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SEPARATING CLOSED SETS BY CONTINUOUS 
MAPPINGS INTO DEVELOPABLE SPACES 

HARALD BRANDENBURG 

1. Introduction. A topological space X is called developable if it has 
a development, i.e., a sequence (s/n)ne^ of open covers of X such that 
for each x G X the collection {St (x,s/n)\n G N) is a neighbourhood 
base of x, where 

St (x , j / n ) = U [A\A esfnyx G A] [2]. 

This class of spaces has turned out to be one of the most natural and 
useful generalizations of metrizable spaces [23]. In [4] it was shown that 
some well known results in metrization theory have counterparts in the 
theory of developable spaces (i.e., Urysohn's metrization theorem, the 
Nagata-Smirnov theorem, and Nagata's "double sequence theorem"). 
Moreover, in [3] it was pointed out that subspaces of products of 
developable spaces (i.e., ^-completely regular spaces) can be character
ized in much the same way as subspaces of products of metrizable spaces 
(i.e., completely regular TYspaces). In particular it was proved that a 
topological space X is D-completely regular if and only if every closed 
subset A of X and every point x £ X\A can be separated by a con
tinuous mapping into a developable 7Vspace (see [5], [10], [11] and [17] 
for more results concerning D-completely regular spaces). 

These observations suggest the question whether it is possible to work 
out an interesting concept of normality related to developable spaces. It 
is the aim of this paper to introduce such a concept. In Section 2 we 
prove the following theorem: 

THEOREM 1. The following conditions are equivalent for a topological 
space (X, T) : 

(1) For every pair A, B of disjoint closed subsets of X there exists a pair 
F, G of disjoint closed G&-sets such that A C F and B C. G. 

(2) For every finite open cover S^ of X there exists a finite open Fa-cover 
38 of X (i.e., each B £ 38 is an open Fa-set) which refiness$. 

(3) For every finite open covers^ of X there exists a developable topology 
T' C r and a T-open cover 38 of X which refines se'. 

(4) For every pair A, B of disjoint closed subsets of X there exists a 
continuous mapping f:X—*Y into a developable Tyspace Y such that 
c l / M ] n c l / [ £ ] = 0. 
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We call a topological space D-normal if it satisfies one of the equivalent 
conditions (l)-(4) of Theorem 1. Obviously every normal topological 
space and every developable space is D-normal. Condition (1) implies 
that o--spaces, semistratifiable spaces, and, more generally, perfect spaces 
are D-normal. In particular, every countable product of the Sorgenfrey 
line is D-normal [9]. On the other hand there exist completely regular 
TVspaces which are not D-normal (see for instance [21], Example 94). 

In Section 3 we prove several other interesting characterizations of 
D-normal spaces. The last two sections contain results concerning 
hereditarily D-normal spaces and subspaces, products, and continuous 
images of D-normal spaces. Throughout this paper no separation axioms 
are assumed unless explicitly stated. 

2. Proof of theorem 1. We call an open cover s/ of a topological space 
an Fa-cover if every A G se is an open /vset . If s/i, . . . ,s/n are open 
covers of a topological space, then s/x A . . . A s/n denotes the open 
cover consisting of all finite intersections A± C\ . . . C\ An) where 
A\ G J&i, . . • , An G s/n. To simplify the proof of Theorem 1 we introduce 
the following notation. If p is a family of open covers of a topological 
space X and B C X, we define 

int/s B = {x\ x G B, St (x, %) C B for some ci G p\. 

For an open c o v e r t of X we define 

int/s $t = [intpA\A G j / } . 

The family (3 is called kernel-normal if for each 38 G /3 there exists a 
£ë' G P which refines int? 3!. An open cover stf of X is called kernel-
normal if it is a member of a kernel-normal sequence of open covers of X. 

It is easy to see that every normal open cover (as introduced by 
J. W. Tukey [22]) of a topological space is kernel-normal. While it is 
well known that normality of open covers implies the existence of certain 
pseudo-metrizable topologies on a given space, the following proposition 
shows that kernel-normality yields developable topologies. 

