solution of these constraints is K = 0.

Let us discuss the physics contained in this vorticity equation. The motion of the
filamentary structures, related to the inertial term on the left-hand side of (2.53) is
driven by gradients of the parallel current in B0 (kink-mode drive) and gradients in
the plasma pressure (interchange-mode drive). The part of j‖ from B1 represents the
opposition of such motion due to field-line bending. The combination of interchange
drive and field-line bending gives rise to the usual ballooning-mode physics. Thus we
have all the necessary ingredients for nonlinear peeling-ballooning modes.

We also wish to note that this vorticity equation, although in a different form, is
consistent with the collisional one derived in Simakov & Catto (2003). This can be
seen most clearly by using (D2) of Simakov & Catto (2003) in (69) and (70) of the
same paper. This gives the following vorticity equation

∇ ·

{∑
s

nsms

B

[
∂

∂t
+ uE · ∇

] (
∇p⊥s

nsmsΩs
+

c∇ϕ
B

)}

= ∇ ·

[
−

j‖b
c

(
1−

4ππci

B2

)
−

(
pi + pe −

1
3
πci

)
∇×

(
b
B

)
−
∇× b

B
πci

]
, (2.60)

where we have used the identity (B 14) from appendix B to rewrite the term involving
the ion parallel viscosity. All notation is ours, except for πci which is defined in (14)
of Simakov & Catto (2003). Using the orderings of Simakov & Catto (2003), the
terms involving πci are O(piδi1i/L‖Bε) and so can be neglected compared to the terms
only involving the pressure (by using the second inequality of (7) of Simakov & Catto
(2003)).

Comparing this to our vorticity equation, we see that they match if, as well as
taking the collisional limit of our equations (which removes the electron pressure
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14 I. G. Abel and A. Hallenbert

anisotropy from our vorticity equation), one also assumes that the initial ion pressure
is isotropic. Thus we include the same Alfvénic physics as Catto–Simakov.

We also discuss the difference of our vorticity equation with those found in
reduced Braginskii models (Zeiler et al. 1997; Ricci et al. 2012). Taking the vorticity
equation in Ricci et al. (2012) as the most modern and complete model currently in
use, we see that we retain the diamagnetic contributions to the vorticity, but not the
ion-sound contributions, which are small in our orderings. We anticipate that this is
the correct trade-off for ELM filaments as they are often observed to be both narrow
and extremely rapid.

Finally, we should discuss the potential contribution from small-scale turbulence.
This contribution is exactly analogous to the Reynold’s stress generated by electrostatic
gyrokinetic turbulence. Indeed, we will find later that the equations this turbulence
obeys are reminiscent of gyrokinetics. Because of this, absent symmetry breaking
effects, this stress may turn out to be small (Parra, Barnes & Peeters 2011). However,
until calculations and simulations confirm this, we retain this term as it is formally
of the required size.

2.3. Summary of the ELM model
The complete kinetic model for ELM-like behaviour on the fast, Alfvénic time scale
is as follows

(i) Electron and ion distribution functions are determined from (2.45) and (2.49),
respectively.

(ii) The vector potential for B1, A‖, is determined from (2.47).
(iii) The electrostatic potential ϕ is determined from the vorticity equation (2.53), in

which the pressure tensors are given by moments of the distribution functions we
have already calculated.

(iv) The turbulent contribution to the vorticity equation $ is defined by (2.54), where
the fluctuations are calculated from the equations given in § 3.3.

These equations should be solved in an annular domain of closed field lines, with
periodic parallel boundary conditions and static Dirichlet boundary conditions for ϕ
and A‖ on the boundaries, such that uE and b are tangential to the boundaries. This
is achieved by taking the boundaries sufficiently far from the ELM that no plasma
seeks to erupt out of the domain. Static boundary conditions are naturally appropriate
as the time variation of fields outside of the ELM region is small compared to the
time scale of the ELM.

3. Building up: inter-ELM pedestal evolution
The equations presented in the preceding section describe the rapid evolution of the

pedestal region during an ELM. This rapid evolution will rearrange field lines and the
plasma pressure profiles but does not itself contain the physics that would relax these
profiles after an ELM. Nor do they contain the physics that builds up the density and
temperature profiles between ELMs. For this, we need to consider what happens when
the only solutions to the ELM equations are stationary.

To achieve this, we will first, in § 3.1 build up a set of orderings for the slow
behaviour of the plasma. Then we will derive equations embodying such orderings.
We will show that these equations naturally require stationary solutions to our ELM
equations, which were summarised above in § 2.3. This proves one major part of
self-consistency. The final piece of the puzzle will arrive in § 3.3 where we show that

https://doi.org/10.1017/S0022377818000326 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818000326


Multiscale modelling for tokamak pedestals 15

small-scale fluctuations, consistent with slab-like electron temperature gradient-driven
(ETG) or microtearing (MTM) turbulence, drive the inter-ELM transport through
our pedestal. We will also confirm the result asserted above, that this turbulence is
strong enough to provide the required transport but only affects ELM dynamics in a
limited way.

3.1. Inter-ELM orderings
We must now re-evaluate our orderings to accommodate the slow inter-ELM behaviour.
We retain the orderings on L⊥/L‖, ρi/L⊥, β, me/mi, and collisionalities from § 2.1.
However, we now wish to accommodate frequencies on the ion-sound time scale, ω∼
vthi/L‖.

In order to do this, we need to slow down the nonlinear time scales due to the E×
B motion (ωNL∼uE ·∇ and due to diamagnetic effects ωNL∼ b×∇p ·∇). We manage
this by introducing a new length scale L∧ ∼

√
L⊥L‖ ∼

√
εL‖. We assume that in the

plane perpendicular to the magnetic field we can identify a fast direction, where the
typical length scales are L⊥, and a slow direction, where the typical length scales are
L∧. In a pedestal this is naturally given by the radial and the in-surface perpendicular
directions respectively (if one views the poloidal coordinate as the distance along a
field line, then this slow direction is the toroidal direction).

Under this assumption, we see that all the nonlinearities can be written in the form

b×∇g · ∇f ∼
gf

L⊥L∧
, (3.1)

where we have used the fact that the derivatives cannot both be in the fast direction.
With this estimate in hand, we see that

uE · ∇∼
cTe

eB
eϕ
Te

1
L⊥L∧

∼
√
ε

cTe

eB
1

L2
⊥

∼
vthi

L‖
, (3.2)

as required.
No other ordering changes are required. We expect this set of equations to model

the equilibrium and any possible coherent oscillation of the edge pedestal. Such
coherent oscillations, with frequencies comparable to the local acoustic frequency, are
thought to be important in novel modes of tokamak operation (Snipes et al. 2001;
Burrell et al. 2002).

We now revisit and justify the turbulence orderings introduced earlier. To distinguish
scales relating to the fluctuations from the scales of the pedestal itself, we will use
k⊥ to denote typical perpendicular wavenumbers, and k‖ typical parallel wavenumbers.
The only length scales smaller than L⊥ available to us are the gyroradii, and so
we assume that the turbulence is predominantly at scales comparable to the ion
gyroradius

k⊥ρi ∼ 1, (3.3)

and because of our ordering for β and the mass ratio, this means that turbulent scales
are also comparable to the electron skin depth de = c/ωpe:

k⊥de ∼ 1. (3.4)
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16 I. G. Abel and A. Hallenbert

Making a mixing length estimate for the amplitude of this turbulence we see that

δfs

fs
∼

eδϕ
Te
∼

1
k⊥L⊥

∼
√
ε. (3.5)

This is also exactly the ordering required to balance the nonlinear turnover rate with
the ω∗-drive:

uE · ∇∼
cTe

eB
eδϕ
Te

k2
⊥
∼
√
εk⊥vthi, (3.6)

and

ω∗ ∼
cTe

eB
k⊥
L⊥
∼
ρi

L⊥
k⊥vthi ∼ uE · ∇. (3.7)

Both of these frequencies are comparable to vthi/L⊥. If this turbulence is mainly
mediated by electrons, as in ETG or MTM turbulence, then the frequency sets a
typical parallel length scale by

ω∼ k‖vthe . (3.8)

This means that we have k‖L‖∼ 1/
√
ε� 1. This is short parallel-wavelength, slab-like

turbulence. We will also assume that turbulence is as electromagnetic as our low-β
assumption allows:

δB⊥
B
∼

k‖
k⊥
∼ ε. (3.9)

We can also make a random-walk estimate of the transport from this turbulence

τ−1
E ∼

D
L2
⊥

∼
ω

(k⊥L⊥)2
∼
vthi

L‖
, (3.10)

where τE is the pedestal energy confinement time and D is a typical diffusion
coefficient from our turbulence. We see that this is precisely in accord with our
ordering of the inter-ELM evolution time scale.

Note that our exploration of these equations does not extend to the time scale on
which the confining field evolves, B0 is fixed throughout. This is currently no great
limitation, as a pedestal that is quiescent for so long that the diffusion of current
becomes important is presently beyond experimental and theoretical reach. However,
this must eventually be addressed in future work.

3.2. The slow dynamics of a pedestal
We use the same variables as in the prequel, and taking care to use the new ordering
to estimate the size of their time derivatives we obtain〈

Ṙs
〉

R =w‖b(Rs)+
c
B

b×∇ϕ +O(ε3/2vthi) (3.11)

〈ε̇s〉R =−Zsew‖

(
b · ∇ϕ +

1
c
∂A‖
∂t

)
+O

(
ε
vthi

L‖
Te

)
(3.12)
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ϑ̇
〉

R =Ωs +O(ε1/2Ωi), (3.13)

as before.
In appendix E we prove that a consistent solution to the lowest-order electron

kinetic equation, in a closed-field-line region, is a Maxwellian. If this is the chosen
solution, then the magnetic field is frozen into a fluid flow and the magnetic topology
is fixed on the time scales of interest. Then we can assume that the field has
topologically toroidal flux surfaces (denoted by ψ) for all time, and we will average
over them when needed.

The electrons are an isothermal (i.e. Te is constant on a flux surface) fluid, with a
continuity equation for the density (cf. (E 7)):(

∂

∂t
+ uE · ∇

)
ne +∇ ·

(
neu‖eb

)
+∇ ·

〈∫
d3v Vχhe

〉
turb

= S(n)e , (3.14)

where the fluctuating velocity is given by

Vχ =
c
B

b×∇
〈
ϕ −

w‖
c
δA‖
〉

R
, (3.15)

and an evolution equation for the temperature (see (E 10))

3
2

〈(
∂

∂t
+ uE · ∇

)
neTe

〉
ψ

+

〈
∇ ·

〈∫
d3v

(
εe

Te
−

3
2

) 〈
Vχ

〉
Rδfe

〉
turb

〉
ψ

=
〈
eneu‖e b · ∇ϕ

〉
ψ
+
〈
S(E)e

〉
ψ
, (3.16)

where Te = Te(ψ). The terms on the right-hand side are easily interpreted as
parallel compressional heating, turbulent ohmic heating and a possible energy source,
respectively. The fluctuating distribution function δfe is defined by (2.20), and given
by the solution of (3.25) as explained in the next section.

The ions obey a drift-kinetic equation:(
∂

∂t
+w‖b · ∇+ uE · ∇

)
fi − Ziew‖b · ∇ϕ

∂fi

∂εi
+∇ ·

〈 c
B

b×∇〈δϕ〉R hi

〉
turb

= C
[

fi
]
+ Si, (3.17)

in which the fluctuating ion distribution function hi is defined by (3.24) and given by
the solution of (3.23) as described in § 3.3.

The fluctuating magnetic field is given by the lowest-order vorticity equation(
B0 + b0 ×∇A‖

)
· ∇

(
1
B
∇

2
⊥

A‖ − b0 · ∇× b0

)
= 4π∇×

(
b0

B

)
· ∇p⊥ +

4π

B
∇× b0 · ∇(p‖ − p⊥). (3.18)

Equivalently, (3.18) is simply the constraint that the ELM time scale vorticity equation
(2.53) has zero-vorticity solutions. The fluctuating A‖ then determines the parallel
electron flow via Ampère’s law

u‖e =−
c

4πene
b · ∇×B+

1
ne

∑
s=i

Zs

∫
d3v w‖ fs, (3.19)
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with the sum on the right-hand side being over all ion species. We can then use (E 5),
which is

b · ∇
(

Te

e
ln ne − ϕ

)
= 0, (3.20)

to find the electrostatic potential up to a flux function ϕ(ψ).
Finally, the flux-surface average of the vorticity equation gives us the equation that

determines ϕ:〈
∇ ·

{∑
s

nsms

B

[
∂

∂t
+ u‖s b · ∇+ uE · ∇

] (
∇p⊥s

nsmsΩs
+

c∇ϕ
B

)}〉
ψ

=

〈
∇ ·

[∑
s

b · ∇
(

u‖s∇p⊥s

BΩs

)]〉
ψ

+

〈∑
s

1
2BΩs

[
(∇ · b)∇2

− (∇b) : ∇∇
]

q‖s

〉
ψ

+ 〈$ 〉ψ , (3.21)

where

q‖s =
∫

d3w
msw2

⊥

2
w‖ fs. (3.22)

with the definition of turbulent vorticity $ from (2.54).
Let us pause and comment on these equations for a moment. These equations live

a double life. Firstly, they are transport equations, with fluxes given by averages
over the pedestal turbulence. Secondly, they support sound waves and their relatives
like the geodesic acoustic mode (GAM). As these are on the same time scale, the
interplay between poloidally inhomogeneous turbulence and the sound waves that such
inhomogeneity can excite may result in interesting physics. Equation (3.18) gives the
response of the magnetic field to this transport, and is in effect the constraint that
the field-line-bending forces always balance pressure forces so no Alfvén waves can
be excited.

In this system, transport occurs on the same time scale that poloidal flows are
damped by parallel viscosity. Thus, this system can potentially support Stringer spin-
up (Stringer 1969; Rosenbluth & Taylor 1969). This mechanism has been thought
to play a role in the L–H transition (Hassam et al. 1991). Indeed, investigating the
behaviour of the large poloidal flows that our equations can support will be a key
point of future work.

3.3. Pedestal turbulence
Finally, we come to the equations governing the turbulence in the pedestal. These
are derived in § E.2, by systematically expanding the fluctuating part of (2.22) in
accordance with the orderings of § 2.1.1. This derivation is standard, and closely
resembles that of gyrokinetics. Thus, we leave the derivations to § E.2, and only
present the results here.

The ions obey a simple kinetic equation:(
∂

∂t
+ uE ·

∂

∂Ri

)
hi +

c
B
{〈δϕ〉R , hi}

= −

(
∂

∂t
+ uE ·

∂

∂Ri

)
Zie〈δϕ〉R

∂fi

∂εi
−

c
B

b×∇〈δϕ〉R · ∇fi, (3.23)
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where uE is the E × B velocity defined with the large-scale potential ϕ, obtained
from the equations in the previous section. Similarly, fi is the large-scale distribution
function. In this context these fields are static, and they can be handled exactly the
same as the Maxwellian backgrounds in local gyrokinetic flux-tube codes. Finally, hi
is the non-adiabatic part of the ion distribution function

δfi = hi + Zieδϕ
∂fi

∂εi
+

Zie
B
(δϕ − 〈δϕ〉R)

∂fi

∂µi
. (3.24)

This equation is easily seen to be the same as the slab-geometry gyrokinetic equation
around a non-Maxwellian background, if one were to neglect ion-sound effects
(cf. (Frieman & Chen 1982; Abel et al. 2013)).

The electrons also obey a gyrokinetic equation(
∂

∂t
+ uE ·

∂

∂Re

)
he +w‖b · ∇he +

c
B

{
〈δχ〉R , he

}
= −

(
∂

∂t
+ uE ·

∂

∂Re

)
e〈δχ〉R

Te
fe −C [he]−

c
B

b×∇〈δχ〉R · ∇fe, (3.25)

where

δfe = he +
eδϕ
Te

fe, (3.26)

as fe is Maxwellian, and

δχ = δϕ −
w‖
c
δA‖. (3.27)

These two equations are coupled with the following two field equations. Firstly, the
quasineutrality condition,

−
eδϕ
Te

ne +
∑
s=i

Zie
∫

d3v

[
δϕ
∂fi

∂εi
+ (δϕ − 〈δϕ〉R)

∂fi

∂µi

]
=

∑
s

Zse
∫

d3v 〈hs〉r, (3.28)

in which the sum on the left-hand side is taken over all ion species. Secondly, the
parallel (to b but not b+ δB) component of Ampère’s law

c
4πe
∇

2
⊥
δA‖ =

∫
d3v w‖he, (3.29)

where the ions do not participate due to the high frequency of the fluctuations.
Perpendicular pressure balance obtains, and allows one to calculate turbulent
fluctuations in the field strength, δB‖ = b · δB, but these do not react back upon
the turbulence, nor do they contribute to the ensuing transport. This is easy to see as
the drift arising from δB‖ is O(εvthi) whereas the E×B drift due to δϕ is O(ε1/2vthi).

We should comment upon the geometry these equations should be solved in.
The turbulence they describe occurs on spatial scales that are short compared to
those of the pedestal profile. Hence, as in classic gyrokinetic simulations, flux-tubes
with periodic perpendicular boundary conditions (Beer, Cowley & Hammett 1995)
are the correct setting for solving these equations. However, as the turbulence is
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such that the parallel correlation lengths are short compared even to the connection
length, shear-periodic parallel boundary conditions are also required. Similarly, all
geometric quantities that vary on the L‖ scale along the field line (poloidally) should
be evaluated at one point and not vary through the simulation domain. Importantly,
this means that trapped-particle effects are irrelevant for this turbulence, as only a
small fraction of particles have a bounce point in any given 1/k‖ length of plasma.
The only geometry of the field that is retained is the magnetic shear. This is easily
seen by expanding the operator b · ∇ around some radial point r0

b · ∇= b(r= r0) · ∇+ (r− r0)
∂b
∂r
· ∇+ · · · ≈ b · ∇+ (r− r0)

∂b
∂r
· ∇⊥, (3.30)

where, as r − r0 ∼ ∇
−1
⊥ , the second term will be comparable to the first if k‖Ls ∼

1. Referring back to our maximal estimates for the amount of magnetic shear in the
pedestal, we see that this ordering is marginally satisfied. Thus, magnetic shear must
be retained. These simplifications should render simulation of these equations simpler
than current methods for simulating pedestal-relevant turbulence.

This set of equations is also interesting for several reasons. It is a strict superset
of the equations of Zocco & Schekochihin (2011) which comprise a popular reduced
model for studying reconnection. The equations also contain equations used to study
microtearing physics in Zocco et al. (2015). In the limit of weak magnetic shear,
and weak background ion gradients, our equations reduce to a model that has been
shown to support strong electromagnetic ETG turbulence, due to an inverse cascade
process (L. Milanese et al. 2017, Private communication). This strongly suggests
our equations support the turbulent processes believed to be most important in the
pedestal (Saarelma et al. 2013; Hatch et al. 2016; Hillesheim et al. 2016; Hatch et al.
2017).

3.4. Summary
Our inter-ELM equations consist of two time scales. Firstly the slow time scale
equations, which comprise the following:

(i) (3.14) and (3.16) to determine the electron density ne and temperature Te
respectively,

(ii) (3.17) to determine fi,
(iii) (3.18) which determines A‖,
(iv) (3.20), which determines ϕ up to a flux function
(v) and (3.21) that determines that flux function.

All of these equations are meant to be solved on a global annular domain containing
the entire pedestal. The detailed boundary conditions will be discussed in § 4.

In some of these equations, there are terms that arise from averages over the
turbulence. The turbulence is governed by the following equations:

(i) the kinetic equations, (3.23) for hi and (3.25) for he,
(ii) the quasineutrality condition (3.28) for δϕ

(iii) and parallel Ampère’s law (3.29) for δA‖.

There are also the relations (3.24), (3.26) and (3.27) that relate these fields to the
fields that arise in the flux terms in the inter-ELM equations. As usual for coupling
turbulent fluxes to a transport code, these equations should be run to a steady state
and appropriately averaged to give the fluxes.
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4. Betwixt and between: boundary conditions, matching and existing models
In this section, we tackle two remaining points regarding the systems of equations

derived above. Firstly, how they interact, and how they couple both to core and
scrape-off layer models. Then, secondly, how they compare to existing strategies for
modelling this region of the plasma.

4.1. The integrated approach: coupling and boundary conditions
Having derived a full multiscale approach to the pedestal, the question naturally arises
of how these equations should be coupled to each other, and to other parts of the
plasma. We have a framework for physics on three disparate time scales. The fastest
is the time scale of the individual turbulent fluctuations. Then comes the time scale on
which ELM filaments erupt. Finally, the time scale on which transport occurs, which
is the same as the acoustic time scale.

The outline of the envisioned implementation, reminiscent of the operation of
multiscale core transport codes, is as follows. Given an initial pedestal profile, one
tests for stability in the ELM equations. Due to the meta-stable nature of erupting
ELM filaments (Cowley et al. 2015; Ham et al. 2016), a purely linear solver may
be insufficient to evaluate the stability of the pedestal to ELMs.6 A more robust
approach is to initialise the ELM equations with the initial profile and, in addition,
some specified amount of noise. One then evolves the fully nonlinear equations for a
short time. Either nothing happens, if the pedestal is suitably stable, or the filaments
erupt and a new equilibrium is rapidly reached. Once a situation is reached where
no more evolution occurs on the fast time scale, the state is such that it is a valid
initial condition for the inter-ELM equations.

The inter-ELM equations are then used to evolve the profiles on the long time scale,
with fluxes given by the pedestal turbulence. We envision these equations being solved
in a (topologically) annular region, with inner and outer surfaces corresponding to flux
surfaces. The boundary conditions at the inner radial location is given by matching
to multiscale gyrokinetics. The core is solved as in Barnes et al. (2010), with the
boundary values for the transport equations being taken from our inter-ELM pedestal
profile. That profile is itself solved for with a fixed-flux boundary condition obtained
from the outermost radial grid point of the gyrokinetic transport calculation. In general,
this indicates that the core transport time step and the Inter-ELM time step must be
taken together. However, for a steady-state situation one could envision solving the
inter-ELM equations with a fixed flux given by the total heating and fuelling sources
before then solving the core with a fixed value for the pedestal. The outer radial
boundary condition is given, in principle, by matching to a scrape-off-layer model
just inside the separatrix. We discuss the difficulties and possibilities of such matching
in § 4.3. Absent an exact model to match to, we take the same ad hoc approach as
Barnes et al. (2010) and suggest fixing values for top of the scrape-off layer at the
separatrix. The pedestal turbulence, which gives rise to the fluxes, is solved locally in
slab-like flux tubes, as described in detail at the end of § 3.3.

Periodically during this evolution, stability in the ELM equations is checked for. If
at any point the ELM equations are unstable, then one returns to the start of this
procedure and evolves on the short time scale until a new equilibrium is reached. In
principle this is checked every time step of the inter-ELM equations (just as MHD

6In addition, on account of the inclusion of electron Landau resonances and diamagnetic effects, there
will not be an energy principle for our ELM equations. Thus, any linear stability calculation would have to
perform a full initial-value solution for a finite time anyway.
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stability should be checked every time step of a core transport code), but hopefully
heuristics can be developed to ameliorate this cost.7 It is easy to see how this cyclical
procedure would produce an ELM cycle.

Ideally, this framework would resolve the problematic issue of boundary conditions
in core multiscale codes – the solution to the core transport equations is sensitive
to the fixed boundary condition at the top of the pedestal. One might hope that
sensitivity studies of the equations in this paper would demonstrate an insensitivity of
the pedestal top temperature to conditions at the separatrix. Of course, this is mere
speculation, and one may wonder, pessimistically, if sensitivity to boundary values
continues all the way to a material surface.