PROPOSITION 1. An open cover (A (i))i<zi of a topological space (X, r) is 
kernel-normal if and only if there exists a developable topolfigy r C r and 
a r'-open cover (B(i))iei of X such that B(i) C A{i) for each i G I. 

Proof, Assume first that.-Q^ = (A(i))iei is kernel-normal. Then there 
exists a kernel-normal sequence 3 of open covers of X such that , s / G p. 
Denote by /x the collection consisting of all open coverss/ \ A . . . A s/n} 

n G N, w h e r e a t G P for each i G {1, . • . , n). It is easy to see that 

/ = {U\ U C X, intM U = U) 

is a topology on X such that r ' C r. We claim that (X, r ') is developable. 
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To prove this assertion it suffices to verify the following fact: 

(*) For each -^ G \i the collection intM ^ is a r'-open cover of X. 

In fact, since M is countable, (*) implies that {intM tâ>\$? G M} is a 
development of (X, T'). 

To verify (*) consider an a r b i t r a r y ^ G \x. There e x i s t a i , . . . ,s/n G 0 
such that J4? = s/\ A . . . A se n. At first we show that intM J ^ is a cover 
of X. Since 0 is kernel-normal, intp&Zj is a cover of X for each j G 
{1, . . . , w}. Thus, given an arbitrary point x of X, there exist Ai G j / i , 
. . . , An G ^ n such that 

x G int/3 ̂ 4i H . . . H infy -4n-

For each j G {1, . . . , »} there is a ^ y G P such that St (x, ^%) C ^ r 
Hence 

St (x, &! A . . . A #») C .4i n . . . n An, 

i.e., x G intM H where i7 = <4i C\ . . . P\ An G ^ . 
Next we prove that for each H G ^ , intM i7 is /-open, i.e., that 

intM H C intM (intM i J ) . 

Consider an arbitrary H G $F and a point x G intM i7. There exist 
<£%, . . . , $k G jS such that 

St (x, (fx A . . . A <f*) C f f . 

Since p is kernel-normal, there is a n J ^ G 0 for each j G {1, . . • , k} such 
that Ĵ ~7 refines int/s <?%. We claim that 

St ( x , J S A . . . A#~*) Cmt»H. 

In fact, if z G St ( x , ^ ! A . . . A^"*) , then there exist Ei G <^i, . . . , 
Ek £ (tfjc such that 

x, 2 G int/3 £ i H . . . H int/3 E*. 

For each j G {1, . . . , &} there is a ^ G /3 such that St (x, ^ , ) C E,. 
Now 

St (z, ^ i A . . . A &K) C E I H . . . n E* 

C S t ( x , S)
1 A . . . A <f*) C # , 

which proves that s G intM H. Hence we have shown that 

St (x,#~i A ... A^JC) C int„ H, 

i.e., x G intM (intM H), which completes the proof of (*). 
Define now B(i) = intM A (i) for each i G I. Sinces/ belongs to /x, (*) 

implies that {B{i))iU is a / -open cover of X with the desired property. 
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For the proof of the reverse implication assume that there exists a 
developable topology r' C r and a r'-open cover 38 of X which refines 
s/. Let (J^n)nçN be a development of (X, rf). Then 0 = {s/} \J 
{s/n\ n G N} is a kernel-normal sequence of r-open covers of X con
t a i n i n g ^ , which completes the proof. 

Remark. As outlined in [3], Proposition 1 can be proved more elegantly 
using nearness structures as introduced by H. Herrlich [12]. For the 
sake of simplicity, however, we have given a direct proof. 

PROPOSITION 2. If ii is a collection of open covers of a topological space 
X such that 

(i) J / , 38 G M implies se A 38 G M, 
(ii) for eachs/ G \x there exists a sequence fi = (s/n)n^ in /x and an 

n G N such thats/n refines mtps/, then every se G /x is kernel-normal. 