Now, the fact that multiscale gyrokinetics has a subsidiary limit that provides a
large enough heat flux to appropriately source the inter-ELM equations is not obvious.
Indeed, it is not obvious that our inner boundary is even consistent with multiscale
gyrokinetics. To this end we will show explicitly in the next section that these two
theories can indeed be matched on to each other at the pedestal top.

4.2. Matching at the pedestal top
In this section we show that our pedestal model can be smoothly matched on to
multiscale gyrokinetics. More precisely, we mean that there is a subsidiary expansion
of each of these systems that results in the same set of equations. This implies that
there is potentially a region in the plasma that would be well described by both
multiscale gyrokinetics and the model contained in this paper. Suggestively, we will
designate this location as the top of the pedestal.

In this section, we will only detail the orderings of the subsidiary expansions.
Detailed calculations showing that these orderings do indeed result in the same set of
equations are performed in appendix F. We begin with the expansion of multiscale
gyrokinetics. This should be seen as an expansion in nearness to the pedestal. As the
pedestal top is approached from the core, steepening density gradients and decreasing
ηi conspire to stabilise the ion-temperature-gradient (ITG) mode. Thus, we are looking
at an expansion that should result in strongly driven microtearing and ETG turbulence.

There are two main expansions we will need to do. Firstly, we will need an
expansion in small Mach number to match the rapidly rotating core onto the subsonic
pedestal. Secondly, in order to begin to match the pedestal, we will need a subsidiary
expansion in both the mass ratio and in β. This will mainly affect the equations for
the fluctuations, and closely parallels the derivation in Zocco & Schekochihin (2011).

We do this as two subsidiary expansions, so the first expansion is that of small
Mach number M. We will use a naïve low-Mach-number expansion, where M � 1
but the scale length of the flow is the same as the perpendicular scale length of
all other mean quantities. Such an expansion simply results in the zero-flow limit of
gyrokinetics. The resulting equations are simply the equations of section 11 of Abel
et al. (2013) with any remaining terms involving the equilibrium flow neglected. This
is the same as the system of equations presented in Sugama et al. (1996), except in
a notation that is closer to the one used in this paper. It is this set of equations we
will now expand in β and me/mi.

7As an example, one simple approach would be to require a certain change in global pedestal parameters
(height and width) before initialising a stability calculation. Speculatively executing both the next slow time
step and the stability calculation in parallel, throwing away whichever turns out to be irrelevant, might also
save wall-clock time.
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To formalise our second subsidiary expansion, we introduce a small parameter ξ ,
defined by

ξ ∼
√
β ∼

√
me

mi
� 1. (4.1)

We then order

δfs

fs
∼

eδϕ
Te
∼
εGK

ξ
, (4.2)

where εGK = k‖/k⊥ is the small parameter of gyrokinetics. Other than this rebranding,
we will use the notation of Abel et al. (2013) when discussing multiscale gyrokinetics.
We retain

k⊥ρi ∼ 1, (4.3)

from gyrokinetics and due to our ordering for βe we keep the electron skin depth
scale,

k⊥de ∼ 1, (4.4)

as well. With this ordering for k⊥, the frequencies become

ω∼
cTe

eB
b×∇

(
eδϕ
Te

)
· ∇δfs ∼

εGK

ξ
Ωs ∼ k‖vthe . (4.5)

As in (Zocco & Schekochihin 2011) this expansion in β reduces the relative
importance of some electromagnetic effects. Thus, we have

δB⊥
B
∼ ε and

δB‖
B
∼ ξε. (4.6a,b)

To drive this increase in turbulent amplitude, we assume that the gradients in F0s
are increased

∇F0s

fs
∼

1
aξ 2

, (4.7)

with a the long equilibrium length scale, assumed to be comparable to the parallel
connection length qR. However, the parallel length scale of the fluctuations is now

k‖a∼
ωa
vthe

∼
1
ξ
. (4.8)

Note that this scaling is consistent with turbulence that has its outer scale fixed
(independent of drive) around ρi such as might follow from an inverse cascade
from electron scales that is broken by ion gyroscale physics (L. Milanese et al.
2017, Private communication). As the drive is increased, instead of the outer scale
increasing, the frequency increases and the parallel length scale decreases due to
causality. Thus, this ordering is not consistent with a naïve scaling theory of critically
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balanced ETG turbulence which might be expected to follow the orderings of Barnes,
Parra & Schekochihin (2011).

With our ordering, the transport time scale of such turbulence is now

τ−1
E ∼

ω

k2
⊥

∇F0s

F0s
∼
ω

ξ 2
ε2

GK ∼
vthi

qR
ε2

GK

ξ 4
∼
ε3

GKΩi

ξ 4
. (4.9)

As we are allowing the various scales of the equilibrium to be ordered differently
(unlike normal gyrokinetics), we must consider how to handle the magnetic shear
length scale Ls. As our pedestal allows for strong shear, we take the ordering

Ls ∼ ξa, (4.10)

such that k‖Ls ∼ 1, which is consistent with electromagnetic microtearing turbulence.
Revisiting the collisionality estimate from above, νee ∼ vthe/qR, we see that our

turbulence should be collisionless if our pedestal is trans-collisional. Hence, we will
assume that the turbulence self-generates phase-space structure sufficient that the
collision operator is retained in the resultant gyrokinetic equation.8 This assumption
of steep gradients in velocity space is needed in order that dissipation can continue
to balance the turbulent fluxes in the free-energy conservation equation of Abel et al.
(2013).

Applying this ordering to the low-Mach-number equations of gyrokinetics results in
the set of equations detailed in appendix F. We thus turn to the subsidiary ordering of
our inter-ELM equations. We do not need to revisit our ELM equations as gyrokinetics
assumes that the plasma is MHD stable, and so to match on to it we make the same
assumption.

The subsidiary expansion we engage in should be thought of as approaching
the top of the pedestal from inside the pedestal region. Perpendicular gradients are
shallower than they are in the pedestal. ITG-driven turbulence is still suppressed,
but the microtearing and ETG turbulence is not as strong as it is in the pedestal
proper. To quantify this, we introduce a second subsidiary parameter ζ to quantify
our expansion of the inter-ELM equations. It is defined by

δfs

f
∼

eδϕ
Te
∼ ζ
√
ε. (4.11)

This lower-amplitude turbulence naturally leads to a longer k‖ for the fluctuations,
obtained from a critical-balance estimate

k‖vthe ∼
c
B

b×∇δϕ · ∇∼ ζ
√
εΩi, (4.12)

giving

k‖ ∼
ζ√
L⊥L‖

. (4.13)

8If semi-collisional or truly collisional instabilities are to be studied, they must be investigated with a
collisional pedestal as the background. This is a trivial large-collisionality limit of the equations presented
above.
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Consistent with this reduction in turbulent amplitude is a reduction in the driving
gradients (a linear scaling of δfs/fs with driving gradient is in accord with the results
of Barnes et al. (2011))

∇⊥ fs ∼ ζ
fs

L⊥
. (4.14)

We will order the time derivatives of the mean quantities with the modified turbulent
transport time,

∂fs

∂t
∼ ζ 3 vthi

L‖
fs, (4.15)

but we shall keep the collision time comparable to the parallel sound time.
The mean electrostatic potential is ordered so as to allow us to match up with a

low-Mach-number expansion of gyrokinetics. We fix the amplitude of the potential at
Te/e as we head towards the interior of the tokamak, but keep the scale length that
of the other mean quantities:

∇⊥ϕ ∼ ζ
ϕ

L⊥
and

eϕ
Te
∼ 1. (4.16a,b)

This means that the shearing rate drops with decreasing ζ and so the mean flow is
eliminated from our equations.

This set of orderings reproduces exactly the same set of equations as the expansion
of gyrokinetics detailed above. Hence, we can confidently say that there is a physically
plausible regime which is described both by gyrokinetics and by our pedestal model,
and acts as a bridge between them. Operationally, we expect this region to be located
at the top of a pedestal, but one could also envision using our model to embed a
transport barrier region inside core gyrokinetics.

Having shown that we match on to the best tested model of core turbulence, in the
next section we will discuss how our model matches on to scrape-off-layer models
which are much less developed.

4.3. Matching on to the scrape-off layer
To leave the plasma and reach such a surface, one can imagine coupling the above
pedestal to a collisional scrape-off-layer (SOL) model such as Catto–Simakov or GBS,
where the boundary between closed and open field lines is completely contained in the
SOL model. If the plasma is still hot enough to be weakly collisional at the separatrix
then such a coupling may not be consistent, and further work is required. Exciting
models for arbitrary collisionality scrape-off layers have recently been proposed (Jorge,
Ricci & Loureiro 2017), and matching to such models should be addressed in the
future.

As yet, such an explicit matching (either collisional or collisionless) has not been
performed. However, even without the explicit forms of the equations that are to
be matched, we know that they must obey certain constraints. We know that they
must conserve energy and particles, and as such we can envisage using the fluxes
leaving the pedestal (as simulated by our equations) as boundary conditions for
a scrape-off-layer model. One could also, perhaps, use the general spectrum of
fluctuations in our model to initialise some noise in a scrape-off-layer code. This
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procedure would, of course, be fundamentally inconsistent. Consistency requires not
only a smooth matching of the fluxes at the boundary, but also a matching of the
mechanisms that carry that flux. Rigorous subsidiary expansions would provide a
finite-width region in which both models were valid, and we could be confident in
matching across this region. We leave the detailed derivation of such expansions to
future work.

4.4. Existing models
Individual parts of our model are directly comparable to some parts of existing models,
and we have highlighted these both in the discussion of the ELM vorticity equation
in § 2.2 and in § 3.3 where we discuss pedestal turbulence. Thus, in this section, we
focus on comparing our model as a whole to other approaches for simulation and
modelling of the pedestal region of a tokamak.

The most successful empirical model of the pedestal is the EPED model (Snyder
et al. 2002, 2011). This combines a collisional, long-wavelength model for peeling-
ballooning modes (Wilson et al. 2002), with an assumption that the inter-ELM
turbulence is given by kinetic-ballooning modes (KBM), modelled heuristically by
the infinite-n ballooning stability limit. Our model improves upon this by including
weakly collisional kinetic effects including electron landau damping, trapped electron
physics and self-consistent diamagnetic stabilisation into the time-dependent ELM
dynamics. We also have a self-consistent model of the underlying pedestal turbulence.
Indeed, the assumption that the turbulence is strictly KBM in nature has recently
come under scrutiny (Hatch et al. 2017) as detailed gyrokinetic analysis lends more
support to the turbulence being MTM or ETG in nature. Two-fluid simulations of
ELMs with BOUT++ (Xu et al. 2011), which have been included in EPED, can capture
some of the non-ideal effects of our model, but not the electron kinetic effects. In
addition, our model makes precise the potential sources of the effects of turbulence
upon the ELM dynamics.

More generally, two-fluid or reduced Braginskii simulations will not capture the
weakly collisional physics that may be important in a hot pedestal. The most complete
fluid equations are those of GBS (Ricci et al. 2012) or Catto–Simakov (Simakov &
Catto 2003). The former of these has almost exclusively been used to study open-
field-line regions, but the latter was formulated with the explicit intent of handling
closed-field-line regions in pedestals. The fluid nature of the models means that they
cannot capture kinetic effects that may affect ELM stability. In addition, these models
do not consistently separate the sound and Alfvénic time scales, despite the low-β
nature of their models. Their ordering schemes do not touch on the possibility of
small-scale fluctuations existing within the pedestal, but could be extended to include
the turbulence model we have presented above. Indeed, the Catto–Simakov model,
with turbulence and separating the two equilibrium time scales is the collisional limit
of the equations we have presented.

The final approach that is considered for pedestal modelling is global full-f
gyrokinetics (Chang et al. 2006; Churchill et al. 2017). This approach promises
to include all the physics, at all scales, consistently. The potential pitfalls of this
approach are twofold. Firstly, the numerical requirements are extraordinary, requiring
all parts of the simulation to resolve the fastest and smallest fluctuations. This may
render predictive parameter scans prohibitively expensive. Secondly, by incorporating
all temporal and spatial scales on the same footing, it becomes incredibly hard to
extract the physics of the interaction of these scales. Our model should be much
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less numerically challenging, especially as the turbulence can be parallelised over
the background parameters in an approach reminiscent of current core transport
codes (Barnes et al. 2010). Again, because we have decoupled the filamentary
dynamics from the slow sound-time dynamics and the fluctuations, we can examine
each piece of the puzzle separately.

5. Summary and conclusions

In this paper we have derived a self-consistent first-principles model for a pedestal.
The first part of the model is a trans-collisional ELM model, given by (2.45), (2.47),

(2.49), (2.53) and closed with (2.31) and (2.55). This model contains the eruption
of filamentary structures driven both by magnetic buoyancy forces and launched by
current-driven instabilities. It is fully nonlinear and capable of dynamically evolving
a filamentary structure from one equilibrium to another.

These equilibria provide the backdrop for the next part of the model. The evolution
of the inter-ELM profiles. This is given by (3.14), (3.16), (3.17), (3.18), (3.20)
and (3.21). This component of the framework contains the physics of sound waves,
including GAMs which are often seen in the edge, poloidal spin-up, and even
systematically includes turbulent transport.

These equations are, in turn, closed by a set of equations governing the turbulence
that generates that transport. These are, explicitly, the set (3.23)–(3.29). This set
contains the physics of strongly driven microtearing and ETG turbulence.

Future work must include exploring the equilibria of this system, with special focus
on the stability of zero-flow solutions to spontaneous spin-up. In addition, the scaling
of pedestal turbulence with drive parameters is a high priority – if pedestal turbulence
exhibits the (R/LT)

3 scaling of core turbulence, then this may permit the formation of
boundary layers that govern the size of ELM filaments.
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Appendix A. Time derivatives of the gyrokinetic variables

In this appendix we take the time derivatives of the variables used in the body of
the paper. We start with the gyrocentre position,

Ṙs =
d
dt

(
r+

w× b
Ωs

)
, (A 1)

https://doi.org/10.1017/S0022377818000326 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818000326


28 I. G. Abel and A. Hallenbert

where the derivative is taken along unperturbed orbits. Noting that all effects of
magnetic inhomogeneity result in terms of order vthsρs/L‖, we can neglect them. Thus
this becomes

Ṙs =w‖b+ uE +O
(
ρs

L‖
vths

)
. (A 2)

In the fast ELM ordering, the component of uE due to A‖ is O(ε3/2vthi). In the inter-
ELM ordering it is suppressed by another factor of ε1/2. Hence we can neglect it.
Gyroaveraging our formula is trivial, and results in

Ṙs =w‖b(Rs)+
c
B

b×∇ϕ +O(ε3/2vthi), (A 3)

as required.
The energy is also simple to handle. Working from the definition we immediately

see that

ε̇s = ZseE · b−msw ·
d
dt

uE. (A 4)

Gyroaveraging gives

〈ε̇s〉R =−Zse
(

b · ∇ϕ +
1
c
∂A‖
∂t

)
+O

(
√
ε
vthi

L‖
Te

)
. (A 5)

The magnetic moment is defined to be the exact adiabatic invariant

µs =
msw2

⊥

2B
−

ms

B

[
w⊥ ·VDs −

1
Ωs

W :
(
w‖∇b+∇uE

)]
+

w2
⊥

2BΩs

(
w‖b · ∇× b+∇× uE

)
+O

(
ε2 msv

2
ths

2B

)
, (A 6)

where W is given by

W =− 1
4 (w⊥w⊥ × b+w⊥ × bw⊥) . (A 7)

This tensor is useful because it satisfies

w⊥w⊥ =
w2
⊥

2
(I − bb)+

∂W

∂ϑ
. (A 8)

Finally, for ϑ̇ we take the time derivative of

w=w‖b+w⊥ (cos ϑ e2 − sin ϑ e1) , (A 9)

and find

Zse
ms

(
E‖b+

1
c

w×B
)
=

dw‖
dt

b+w‖

(
∂b
∂t
+w · ∇b

)
+

dw⊥
dt

w⊥
w⊥

− ϑ̇w⊥ (sin ϑ e2 + cos ϑ e1)+w⊥(cos ϑ ė2 − sin ϑ ė1). (A 10)
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Taking the inner product with w× b=−w⊥(sin ϑ e2 + cos ϑ e1) gives

w2
⊥
Ωs =w2

⊥
ϑ̇ +O

(
v2

ths

L⊥
Ls
ε1/2Ωs

)
, (A 11)

where Ls is the magnetic shear length. Gyroaveraging gives the required answer

ϑ̇ =Ωs(Rs)+O(εΩs)=Ωs +O(ε1/2Ωs). (A 12)

In these variables, gyrophase derivatives have the property that

∂

∂ϑ

∣∣∣∣
Rs,εs,µs

=
∂

∂ϑ

∣∣∣∣
Rs,w‖,w⊥

+
∂µs

∂ϑ

∣∣∣∣
Rs,w‖,w⊥

∂

∂µs

∣∣∣∣
Rs,εs,ϑ

. (A 13)

We will also need the leading-order gyrophase dependent pieces of the time
derivatives of Rs and εs, which are

Ṙs −
〈
Ṙs
〉

R =
c
B

b×∇
(

b×w
Ωs
· ∇ϕ

)
+O(ε3/2vthi), (A 14)

and

ε̇s − 〈ε̇s〉R =−msw ·
[
∂

∂t
+ (uE +w) · ∇

]
uE +O

(
√
ε
vthi

L‖
Ts

)
. (A 15)

respectively.
In these variables the ion distribution function is given by

fi = fi(Rs, εi, µi, t)+ f̃i, (A 16)

with f̃i ∼ ε
3/2fi.

A.1. Kinetic equations
In the (Rs, εs, µs, ϑ, t) variables we can write the averaged kinetic equation as(

∂

∂t
+ Ṙs ·

∂

∂Rs
+ ε̇s

∂

∂εs
+ ϑ̇

∂

∂ϑ

)
fs +

〈
δas ·

∂fs

∂w

〉
turb

=C
[

fs
]
+ Ss, (A 17)

in which the fluctuating acceleration is

δas =
Zs

ms

(
δE+

1
c
v× δB

)
. (A 18)

In all situations, the leading-order term in this equation is the gyrophase derivative,
from which we learn that the distribution functions are gyrophase independent to some
order in ε. Hence, all the kinetic equations for the mean quantities in this paper are
derived by gyroaveraging (A 17) and retaining the leading-order terms.

We will also need an equation for the gyrophase dependence of the ion distribution
function (the gyrophase dependence of the electrons is too small to matter). Writing
the ion distribution function as

fi = fi(Rs, εs, µs, t)+ f̃i, (A 19)
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where all the gyrophase dependence is in f̃i we have

∂fi

∂ϑ

∣∣∣∣
r,w‖,w⊥

=−
w⊥
Ωi
·
∂fi

∂Ri

∣∣∣∣
εs,µs

+
∂µs

∂ϑ

∂fi

∂µs

∣∣∣∣
Ri,εi

+
∂ f̃i

∂ϑ

∣∣∣∣∣
Ri,w‖,w⊥

+O(ε2fi), (A 20)

with

Ωi
∂ f̃i

∂ϑ
=−

(
Ṙi −

〈
Ṙi
〉

R

)
·
∂fi

∂Ri
− (ε̇i − 〈ε̇i〉R)

∂fi

∂εi
−

〈
δai ·

∂δfi

∂w

〉
turb

. (A 21)

In addition, using our orderings for the inter-ELM turbulence, we can write the
fluctuating acceleration as

δas =−
Zs

ms
∇

(
δϕ −

w‖
c
δA‖
)
−

Zs

msc
bw⊥ · ∇δA‖ +O

(
εvthiΩi

mi

ms

)
, (A 22)

which will be used in later appendices.

Appendix B. Derivation of (2.53)

In this appendix we derive the vorticity equation to a high enough order to serve
for both the ELM and inter-ELM equations. To begin our derivation we multiply the
averaged kinetic equation by msv and integrate over v to obtain

∂

∂t

∑
s

msnsus +∇ ·

(∑
s

∫
d3v msvvfs

)

=
1
c

j×B+
1

4π
∇ ·

〈
δBδB−

1
2
δB2I

〉
turb

, (B 1)

where nsus =
∫

d3v vfs. In deriving this equation, we have used quasineutrality to
eliminate all terms involving electric fields and the conservation properties of the
collision operator. Our next step is to write this in terms of w. Defining

nsUs = nsus − nsuE =

∫
d3wwfs, (B 2)

we have

∂

∂t
(nsmsus)+∇ ·

(∫
d3v msvvfs

)
= nsms

(
∂

∂t
+ uE · ∇

)
us +∇p⊥s +∇ · [(p‖s − p⊥s)bb]

+∇ · πs −Us∇ · (nsmsUs)+ nsmsUs · ∇uE, (B 3)

where the new viscous stress tensor is

∇ · πs =

∫
d3wms

[
ww−

(
w2
‖
−

1
2

w2
⊥

)
bb−

1
2

w2
⊥

I

]
fs. (B 4)
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It will be convenient to rearrange (B 3) slightly into

∂

∂t
(nsmsus)+∇ ·

(∫
d3v msvvfs

)
= nsms

(
∂

∂t
+ u‖s b · ∇+ uE · ∇

)
us +∇p⊥s +∇ · [(p‖s − p⊥s)bb] +Xs (B 5)

with the abbreviation that

Xs =∇ · πs − nsmsu‖sb · ∇us −Us∇ · (nsmsUs)+ nsmsUs · ∇uE. (B 6)

We now proceed to partially derive our vorticity equation. Substituting (B 5) into (B 1)
we have ∑

s

nsms

(
∂

∂t
+ u‖s b · ∇+ uE · ∇

)
us +∇p⊥s +∇ · [(p‖ − p⊥)bb] +X

=
1
c

j×B+
1

4π
∇ ·

〈
δBδB−

1
2
δB2I

〉
turb

, (B 7)

again using the natural notation that p‖ =
∑

s p‖s, etc. Now, taking ∇ · [ b×(B 7)/B ],
we obtain

∇ ·

[∑
s

nsms

B

(
∂

∂t
+ u‖sb · ∇+ uE · ∇

)
b× us −

∑
s

nsms

B
u‖s b · ∇b× us

]

= ∇ ·

[
−

j‖b
c

(
1− 4π

p‖ − p⊥
B2

)
− p⊥∇×

(
b
B

)
−
∇× b

B

(
p‖ − p⊥

)]
+∇ ·

(
b
B
×X

)
, (B 8)

in which we have used (B 12), (B 13) and (B 15) to rewrite the first line of the right-
hand side. The unadorned vector X is given by

X=
∑

s

Xs +
1

4π
∇ ·

〈
δBδB−

1
2
δB2I

〉
turb

. (B 9)

We now use the result (B 19) to find Us:

nsmsUs = nsmsu‖s b+
1
Ωs

b×∇p⊥s, (B 10)

which allows us to simplify Xs:

Xs = ∇ · πs − nsmsu‖s b · ∇(u‖s b+ uds)

−
(
u‖s b+ uds

)
∇ · (nsmsu‖sb+ nsmsuds)+ nsmsuds · ∇uE, (B 11)

with the notation uds = b×∇p⊥s/nsmsΩs for the diamagnetic velocity of species s.
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B.1. Manipulations leading to (B 8)
We now provide the results alluded to above. Firstly,

∇ ·

[
b
B
× ( j×B)

]
=−∇ · ( j‖b), (B 12)

in which we have used quasineutrality in the form ∇ · j= 0. For our next trick, we
see that

∇ ·

(
b
B
×∇p⊥

)
=∇×

(
b
B

)
· ∇p⊥ =∇ ·

[
p⊥∇×

(
b
B

)]
. (B 13)

Finally,

∇ ·

[
b
B
×∇ · (abb)

]
=∇ ·

[ a
B

b× b · ∇b
]
=∇ ·

[ a
B
(∇× b− bb · ∇× b)

]
, (B 14)

whereupon we can use b · ∇× b= b · ∇×B/B and Ampère’s law to obtain

∇ ·

[
b
B
×∇ · (abb)

]
=∇ ·

[
a
B

(
∇× b−

4πj‖
cB

b
)]

. (B 15)

Setting a= p‖ − p⊥ gives exactly the result needed above.