Proof. Consider an a r b i t r a r y ^ G /x. For technical reasons we define 
c9/(o,n) = {^} f° r e a c n w G N. Using complete induction and conditions 
(i) and (ii) it is easy to verify that for each K N there exists an open 
covers/(ktk) G JU and a sequence ($(k) = C-^(k,n))n>k in M such that 

(a) s/ = j / ( i , i ) andj/cA.t) = ^u- i ,* ) for each * > 1; 
(b) £/&,*+!) refines mtp(k)s/(k>k) for each k G N; 
(c)^(*,n) refiness/(k_1>n) for each K N and for each n ^ k. 

We define J = (-o/ot,*))*^ and claim that £ is kernel-normal. To prove 
this assertion we note that in t^) A C int$ A for every subset A of X 
and for each K N. For if x G in t^) A, there exists an n > k such that 

St (x,s/(n,k)) C A 

Condition (c) implies that 

St (xts/iniH)) C S t ( * , j / 
(n— l,w) 

) C . . . C St (x,s/(ktn)). 
Therefore x G int^^l. In particular, it follows that intp(k).$/(ktk) refines 
intf s/{ktk) for each k G N. By virtue of (a) and (b) s/(k+1<k+1) = <$/iktk+1) 

refines mtp(k)<£/(k>k). Hences/ i k+i t k+D refines mt^s^f{k)k) for each k G N, 
which proves that ? is kernel-normal. Since J / G £, the proof is complete. 

Proof of Theorem 1. (1) implies (2): We use induction to prove that 
every finite open covers / = {-4(1), . . . , A{k)) oi X has a finite open 
^-refinement. If k ^ 2, the assertion follows directly from the assump
tion. Now suppose that k > 2 and that every open cover of X with 
cardinality less than k has a finite open ^-refinement. We may assume 
that no proper subcollection of s/ covers X. Then there exists an open 
Tvcover {F(l), F(2)} such that 

F(l) CA(1) and F(2) C U {4(i) | i G {2, . . . , &}}. 
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Similarly there exists an open Tvcover {G(l), G(2)} such that 

G(l) C F(l) U U U « | * G {3, . . . , k}} and G(2) C 4 ( 2 ) . 

It is easy to see that \F(1) U G(l) , 4 ( 3 ) , . . . , A (k)} is a cover of X. 
Therefore there exists an open Tvcover {£7(2), . . . , £/(&)} of X such 
that £7(2) C F( l ) U G(l) and J7(i) C 4 (i) for each i£ {3, . . . , *} . 
Since {F(l)t G(2), £7(3), . . . , £7(&)} is an open ^-refinement of J / , the 
induction is complete. 

(2) implies (3): Let /x be the collection of all finite open covers of X. 
By virtue of Proposition 1 it suffices to show that each se G M is kernel-
normal. Hence, by Proposition 2, it remains to prove that for each 
s/ G /x there exists a sequence /3 = (stfn)nçs in /* and an n G N such 
that S$n refines int^ se. 

Consider an arbitrary s/ G M- Assuming (2) there exists an open 
refinement 3S = {5(1 ) , . . . , £(&)} of J / such that 

J3(i) = U {B(i, n)\ n G N} for each i G {1, . . . , *} , 

where every B(i, n) is a closed subset of X. For each n G N we construct 
an open cover J ^ of X as follows. If 

x G Z(n) = U {B(i,n)\ i G {1, . . . , *}}, 

define 

4 (x , n) = C\ {B(i)\ i£ {1, . . . , &},x G £ ( i , w)} 

\ U {B(i,») | i G {1, . . . , * } , * G B( i ,» )} . 

Every A (x, w) is an open subset of X containing x. Therefore 

sfn = {B(i)\X(n)\ie { 1 , . . . , * } } \J{A(x,n)\x G * (* )} 

is an open cover of X which can easily be seen to be finite, i .e. ,s/n G M 
for each n G N. It suffices to prove that s/x refines intp stf, where 
/3 = (^»)»€N. 

Obviously j / i refines ^ and infy S8 refines intp s/. Therefore it 
remains to prove that 3$ = in fy^ , i.e., that B(i) C \nt$B(i) for each 
i G {1 , . . . , & } . Consider a fixed 5 (i0) G â? and a point x G B(i0). There 
exists an n G N such that x G B (i0l n). We claim that St ( x , J ^ ) (ZB(i0). 
To prove this assertion we consider an arbitrary point z G X{n) such 
that x G A(z, n). For each i G {1, . . . , k} such that x G B(i, n) we have 
s G B(i, n), for otherwise we would have 

* 6 B ( i , » ) C U { B ( i , » ) | iÇ {1, . . . ^ 1 , 2 ^ ( ^ ) 1 CX\A(z,n), 

which is impossible. Therefore 

A(z,n) C H {B(i)\ i G { 1 , . . . , * } , * G B(i, »)} 

C n {B(i ) | i G {! , . . . , ^},x G J3(î,n)} C 5 ( i o ) . 
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Since 

St (x,s/n) = U {A(z,n)\ z 6 X(n),x € 4 ( z , » ) | , 

it follows that St (x,s/n) C B(i0)y i.e., # G int^I^'o). 
(3) implies (4): Consider a pair A, B of disjoint closed subsets of X. 

Assuming (3) there exists a developable topology rf C r and a r'-open 
cover of X which refines {X\A, X\B}. Let / : (X, r') -> F be the 7> 
identification of (X, r') (i.e., F is the quotient space of (X, r') with 
respect to the equivalence relation "x T y if and only if x has the same 
/-neighbourhoods as y"). T h e n / : (X, r) —> F is a continuous mapping 
into a developable TVspace [24] such that 

c l / [ i 4 ] n c l / [ 5 ] = 0. 

Since it is evident that (4) implies (1), the proof is complete. 

Following N. C. Heldermann a topological space is called D-regular if 
it has a base of open /vse ts [11] (see also [5]). Our next result is an 
immediate consequence of Theorem 1. It will be applied in [5]. 

COROLLARY 1. Every D-regular Lindelôf space is D-normal. 

Proof. Let X be a ^-regular Lindelôf space and consider a finite open 
cover-J^ = {A (1), . . . , A (k)} of X. Then there exists a countable open 
/vcover Ĵ ~ of X which refines s/. Define 

B(i) = V{F\F£<0r, FCA(i)) 

for each i Ç {1, . . . , fe}. Since every countable union of /vse ts is an 
/vse t , {-B(l), . . . , -S(fe)} is an open /vcover which refines s/. Hence, by 
virtue of Theorem 1, X is Z)-normal. 

3. Z)-normal spaces and open covers. One of the most useful 
properties of normal topological spaces is the fact that every point-finite 
open cover has a shrinking. Moreover every locally finite open cover of 
a normal space has a locally finite cozero-set refinement. Our next 
theorem provides similar characterizations of Z}-normal spaces. We call 
a subset B of a topological spaces X D-open if there exists a continuous 
mapping/: X —* F into a developable space F and an open subset U of 
F such that i* = / _ 1 [ ^ ] - An open cover of X is called J9-open if it 
consists of Z)-open sets. Using Theorem 1, we can now prove the 
following: 

THEOREM 2. The following properties of a topological space X are 
equivalent: 

(1) X is D-normal. 
(2) For every point-finite open cover {A (i))i(zI of X there exists a D-open 

cover (B(i))iei of X such that B{i) C A (i) for each i £ I. 
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(3) For every point-finite open cover {A (i))*e/ of X there exists an open 
Fa-cover {B{i))iÇ:I of X such that B(i) C A (i) for each i G 7. 

(4) Every locally finite open cover of X has a locally finite D-open 
refinement. 

(5) Every locally finite open cover of X has a locally finite open Fa-
refinement. 

(6) Every locally finite open cover of X is kernel-normal. 

Proof. (1) implies (2): Letstf = (A (i))tei be a point-finite open cover 
of X. Assume that 7 = {il 0 ^ i < a} is well-ordered. Using transfinite 
induction we will find a D-open set B{i) for each i G 7 such that 

(*), X\{\J [B(j)\j <i}\J\J {A(k)\ k>i})C B(i) QA(i). 