B.2. Lowest-order flows
Let us first calculate the perpendicular velocity of a generic ion species:

nsu⊥s =

∫
d3v v⊥fs = nsuE +

∫
d3ww⊥fs. (B 16)

We then integrate by parts in ϑ , using w⊥ = ∂b×w/∂ϑ , to obtain

nsu⊥s = nsuE −

∫
d3wb×w⊥

∂fs

∂ϑ

∣∣∣∣
r,w‖,w⊥

. (B 17)

Next we substitute from (A 20), noting that only the first term on the right-hand side
of (A 20) is large enough to contribute, and find

nsu⊥s = nsuE +
1
Ωs

∫
d3wb×w⊥w⊥ · ∇ fs. (B 18)

Using the gyrotropy of fs and performing the gyroaverage, we obtain the final result

nsu⊥s =
c
B

b×
[
∇

(
1

Zse

∫
d3v

ms

2
v2
⊥

fs

)
+ ns∇ϕ

]
, (B 19)

where we have expanded the E × B flow to lowest order and reverted to using v
instead of w. Thus the perpendicular flow is simply the sum of the diamagnetic flow
and the electrostatic E×B flow.
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B.3. The ion stress tensor
In this section we calculate the stress tensor πs. By using the identity (A 8) in the
definition (B 4), we can write πs as

πs =

∫
d3wms

(
w‖bw⊥ +w‖w⊥b+

∂W

∂ϑ

)
fs. (B 20)

By the same manipulations as in the previous section we can show that∫
d3wmsw‖bw⊥fs = b

(
ms

2Ωs

∫
d3ww‖w2

⊥
b×∇fs

)
. (B 21)

Using this result, we can rewrite πs in the following way

πs = bh+ hb+
∫

d3wms
∂W

∂ϑ
fs, (B 22)

where we have abbreviated

h=
B2

Ωs
b×∇

∫
d3ww‖

msw2
⊥

2B2
fs. (B 23)

We now proceed to the final term of (B 22). Using (A 20) we see that

ms

∫
d3w

∂W

∂ϑ
fs =−ms

∫
d3wW

∂fs

∂ϑ
=ms

∫
d3wW

(
w⊥
Ωs
· ∇fs −

∂fs

∂µs

∂µs

∂ϑ
−
∂ f̃s

∂ϑ

)
.

(B 24)

The first of these terms is easily handled,

ms

Ωs

∫
d3w Ww · ∇fs(Rs, εs, µs, t)=

ms

Ω2
s

∫
d3w W ww× b : ∇⊥∇⊥fs. (B 25)

We then perform the gyroaverage, to obtain

ms

Ωs

∫
d3wWw · ∇fs =−

ms

Ω2
s

∫
d3w

w4
⊥

16
[∇⊥∇⊥ − (b×∇) (b×∇)] fs +O(ε2p⊥s)

= [(b×∇) (b×∇)−∇⊥∇⊥]
ms

Ω2
s

∫
d3w

w4
⊥

16
fs +O(ε2p⊥s), (B 26)

where the operator (b × ∇)(b × ∇) is given by its components as εiklεjmnbkbm∇l∇n
with εijk the Levi-Civita symbol. Writing the product εiklεjmn in terms of Kronecker
deltas, we have that

εiklεjmnbkbm∇l∇n = δij
(
∇

2
− b · ∇2)

− bibj∇
2
+ bib · ∇∇j + bjb · ∇∇i −∇i∇j,

(B 27)

whereupon (B 26) becomes

ms

Ωs

∫
d3wWw · ∇fs = [I∇

2
− 2∇⊥∇⊥]

ms

Ω2
s

∫
d3w

w4
⊥

16
fs +O(ε2p⊥s). (B 28)

https://doi.org/10.1017/S0022377818000326 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818000326


34 I. G. Abel and A. Hallenbert

Moving to the second term in (B 24), and substituting from (A 6), we have

ms

∫
d3w W

∂µs

∂ϑ

∂fs

∂µs

= ms

∫
d3w
〈

W
[
−

ms

B
w× b ·VDs +w⊥w⊥ :

(
w‖∇b+∇uE

)]〉
r

∂fs

∂µs
, (B 29)

where we have used the fact that (I − bb) : (w‖∇b + ∇uE) is small. Explicitly
performing the gyroaverages, the first term vanishes (gyroaverage of an odd power
of w⊥) and the second term gives

ms

∫
d3w W

∂µs

∂ϑ

∂fs

∂µs
=−

∫
d3w

w4
⊥

32
m2

s

BΩs
[w‖B+ U]

∂fs

∂µs
, (B 30)

where the symmetric tensors B and U are given by their components

Bij = εjklbl∇ibk + εjklbl∇kbi + (i↔ j) (B 31)

and

Uij =
c
B
∇i∇jϕ − εiklbk∇l (uE)j + (i↔ j) , (B 32)

respectively.
Finally, the third term in (B 24) is

ms

∫
d3w W

∂ f̃s

∂ϑ
=−ms

∫
d3w

W

Ωs

[(
Ṙs −

〈
Ṙs
〉

R

)
·
∂fs

∂Rs
+ (ε̇s − 〈ε̇s〉R)

∂fs

∂εs

]
−

ms

Ωs

∫
d3w W

〈
δas ·

∂δfs

∂w

〉
turb

. (B 33)

Using the expression (A 14) for Ṙs, we can see that the first term on the right-hand
side of this equation vanishes upon gyroaveraging. For the second term, we have

−
ms

Ωs

∫
d3wW (ε̇s − 〈ε̇s〉R)

∂fs

∂εs
=

m2
s

Ωs

∫
d3wW w⊥w⊥ : ∇uE

∂fe

∂εe
. (B 34)

Whereupon we can perform the gyroaverage as above to obtain

−
1
Ωs

∫
d3wW (ε̇s − 〈ε̇s〉R)

∂fs

∂εs
=−

m2
s

Ωs

∫
d3w

w4
⊥

32
U
∂fe

∂εe
. (B 35)

Collecting these intermediate results, we have that

πs = bh+ hb+
[
I∇2
− 2∇⊥∇⊥

] ∫
d3w

msw4
⊥

16Ω2
s

fs

+
B

32

∫
d3w

m2
s w4
⊥

BΩs
w‖
∂fs

∂µs
+ U

[∫
d3w

m2
s w4
⊥

32Ωs

(
∂fs

∂εs
+

1
B
∂fs

∂µs

)]
+

ms

Ωs

∫
d3wW

〈
δas ·

∂δfs

∂w

〉
turb

. (B 36)

One final manipulation is to integrate by parts where possible to obtain

πs = bh+ hb+
[
I∇2
− 2∇⊥∇⊥

] ∫
d3w

msw4
⊥

16Ω2
s

fs

−
B

4Ωs

∫
d3w

ms

2
w2
⊥

w‖ fs −
p⊥s

4Ωs
U −

ms

Ωs

〈∫
d3wδas ·

∂W

∂w
δfs

〉
turb

. (B 37)
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B.4. The ELM vorticity equation
Let us now simplify the quantity Xs in the vorticity equation for the ELM ordering.
Estimating the size of other terms, we see that we need the final vorticity equation
correct to order O(p⊥/L‖L⊥B). This means we need X to O(p⊥/L‖).

With this ordering, (B 11) becomes

Xs =∇ · πs − nsmsu‖s b · ∇(u‖s b)− u‖s b∇ · (nsmsu‖s b)+ nsmsuds · ∇uE. (B 38)

Examining the form of πs, it can easily be seen that

∇ ·

{
b
B
×∇ ·

[(
I∇2
− 2∇∇

)
λ
]}
=−∇×

(
b
B

)
· ∇∇

2λ, (B 39)

and so the third term in (B 37) does not contribute to (B 38). Similarly terms involving
h or B can be seen to be O(

√
εp⊥/L‖) and so too small to be kept.

Hence, we can substitute from (B 37) into (B 38) to obtain

Xs = −∇ ·

(
p⊥s

4Ωs
U

)
− nsmsu‖sb · ∇(u‖sb)− u‖s b∇ · (nsmsu‖sb)

+ nsmsuds · ∇uE −
ms

Ωs

〈∫
d3wδas ·

∂W

∂w
δfs

〉
turb

+O
(
√
ε

p‖
L‖

)
. (B 40)

We now use this in the definition of X to obtain

b
B
×X=

b
B
×

[
nsmsuds · ∇uE −∇ ·

(
p⊥s

4Ωs
U

)]
− nsmsu2

‖sb× b · ∇b

+
b
B
×∇ ·

(
P2 +

1
4π
〈δBδB〉turb

)
−

b
8πB

b×∇
〈
δB2
〉

turb +O
(
√
ε

p⊥
L‖B

)
,

(B 41)

where we have used the explicit formula for W to evaluate the term involving the
fluctuations and then, as we need to keep only the leading order, substituted v for w
in this expression, before using

P2 =
ms

Ωs

〈∫
d3wWδas ·

∂δfs

∂w

〉
turb

, (B 42)

to write the result concisely.
Taking the divergence of this result, the final term vanishes and the terms involving

the parallel velocity will cancel those on the left-hand side of (B 8). This leaves
us with the expected terms involving fluctuations, and also terms involving the
diamagnetic and E× B velocities. However, it can be shown by direct evaluation in
index notation that

∇ ·

[
b
B
×∇ ·

(
−

p⊥s

4Ωs
U

)]
=−∇ ·

[
b
B
× (uds · ∇uE)

]
+O

(
ε2 p⊥

L2
⊥B

)
. (B 43)

Thus, these terms cancel. This important result is the expression, in our formulation,
of the well-known gyro-viscous cancellation (Hazeltine & Meiss 2003).
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B.5. Turbulent contributions to the vorticity equation
Let us now massage the term involving the fluctuations. The tensor P2 is given
explicitly by,

P2 =
ms

Ωs

〈∫
d3wWδas ·

∂δfs

∂w

〉
turb

, (B 44)

where we have used the fact that
∫

d3v =
∫

d3w and ∂/∂v = ∂/∂w. Integrating by
parts and using the definition of W we have

P2 =
ms

4Ωs

〈∫
d3w [δas⊥w× b+wδas × b+ (↔)] δfs

〉
turb

. (B 45)

Now, we calculate the contribution to the vorticity equation in index notation

∇ ·

(
b
B
×∇ · P2

)
=

ms

4Ωs
∂i∂l

〈
εijkbj

∫
d3w[εkmnbn(δa⊥lw⊥m +w⊥lδa⊥m)+ (l↔ k)]δfs

〉
turb

=
ms

4Ωs
∂i∂l

〈∫
d3w [ (δa⊥lw⊥i +w⊥lδai)

+ εijkεlmnbjbn(δa⊥kw⊥m +w⊥kδam)] δfs

〉
turb

=
ms

4Ωs
∂i∂l

〈∫
d3w[2(δa⊥lw⊥i +w⊥lδai)− (δil − bibl)δas ·w⊥]δfs

〉
turb

. (B 46)

We now attack the second term in the brackets here, which contains at its core the
following gyroaverage 〈

〈δas ·w⊥δfs〉r

〉
turb. (B 47)

The first identity we will need is

δai =−
Zie
mi
∇

(
δϕ −

w‖
c
δA‖
)
−
Ωi

B
v⊥ · ∇δA‖b+O(ε3/2vthiΩs), (B 48)

which can be derived from the definition of δas by direct substitution. We have
specialised to the ions as the electrons do not contribute to the momentum (and thus
vorticity) equation. Inserting this result into our gyroaverage gives〈

〈δas ·w⊥δfs〉r

〉
turb =

〈〈
δfs w⊥ · ∇δχ

〉
turb

〉
r

= ∇ ·
〈
δχ〈w⊥δfs〉r

〉
turb −

〈
δχ〈w⊥ · ∇δfs〉r

〉
turb. (B 49)