If i = 0, there exists a D-open set B(0) such that 

X\U {A(k)k\> 0} C B ( 0 ) 0 4 ( 0 ) 

according to condition (4) of Theorem 1. Assume now that i > 0 and 
that for every j < i an open TV-set 5 ( j ) is defined such that (*) j holds. 
Using the fact that s/ is point-finite it is easy to see that 

{B(j)\j <i\VJ{A(k)\k^t} 

is an open cover of X. Therefore there exists a D-open set B (i) such that 

X\(V [B(j)\ j < ^ U [A(k)\ k>i})C B(i) CA(i), 

i.e., (*)t is satisfied. Using the point-finiteness of se again one can show 
that the collection (B(i))iei covers X. 

Clearly (2) implies (3) and (4), and (3) and (4) imply (5). By virtue 
of Proposition 1 and Theorem 1, (6) implies (1). Therefore it remains 
to prove that (5) implies (6): 

Let ju be the collection of all locally finite open covers of X. By virtue 
of Proposition 2 it suffices to show that for each se G \x there exists a 
sequence fi = (s/n)ne^ in n such that s/n refines int^ s$ for some 
w f N. Consider an a r b i t r a r y ^ G /x. Assuming (5) there exists a locally 
finite open ^-refinement 38 = {B{i))iu of se. For each i G 7 let 
(B(i, n))neN be a sequence of closed subsets of X such that 

B(i) = U {B(i,n)\ n G N}. 

If n G N and x G X{n) = U {5(i, w)| ^ / | , define 

A(x,n) = H {jB(i)| i G 7, x G B(i}n)} 

H (X\U {B(i, n)\i G 7, x G B(i, »)}). 

Since <â? is locally finite, every A (x, w) is an open set containing x. It is 
easy to see that for each n G N the collection 

sfn = {B(i)\X(n)\ i G 7} U M ( * , n ) | x G Jf(»)} 
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is a locally finite open cover of X, i.e., 0 = (s^n)n^ is a sequence in /x. 
Since J^ i refines infy J / , the proof is complete. 

An open cover Se = (B(i))iei of a topological space X is called 
dissectable if there exists a function 

£>: / X N - > ^ ( X ) 

with the following properties: 
(i) B(i) = U {£>(*, w)| » G N} for each i G / ; 

(ii) T(D, n) = U {J9(i, n)\ i G 7} is closed for each « G N; 
(iii) for each w G N and for each x G T(D, n) the set 

H {B(i)\ i e I,x6 D(i,n)} 

r\ (X\J {D(i, n)\ i G 7, x G D(i, »)}) 

is a neighbourhood of x. A function D: I X N—* 0* (X) satisfying 
(i)-(iii) is called a dissection of ^ . Every open cover of a developable 
space is dissectable [4]. In [6] it was shown that every countable open 
cover of a perfect space (i.e., closed sets are GO'S) is dissectable. Using 
Theorem 2, we can now prove the following: 

THEOREM 3. The following properties of a topological space X are 
equivalent: 

(1) X is D-normal. 
(2) Every countable point-finite open cover of X is kernel-normal. 
(3) For every countable point-finite open cover (A(n))n^ of X there 

exists a dissectable open cover (B(n))n^ of X such that B(n) C A{n) 
for each n G N. 

Proof. (1) implies (2): Let srf = (A(n))n^ be a point-finite open 
cover of X. By virtue of Theorem 2 there exists a D-open cover (B (n) )WÇN 
of X such that B(n) C A (n) for each n G N. Hence, for each n G N there 
exists a continuous mapping fn\ X —•> Yn into a developable space Yn and 
an open subset U(n) of Yn such that f~l[U(n)) = B(n). Denote by r ' 
the initial topology on X with respect to (fn: X —> Fn)n€N- Since it is 
well known that developability is invariant under the formation of 
initial topologies with respect to countable families of mappings, the 
space (X, r ') is developable. Therefore s/ is kernel-normal (according 
to Proposition 1). 

That (2) implies (3) follows from Proposition 1 and the fact that every 
open cover of a developable space is dissectable [4]. Clearly (3) implies 
condition (2) of Theorem 1, which completes the proof. 