Now

w⊥ · ∇δfs =Ωs

(
∂

∂ϑ

∣∣∣∣
Rs,εs,µs

−
∂

∂ϑ

∣∣∣∣
r,w‖,w⊥

)
δfs. (B 50)
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Thus we have

〈
〈δas ·w⊥δfs〉r

〉
turb =

Zse
ms
∇ ·
〈
δχ〈w⊥δfs〉r

〉
turb −

Zse
ms

〈
δϕ

〈
Ωs
∂δf (2)s

∂ϑ

∣∣∣∣
Rs

〉
r

〉
turb

, (B 51)

where we have defined the higher-order piece of δfs by

δfs = Zseδϕ
∂fs

∂εs
+ Zse

(
δχ − 〈δχ〉R

) ∂fs

∂µs
+ hs + δf (2)s . (B 52)

Ωs
∂δf (2)s

∂ϑ
=

〈
∂δfs

∂t

〉
R
−
∂δfs

∂t
− δas ·

∂

∂v
( fs + δfs)+

〈
δas ·

∂

∂v
( fs + δfs)

〉
R

= Zie
∂

∂t
(〈δϕ〉R − δϕ)+

c
B

b×
∂

∂Ri
(〈δϕ〉R − δϕ) ·

∂

∂Ri
( fi + hi)

+O(ε3/2Ωsfi), (B 53)

where in the second line we have specialised to the ion species. Substituting back into
(B 51), we see that〈

〈δai ·w⊥δfi〉r

〉
turb =

Zse
ms
∇ ·
〈
δϕ〈w⊥δfi〉r

〉
turb +O(ε2v2

thi
Ωi). (B 54)

Combining these results together, the leading-order part of (B 46) is given by

$ ≡∇ ·

(
b
B
×∇ · P2

)
= −

∑
s=i

Zie
2Ωi

{
∇∇ :

〈∫
d3w [(∇δϕ)w⊥ +w⊥ (∇δϕ)] δfi

〉
turb

}
. (B 55)

Finally, we show that the fluctuating Maxwell stress is negligible.

∇ ·

(
b
B
×∇ · 〈δBδB〉turb

)
= ∂iεijkbj∂l〈δBlδBk〉turb

= εijkbj∂i∂l
〈
εlmnbm∂nδA‖εkrsbr∂sδA‖

〉
turb

= εlmn(δirδjs − δisδjr)bjbmbr∂i∂l
〈
∂nδA‖∂sδA‖

〉
turb, (B 56)

where we have used the fact that terms involving δB · b and those involving gradients
of b are too small to contribute (these terms are O(ε2p⊥/L2

⊥
B)). Now, using the fact

that br∂r = b · ∇�∇⊥, we have

∇ ·

(
b
B
×∇ · 〈δBδB〉turb

)
= −εlmnbm∂i∂l

〈
∂nδA‖∂sδA‖

〉
turb

= −εlmnbm∂i∂l
(
∂n
〈
δA‖∂sδA‖

〉
turb −

〈
δA‖∂n∂sδA‖

〉
turb

)
= εlmn∂i∂l

〈
∂n∂s

1
2
δA2
‖

〉
turb

= 0. (B 57)

With these results, we see that we do indeed obtain the required vorticity equation
(2.53).
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B.6. The inter-ELM vorticity equation

We now need terms in the vorticity equation to O(ε3/2p⊥/L2
⊥
). Firstly, we note that

the gyroviscous calculation, and the calculation of the fluctuating Maxwell stress are
already accurate to a high enough order; we do not need to revisit them. However,
we now need to go back and handle some extra terms in both Xs and our formula
for πs. Firstly, the terms on the left-hand side of (B 8) involving b · ∇b are

∇ ·
(
nsmsu‖s b · ∇b× us

)
=∇ ·

[
nsmsu‖s b · ∇b×

(
u‖sb+ uds + uE

)]
=∇ ·

[
nsmsu2

‖sb · ∇b× b+ nsmsu‖s (b · ∇b) ·
(
∇p⊥s

nsmsΩs
+

c∇ϕ
B

)
b
]
. (B 58)

We can see that, because of our ordering on b · ∇, only the centrifugal term is large
enough to matter. This will, of course, cancel with terms in Xs as in the previous
calculation.

Returning to (B 11) and retaining all terms, we see that

b
B
×Xs =

b
B
× (∇ · πs)−

nsms

B
u2
‖sb× (b · ∇b)−

nsms

B
u‖s b× (b · ∇uds)

+
∇⊥p⊥s

nsmsBΩs
∇ ·
(
nsmsu‖s b+ nsmsuds

)
+

nsms

B
b× (uds · ∇uE), (B 59)

in which we have used the definition of the diamagnetic velocity. Expanding the third
and fourth terms in this expression it becomes

b
B
×Xs =

b
B
× (∇ · πs)−

nsms

B
u2
‖sb× (b · ∇b)

−
nsms

B
u‖s

[
(b · ∇b) b · ∇p⊥s

nsmsΩs
+ b · ∇

(
∇p⊥s

nsmsΩs

)]
+
∇⊥p⊥s

nsmsBΩs

[
nsmsu‖s∇ · b+ b · ∇

(
nsmsu‖s

)
+∇ ·

(
b×∇p⊥s

Ωs

)]
+

nsms

B
b× (uds · ∇uE). (B 60)

Eliminating terms that are smaller than O(ε3/2p⊥s/BL2
⊥
) and collecting terms together

we obtain

b
B
×Xs =

b
B
× (∇ · πs)−

nsms

B
u2
‖sb× (b · ∇b)

+ b · ∇
(

u‖s∇p⊥s

BΩs

)
+

nsms

B
b× (uds · ∇uE). (B 61)

Ultimately we must handle the remaining terms in ∇ · πs. It can be shown that:

∇ ·

[
b
B
×∇ · (hb+ bh)

]
= −B · ∇

[
1
Ωs
∇

2

(
1

2B2

∫
d3wmsw‖w2

⊥
fs

)]
+O

(
ε2 p⊥s

BL2
⊥

)
. (B 62)
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Similarly,

∇ ·

[
b
B
×∇ ·

(
−

B

4Ωs

∫
d3w

ms

2
w‖w2

⊥
fs

)]
=

msc
2Zse

[
(∇ · b)∇2

− (∇b) : ∇∇
] ∫

d3w
ms

2B2
w‖w2

⊥
fs. (B 63)

Thus, the vorticity equation in the inter-ELM ordering, accurate to O(ε3/2p⊥/L2
⊥

B) is

∇ ·

{∑
s

nsms

B

[
∂

∂t
+ u‖sb · ∇+ uE · ∇

] (
∇p⊥s

nsmsΩs
+

c∇ϕ
B

)}

= ∇ ·

[
−

j‖b
c

(
1− 4π

p‖ − p⊥
B2

)
− p⊥∇×

(
b
B

)
−
∇× b

B
(p‖ − p⊥)

]
−B · ∇

(
∇

2q‖s
B2Ωs

)
+∇ ·

[
b · ∇

(
u‖s∇p⊥s

BΩs

)]
+

1
2BΩs

[(∇ · b)∇2
− (∇b) : ∇∇]q‖s +∇ ·

(
b
B
×∇ · P2

)
, (B 64)

in which we have abbreviated

q‖s =
∫

d3w
msw2

⊥

2
w‖fs. (B 65)

We postpone the flux-surface averaging of this equation to appendix C.

B.7. Gyroaverages
In the previous section we needed to gyroaverage terms like Www. These all stem
from the following identity

〈
w⊥iw⊥jw⊥kw⊥l

〉
r =

w4
⊥

8

(
δ⊥ij δ

⊥

kl + δ
⊥

ikδ
⊥

jl + δ
⊥

il δ
⊥

jk

)
, (B 66)

where

δ⊥ij = δij − bibj, (B 67)

with δ the usual Kronecker delta. The tensor structure of the right-hand side of (B 66)
follows from the absence of a preferred perpendicular direction. The coefficient in
front can be calculated by picking a particular component and using e.g. (cos4 ϑ)=

3/8. We can then perform gyroaverages like

〈Ww⊥w⊥〉r = −1
4 εjmnbn〈w⊥iw⊥mw⊥kw⊥l〉r + (i↔ j), (B 68)

which lead immediately to (B 31) and (B 32).
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Appendix C. Flux-surface-averaged vorticity
Here we take the flux-surface average of the slow time scale vorticity equation

(B 64) to obtain (3.21). The usual expressions for the flux-surface average are needed
(see Dhaeseleer et al. (1991)), namely

〈g〉ψ =
1
V ′

∮
d`dα

B
, (C 1)

where g is an arbitrary function, V ′ is the area of the flux surface in question and
ψ, α, ` are a set of Clebsch coordinates for the field B, and

〈∇ · Y〉ψ =
1
V ′

∂

∂ψ
V ′ 〈Y · ∇ψ〉ψ , (C 2)

with Y an arbitrary vector field. With these identities, we see immediately that〈
∇ ·

[
j‖b
c

(
1− 4π

p‖ − p⊥
B2

)]〉
ψ

= 0, (C 3)

and 〈
∇ ·

(
p‖ − p⊥

B
∇× b

)〉
ψ

=

〈
∇ ·

[
b×∇

(
p‖ − p⊥

B

)]〉
ψ

=
1
V ′

∂

∂ψ
V ′
∮

d`dα
∂

∂α

(
p‖ − p⊥

B

)
,

= 0, (C 4)

where in both we have used only the properties of the flux surfaces, including α-
periodicity, but not used any ordering assumptions. These are identities that hold to
all orders in ε.

Finally we tackle the term〈
∇ ·

(
p⊥∇×

(
b
B

))〉
ψ

. (C 5)

To analyse this term we need the following expression for the perpendicular current,
derived from the exact momentum equation under the inter-ELM orderings

j
⊥
=

c
B

b×∇p⊥ + c
p‖ − p⊥

B
(∇× b− bb · ∇× b)+O

(
√
ε

c
B

p⊥
L‖

)
, (C 6)

which can be trivially rewritten as

j= j‖b
[

1+
4π

B2
(p‖ − p⊥)

]
+

c
B

b×∇p⊥ + c
p‖ − p⊥

B
(∇× b)+O

(
√
ε

c
B

p⊥
L‖

)
. (C 7)

Returning to (C 5) we use the identity

b×∇B= B∇× b−
4π

c
j, (C 8)
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which follows from Ampère’s law to obtain〈
∇ ·

(
p⊥∇×

(
b
B

))〉
ψ

=

〈
∇ ·

[
p⊥

(
∇× b

B
+

b×∇B
B2

)]〉
ψ

=

〈
∇ ·

(
4π

c
p⊥ j
)〉

ψ

, (C 9)

where we have used the same results that lead to (C 4) to eliminate terms containing
〈∇ · (p⊥∇× b/B)〉ψ .

Now, substituting (C 7) into this result, we immediately obtain〈
∇ ·

(
p⊥∇×

(
b
B

))〉
ψ

=

〈
j‖b · ∇

(
4πp⊥
cB2

)〉
ψ

+O
(
εp⊥

BL⊥L‖

)
, (C 10)

where we retain the j‖ term because of our ordering for the shear length as
√

L⊥L‖.
However, from our solution (2.58) for the large part of j‖, we see that this entire
expression becomes〈

∇ ·

(
p⊥∇×

(
b
B

))〉
ψ

=
4πK(ψ)

c

〈
B · ∇

(
4πp⊥
cB2

)〉
ψ

= 0, (C 11)

and so the entire term is small.
Using these identities, the flux-surface average of (B 64) is〈

∇ ·

{∑
s

nsms

B

[
∂

∂t
+ u‖sb · ∇+ uE · ∇

] (
∇p⊥s

nsmsΩs
+

c∇ϕ
B

)}〉
ψ

=

〈
∇ ·

[
b · ∇

(
u‖s∇p⊥s

BΩs

)]〉
ψ

+

〈
1

2BΩs

[
(∇ · b)∇2

− (∇b) : ∇∇
]

q‖s

〉
ψ

+

〈
∇ ·

(
b
B
×∇ · P2

)〉
ψ

, (C 12)

again, with the abbreviation for q‖s.

Appendix D. Derivation of the ballooning equation
In this appendix we demonstrate that our equations for ELM dynamics reduce in

the appropriate limit to the ballooning equation of Tang, Connor & Hastie (1980). The
equations that we will linearise are (2.45) and (2.49) for the distribution functions,
along with (2.47) and (2.53). For the background magnetic field, we will assume that
it has topologically toroidal flux surfaces labelled by ψ – the entire equilibrium
field is contained in B0, there is no equilibrium A‖. We will linearise around
Maxwellian equilibria for both ions and electrons, with the density and temperature
of the equilibria being flux functions. Consistently, we will assume that there is no
equilibrium ϕ.

We chose a form for our fluctuating quantities that parallels that in Tang et al.
(1980), but simplifies our notation. We will assume we are linearising in a local
flux tube (Beer et al. 1995) and so every fluctuating quantity can be expressed in
a Fourier series perpendicular to the field line, with a wave vector k⊥. The wave
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vector is assumed to be large so that k⊥L⊥� 1, and we really are looking at a local
perturbation. This is appropriate for a ballooning mode as we know that the most
unstable mode occurs for n→∞, where n is the toroidal mode number. Naturally, we
assume exponential time dependence with frequency ω. We also define the following
auxiliary frequencies to parallel the definitions in Tang et al. (1980):

ω∗s =
cTs

ZseB
b× k⊥ · ∇ ln ns, (D 1)

ωT
∗s =ω∗s

[
1+ ηs

(
msv

2

2Ts
−

3
2

)]
, (D 2)

with ηs, ω∗p, ωκ and ωB defined exactly as in Tang et al. (1980).
Let us start by linearising and solving the ion kinetic equation (2.49) to obtain:

δfi =−
ωT
∗i

ω

Zieδϕ
Ti

fi. (D 3)

Hence, the perturbed ion pressure is isotropic and given by

δpi =−pi
ω∗

ω
(1+ ηi)

Zieδϕ
Ti

. (D 4)

We now linearise the electron kinetic equation (2.45), resulting in

−iωδfe +w‖b ·
∂δfe

∂Re
+

ic
B

b× k · ∇f0eδϕ − ew‖

(
b · ∇δϕ +

1
c
∂δA‖
∂t

)
f0e

Te

−w‖b×∇δA‖ · ∇f0e =CL
[
δfe
]
, (D 5)

where CL [·] is the collision operator linearised about the Maxwellian equilibria. To
solve this equation we need to do two things. Firstly, as is usual in linear calculations
we introduce a new field ξ defined by

1
c
∂δA‖
∂t
= b · ∇ξ . (D 6)

Note, this representation is not in general possible, but because we are dealing with
perturbations that have non-zero n, neither δA‖ nor ξ can have non-zero toroidal
averages, and so this representation is both unique and well defined. Secondly, in
order to make contact with equation (3.40) of Tang et al. (1980), we will need
to assume that the electron transit and frequencies are large compared to the
frequencies of interest, and to self-consistently neglect trapped-particle effects we
take νee ∼ vthe/L‖ � ω. Using this subsidiary ordering, we can immediately solve
(D 5) to find

δfe =

[
eδϕ
Te
+

eξ
Te

(
1−

ωT
∗e

ω

)]
fe +O

(
ω

k‖vthe

)
. (D 7)

Unfortunately, this solution satisfies the linearisation of (2.47) identically. Thus, we
need to go to the next order in ω

/
k‖vthe to obtain a relationship between δϕ and ξ .
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This is most rapidly done by simply integrating (D 5) over all velocities and using the
fact that any parallel velocity in δfe must vanish:

−iωδne +
ic
B

b× k · ∇neδϕ = 0. (D 8)

Using the lowest-order solution for δne above, we obtain

(δϕ + ξ)
(

1−
ω∗e

ω

) e
Te
= 0. (D 9)

Thus,

δϕ =−ξ . (D 10)

This is just the usual condition of δE‖ = 0, which always obtains when the electron
diamagnetic corrections to Ohm’s law can be neglected due to rapid electron motion.

Turning now to the vorticity equation, we can drop all terms involving pressure
anisotropy, and thus we have

∇ ·

[
nimi

B
∂

∂t

(
∇δpi

nimiΩi
+

c
B
∇δϕ

)
+

cnimi

B2
b×∇δϕ · ∇

(
∇pi

nimiΩi

)]
= ∇ ·

[
−

j‖b
c
− (δpi + δpe)∇×

(
b
B

)]
. (D 11)

Now, for consistency with the Tang et al. (1980) approach, we will furthermore
assume ρ2

i /LnLT�ω/Ωi which allows us to drop the final term on the left-hand side
of (D 11). This is in fact a consequence of our local assumption – if ω∼ω∗ then

ωLnLT

ρ2
i Ωi
∼ k⊥LT� 1. (D 12)

We will also lean on the local approximation on the right-hand side of (D 11) and
assume that k⊥Ls� 1, where Ls is the shear length; thus eliminating the kink drive
(i.e. δb · ∇j‖0) from (D 11).

With these approximations we obtain

iωniTi

BΩi
k2
⊥

[
1−

ω∗i

ω
(1+ ηi)

] Zieξ
Ti

= −
1

4π
B · ∇

(
k2
⊥

ci
ωB

b · ∇ξ
)
− i

miniΩi

B

(
2ωκ +

βi

2
ω∗p

)
ω∗p

ω

Zieξ
Ti
, (D 13)

where we have used

k⊥ · ∇×
(

b0

B0

)
=

miΩi

BTi

(
2ωκ +

βi

2
ω∗p

)
. (D 14)

Rearranging (D 13) and multiplying by 4πTiω/iZieΩiB, we obtain

1
B

b · ∇(biBb · ∇ξ)=−
ω2

v2
A

bi

[
1−

ω∗i

ω
(1+ ηi)

]
ξ −

1
v2

A

(
2ωκ +

βi

2
ω∗p

)
ω∗pξ, (D 15)

where we have used the fact that b · ∇Ti = 0 and introduced the notation b= k2
⊥
ρ2

i /2.
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Inserting explicit geometric expressions for b · ∇, and dropping the βi term, (D 15)
matches the first line of (3.40) of Tang et al. (1980). The second line of the ballooning
equation in Tang et al. (1980) is small in our ordering, because ω∗/ωκ ∼ Ln/R� 1.
Taking the JET-ILW pedestals from Hatch et al. (2017) as typical, then R/Ln & 50 in
the pedestal region.

Hence we see that both formulations capture the key physics of ballooning modes,
with our model retaining more electron and finite-β physics, and the model of Tang
et al. (1980) retaining plasma compressibility effects (the final term in 3.6 and 3.40
of that paper).

Appendix E. Derivations for the inter-ELM equations
In this appendix, we perform the derivations required for the inter-ELM equations.

E.1. Electron behaviour on the slow time scale
In this section we discuss the possible solutions to the lowest-order electron kinetic
equation, under the inter-ELM orderings. Taking (2.25) for the electrons, and applying
the inter-ELM orderings, we see that the largest terms are those involving electron
velocities:

w‖b · ∇fe + ew‖b · ∇ϕ
∂fe

∂εs
=C

[
fe
]
. (E 1)

We multiply this by 1+ ln fe, and integrate over all velocities to obtain

∇ · (b
∫

d3v w‖fe ln fe)=

∫
d3v ln feC

[
fe
]
, (E 2)

where we use the fact that fe→ 0 implies fe ln fe→ 0 at high energies. We will now
assume that the magnetic field has good flux surfaces, at least to some approximation.
Then, averaging over these surfaces, and applying the H-theorem for the nonlinear
collision operator, we obtain Maxwell–Boltzmann electrons

fe =
Ne(ψ)

π3/2v3
the

e−εe−eϕ/Te(ψ), (E 3)

where Ne and Te are flux functions. The parameter Ne is related to the electron density
ne by

Ne(ψ)= nee−eϕ/Te . (E 4)

We can rewrite this equation as

b · ∇
(

Te

e
ln ne − ϕ

)
= 0. (E 5)

Note that because the induced parallel electric field is small compared to the
electrostatic field there is a field-line preserving flow (Newcomb 1958; Abel &
Cowley 2013). Thus, the assumption of good magnetic surfaces is consistent – if we
assume that they exist initially for some time then they will be preserved by this flow.
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Going to the next order in
√
ε, we expand fe= f (0)e + f (1)e + · · · where f (1)e ∼

√
εf (0)e

and so forth. Using this expansion, we obtain the kinetic equation(
∂

∂t
+ uE ·

∂

∂Re

)
f (0)e +w‖b · ∇f (1)e + ew‖

(
b · ∇ϕ(1) +

∂A‖
∂t

)
∂f (0)e

∂εe

+ ew‖b · ∇ϕ
∂f (1)e

∂εs
+

〈〈
δae ·

∂δfe

∂v

〉
turb

〉
R
=CL

[
f (1)e

]
+ Se. (E 6)

Integrating this over all velocities we obtain(
∂

∂t
+ uE · ∇

)
ne +∇ · (bu‖ene)+∇ ·

〈∫
d3v
〈
Vχ

〉
Rδfe

〉
turb

= S(n)e , (E 7)

where we have used (E 23) for the fluctuations, and introduced

u‖e =
∫

d3v w‖f (1)e , (E 8)

because there is no electron parallel velocity in f (0)e .
If we multiply (E 6) by (εe/Te− 3/2) and integrate over all velocities we find that

3
2

(
∂

∂t
+ uE · ∇

)
neTe +∇ ·

〈∫
d3v

(
εe

Te
−

3
2

) 〈
Vχ

〉
Rδfe

〉
turb

= eneu‖e b · ∇ϕ +
〈

e
(

b · ∇δϕ +
1
c
∂δA‖
∂t

)
δu‖e

〉
turb

−∇ ·

(
q(1)‖e b

)
+ S(E)e , (E 9)

where again we have used (E 23) for the fluctuations, and q(1)‖e is a moment of f (1)e
which is not solved for. As Te is a flux function, we average this equation over the
flux surfaces to finally obtain

3
2

〈(
∂

∂t
+ uE · ∇

)
neTe

〉
ψ

+

〈
∇ ·

〈∫
d3v

(
εe

Te
−

3
2

) 〈
Vχ

〉
Rδfe

〉
turb

〉
ψ

=
〈
eneu‖e b · ∇ϕ

〉
ψ
−
〈〈

eδE‖δu‖e
〉

turb

〉
ψ
+
〈
S(E)e

〉
ψ
. (E 10)

E.2. Pedestal gyrokinetic turbulence
In this section, we derive the equations governing the turbulence in the pedestal. To
obtain the equations for the inter-ELM turbulence, we take the fluctuating part of the
fundamental kinetic equation, written in Catto-transformed variables(

∂

∂t
+ Ṙs ·

∂

∂Rs
+ ε̇s

∂

∂εs
+ ϑ̇

∂

∂ϑ

)
δfs + δas ·

(
∂fs

∂v
+
∂δfs

∂v

)
=CL[δfs]. (E 11)

The leading order of this equation is

Ωs
∂δfs

∂ϑ
=−δas ·

∂fs

∂v
=

Zse
ms

v⊥ · ∇δϕ
∂fs

∂εs
+

Zse
ms

v⊥ · ∇δϕ
∂fs

∂µs
, (E 12)

whose solution can be written as

δfs = hs(Rs, εs, µs, t)+ Zseδϕ
∂fs

∂εs
+ Zse(δϕ − 〈δϕ〉R)

∂fs

∂µs
, (E 13)
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where we have split out part of the gyrophase-independent piece to more closely
mirror other derivations.

Substituting this back into (E 11) and gyroaveraging gives[
∂

∂t
+
(
w‖b(Rs)+ uE

)
·
∂

∂Rs

]
hs +

〈
δas ·

∂δfs

∂v

〉
R

= Zse
∂fs

∂εs

(
∂

∂t
+ uE ·

∂

∂Rs

)
〈δχ〉R −

c
B

b×∇〈δχ〉R · ∇fs

+〈CL [hs]〉R +O(εΩshs), (E 14)

where we have used explicit forms for the time derivatives, written fs= fs(Rs, εs, µs, t)
and used the chain rule. By exactly the same manipulations as we use in the next
section for the nonlinear term in the transport equations, we can show that〈

δas ·
∂δfs

∂v

〉
R
=

c
B

b×∇〈δχ〉R ·
∂hs

∂Rs
. (E 15)

All that remains to derive the gyrokinetic equations in § 3.3 is to specialise the
above results to electrons and ions. The field equations follow immediately from the
fluctuating parts of quasineutrality and Ampère’s law.

E.3. Turbulent transport in the pedestal
To derive the terms involving the fluctuations in the inter-ELM equations, we need
the following results. Firstly, the nonlinear term in the averaged kinetic equation is〈〈

δas ·
∂δfs

∂v

〉
turb

〉
R
, (E 16)

and so in order to perform the gyroaverage, we need to convert the velocity derivative
into a derivative of the gyrokinetic variables. We require this term up only to
O(vthi fs/L‖) and will systematically neglect any higher-order terms. We first do this
for the non-adiabatic part of the distribution function:〈〈

δas ·
∂hs

∂v

〉
turb

〉
R

=

〈〈
δas ·

∂Rs

∂v
·
∂hs

∂Rs
+msδas · v

∂hs

∂εs
+

ms

B
δas · v⊥

∂hs

∂µs

〉
R

〉
turb

. (E 17)

Using the explicit form of the fluctuating acceleration, we see that

〈δas · v〉R =−
Zse
ms

w‖〈b · ∇δϕ〉R, (E 18)

and

〈δas · v⊥〉R = 0, (E 19)

where we have used 〈v⊥ · ∇δG〉R = 0 for any fluctuating field δG that is independent
of gyrophase at fixed r (see (A.4) of (Abel et al. 2013)).
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These results are then substituted back into (E 17) to arrive at〈〈
δas ·

∂hs

∂v

〉
turb

〉
R
=

〈
1
Ωs
〈δas〉R · b×

∂hs

∂Rs

〉
turb

−
Zse
ms

w‖

〈
〈b · ∇δϕ〉R

∂hs

∂εs

〉
turb

. (E 20)

If we also use

〈δas〉R =−
Zse
ms
∇

〈
δϕ −

1
c

w‖δA‖

〉
R
, (E 21)

then we obtain〈〈
δas ·

∂hs

∂v

〉
turb

〉
R
=

〈〈
Vχ

〉
R ·
∂hs

∂Rs

〉
turb

−
Zs

ms
w‖〈〈b · ∇δϕ〉R〉turb. (E 22)

To find a full expression for the original nonlinear term, we need to also handle the
Boltzmann-like pieces of δfs.

For the electrons this is simple, and we obtain〈〈
δae ·

∂δfe

∂v

〉
turb

〉
R
=

〈
Vχ ·

∂hs

∂Rs

〉
turb

+
e

me
w‖

〈
b · ∇δϕ

∂hs

∂εs

〉
turb

, (E 23)

where gyroaverages have been removed as the electron gyroradius is smaller than all
scales of interest. The first term will vanish when summing over the signs of w‖ and
so does not appear in any resulting equations.

For the ions, we can neglect terms involving w‖ as they are small in the mass ratio
compared to the same terms for electrons. Thus we have〈〈

δai ·
∂δfi

∂v

〉
turb

〉
R
=

〈
c
B

b×∇〈δϕ〉R ·
∂hi

∂Ri

〉
turb

, (E 24)

because all the non-adiabatic pieces only contain terms proportional to δϕ, which
vanish under the turbulence average.

Appendix F. Matching to multiscale gyrokinetics
In this appendix we detail how our inter-ELM transport equations can be matched at

the top of the pedestal to multiscale gyrokinetics. We will demonstrate that there exists
a subsidiary expansion of multiscale gyrokinetics and a different subsidiary expansion
of our inter-ELM equations that both result in the same system of equations. In the
main text we have explained the concepts behind these subsidiary orderings, and
provided the orderings themselves. Thus, all that remains is to actually perform the
subsidiary expansions.

F.1. Subsidiary expansion of multiscale gyrokinetics
In this section we now apply the ordering from § 4.2 to the low-Mach-number
equations of Abel et al. (2013) (henceforth in this appendix we will refer to this
as paper I, and refer to equations in that reference with a prefix I-). Consistently
with the ordering discussed in § 4.2, we drop all flow-related terms, either because
they are small, or because their shear is small and so they can be removed by a
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Galilean transformation. Taking (I-248) and retaining the leading order in ξ , the
gyrokinetic equation for ions is,

∂hi

∂t
+

c
B

b×∇〈δϕ〉R ·
∂hi

∂Rs
− 〈CL [hi]〉R

=
ZieF0i

Ti

∂〈δϕ〉R

∂t
−

c
B

b×∇〈δϕ〉R · ∇ψ
∂F0s

∂ψ
, (F 1)

where we have used the definition (I-250) of χ and the orderings for the magnetic
field to replace χ with δϕ in this equation. For electrons, we have

∂he

∂t
+

[
v‖ (b+ δb)+

c
B

b×∇δϕ
]
·
∂he

∂Rs
−CL [he]

= −
eF0e

Te

∂χ

∂t
−
∂F0s

∂ψ

c
B

b×∇χ · ∇ψ, (F 2)

where here we have been able to drop all gyroaverages because k⊥ρe∼ ξ�1. Because
of the ordering of δB‖, χ is now given by the simpler form

χ = δϕ −
v‖

c
δA‖. (F 3)

As the flow is subsonic, we have replaced w‖ ≈ v‖ in these expressions. In addition,
we have the field equations (I-251) and (I-149)

∑
s

Z2
s e2nsδϕ

Ts
=

∑
s

Zse
∫

d3w〈hs〉r (F 4)

and

−∇
2
⊥
δA‖ =

4π

c

∑
s

Zse
∫

d3wv‖〈hs〉r, (F 5)

which determine δϕ and δA‖ respectively.
Turning now to the transport equations, we first have (I-252), for particle transport

1
V ′

∂

∂t

∣∣∣∣
ψ

V ′ns +
1
V ′

∂

∂ψ
V ′ 〈Γs〉ψ =

〈
S(n)s

〉
ψ
, (F 6)

in which we have not dropped any terms, because the time scale of the sources and
the evolution of the equilibrium is defined by the turbulent transport time. So all terms
are of the same order in ξ by definition. However, evaluating the terms in the particle
flux (I-170) gives

〈Γs〉ψ =

〈〈∫
d3w
〈
hs Vχ

〉
r · ∇ψ

〉
turb

〉
ψ

, (F 7)

where we have dropped both collisional transport terms as they are O(νssρ
2
s |∇ψ |/L⊥),

and we have dropped the electric field term as 〈E ·B〉ψ is small in the mass ratio
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(see appendix C of Abel & Cowley (2013)). Secondly, we have the pressure evolution
equation (I-254):

3
2

1
V ′

∂

∂t

∣∣∣∣
ψ

V ′ps +
1
V ′

∂

∂ψ
V ′ 〈qs〉ψ = Pcomp

s + Pturb
s +

〈
S(E)s

〉
ψ
, (F 8)

where again we have dropped the flow related terms, including the viscous heating,
because the shearing rate is small, and the ohmic heating is dropped because 〈E ·B〉ψ
is small in the mass ratio. Similarly, the collisional energy exchange term is small. The
heat flux is now

〈qs〉ψ =

〈〈∫
d3wεs

〈
hsVχ

〉
r · ∇ψ

〉
turb

〉
ψ

, (F 9)

and the turbulent heating is given by (I-259):

Pturb
s = Zse

〈〈∫
d3w
〈

hs

(
∂

∂t
+ u · ∇

)
χ

〉
r

〉
turb

〉
ψ

= Pdiss
s − Pdrive

s . (F 10)

Examining the size of the terms in this formula, we immediately see that the
turbulent heating occurs on a rate

Pturb
s ∼

ε3

ξ 3
Ωi, (F 11)

one order in ξ too small to appear in our transport equation. This is due to the
fact that the rate of perpendicular transport is enhanced by a power of ξ due to the
decreasing distance L⊥ over which transport has to occur, whilst both terms benefit
from the increased amplitude and frequency of the turbulence.

At this point we have to make an assumption on the background magnetic field. We
will assume that ψ does not change by O(1) on the transport time scale – this is for
consistency with our β ordering. Thus, we order

∂ψ

∂t
∼ ξ

ψ

τE
. (F 12)

Applying this ordering means that we drop the compressional heating term Pcomp
s from

(F 8). Thus, there are no heat sources in our transport equation save for the explicit
source.

F.2. Subsidiary expansion of inter-ELM equations
Now we turn to obtaining the same equations from the inter-ELM system. We apply
our subsidiary ordering first to (3.20) to find

b · ∇ϕ =−
Te

e
b · ∇ ln ne =O

(
ζ
ϕ

L‖

)
, (F 13)

so, to lowest order in ζ , ϕ = ϕ(ψ). Then the ion kinetic equation (3.17), to lowest
order in ζ , becomes

w‖b · ∇fi =C
[

fi
]
. (F 14)

https://doi.org/10.1017/S0022377818000326 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818000326


50 I. G. Abel and A. Hallenbert

The general solution of this equation is, by the usual arguments, a stationary
Maxwellian, with no parallel flow (i.e. u‖i � vthi). In addition, the ion densities
and temperatures are functions only of ψ .

Examining parallel Ampère’s law, we see that

e

(
neu‖e −

∑
s=i

Ziniu‖i

)
=O

(
enevthi

βρi

Ls

)
, (F 15)

and so, as the shear length Ls gets longer as ζ−1, we have that the electron parallel
flow is also small in ζ relative to the ion sound speed. Again, the electron density
is now a flux function to lowest order in ζ . This in fact holds to two orders in ζ as
we can iterate (F 13) to show ϕ is a flux function to O(ζ 2), assume axisymmetry and
repeat the above argument.

As the ions are Maxwellian, we can integrate (3.17) over all velocities to find a
continuity equation equivalent to (3.14) for the electrons. Flux-surface averaging any
one of these continuity equations, we obtain

1
V ′

∂

∂t

∣∣∣∣
ψ

V ′ns +
1
V ′

∂

∂ψ

〈〈∫
d3w
〈
hs Vϕ

〉
r · ∇ψ

〉
turb

〉
ψ

=
〈
S(n)s

〉
ψ
, (F 16)

where we have used identities from section 3.4 of I for the flux-surface averages. This
is the same transport equation as we obtained from gyrokinetics.

Multiplying (3.17) by εs − 3Ts/2, and integrating gives us the following heat
transport equation

3
2

〈(
∂

∂t

)
niTi

〉
ψ

+

〈
∇ ·

〈∫
d3v

(
εi

Ti
−

3
2

) 〈
Vχ

〉
Rδfi

〉
turb

〉
ψ

= 〈S(E)i 〉ψ , (F 17)

which, upon using the usual identities for the flux-surface average becomes the
gyrokinetic heat transport equation. Similarly, taking (3.16) and using our solution for
the mean potential and the electron parallel velocity, we arrive at the same equation.
Thus, all heat transport equations match.

However, we still need to show that the equations governing δϕ and hs are also the
same. Using our Maxwellian solution for fi in (3.23), we have that

∂hi

∂t
+

c
B
{〈δϕ〉R , hi} =

Zie
Ti

∂〈δϕ〉R

∂t
−

c
B

b×∇〈δϕ〉R · ∇ψ
∂fi

∂ψ
, (F 18)

where we have used the fact that the differences between the energy variable used
here and the one defined by (I-241) are all negligible in ζ . Similarly the distinction
between the exact µs that we use here and the lowest-order one used in paper I can
also be ignored. We have also used the fact that we can transform the mean flow out
of this equation due to its low shear. For the electrons there is no such difficulty, there
are no flow terms in (3.25) and it is already in exactly the same form as the equation
derived from gyrokinetics. The field equations also trivially match in this limit. Thus,
we have proved what we set out to. The two subsidiary expansions given in § 4.2
result in identical sets of equations for the pedestal top region.
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