If s/ is an open cover of a topological space X, a continuous mapping 
/ : X —» F is called an se-mapping if there exists an open cover Se of Y 
such that {J"1 [B]\ B G S8\ refines J / . In [18] C. M. Pareek has charac-
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terized those topological spaces which admit an j/-mapping onto a 
developable space for every open cover S$. Using the fact that the 
Po-identification of an arbitrary topological space yields an open 
mapping, we obtain from Theorem 2, Theorem 3, and Proposition 1 the 
following characterization of D-normal spaces in terms of ^-mappings . 

THEOREM 4. For a topological space X the following properties are 
equivalent : 

(1) X is D-normal. 
(2) For every locally finite open covers^ of X there exists an se-mapping 

from X onto a developable TV space. 
(3) For every countable point-finite open cover se of X there exists an 

s/-mapping from X onto a developable Ti-space. 

4. Hereditarily D-normal spaces. A topological space is called 
hereditarily D-normal if every subspace is D-normal. There exist D-normal 
spaces which are not hereditarily D-normal. In fact, even subspaces of 
normal topological spaces need not be .D-normal. If P(cot + 1) is the 
subspace of the ordinal co* + 1 obtained by deleting all those points to 
which a sequence converges, then P(coi + 1) X P(co2 + 1) is a normal 
P-space (i.e., a normal space in which every Gg-set is open) and the 
subspace of P(coi + 1) X P(co2 + 1) obtained by deleting the point 
(coi, co2) is a non-normal P-space [16]. It follows from Theorem 1 that 
every D-normal P-space is normal, hence this subspace cannot be 
D-normal. On the other hand, the following theorem implies that every 
perfect space is hereditarily D-normal. 

THEOREM 5. For a topological space X the following properties are 
equivalent: 

(1) X is hereditarily D-normal. 
(2) Every open subspace of X is D-normal. 
(3) For every pair A, B of separated subsets of X there exists a pair 

P, G of separated G^-sets such that A C P, B C G, and 

(cl F\F) KJ (cl G\G) CclAndB. 

(4) For every pair A, B of arbitrary subsets of X there exists a pair 
D, E of Fe-sets such that A C D , B CE, 

int D W E = X = D VJ int P , and 

D C\ E C\ ( c l i U cl B) C cl A C\ cl B. 

Proof. Using condition (1) of Theorem 1 it is easy to see that (1), (2) 
and (3) are equivalent. The proof that (3) and (4) are equivalent is 
similar to the proof of the main theorem of [13]. 
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The following results show that hereditarily D-normality can replace 
the much stronger property of complete normality in some nice theorems 
of M. Katètov [15]. They can be proved by modifying the methods of 
Katétov using condition (3) of Theorem 5 and the main result of [7]. 

THEOREM 6. Let X be a Ti-space and Y be an arbitrary topological space 
such that XX Y is hereditarily D-normal. Then every countable subset of 
X is closed or Y is perfect. 

THEOREM 7. A countably compact Hausdorff space X is metrizable if and 
only if X XX X X is hereditarily D-normaL 

THEOREM 8. Let Xn be a Hausdorff space for each w f N containing at 
least two points. Then the product space Yintw Xn is perfect if and only if 
it is hereditarily D-normal. 

Proof. Since every perfect space is hereditarily D-normal, we only 
have to prove the reverse implication. Assume that JXieN-Xw ls here
ditarily D-normal. For each K N the space Yln>k Xn contains a count
able non-closed subset (since it contains the Cantor space). Hence, by 
virtue of Theorem 6, the space Xi X . . . X Xk is perfect. Therefore 
rin(EN Xn is perfect by a theorem of R. W. Heath and E. Michael [9]. 

5. Some properties of D-normal spaces. A subset B of a topological 
space X is said to be normally situated in X if for every open subset 
U of X containing B there exists an open subset 0 of X such that 
£ C O C £ / a n d 0 = U [0(i)\ i G / } , where (0(i))iei is a family, 
locally finite in 0, of open Tvsets of X. It is easy to see that every 
normally placed subset (in the sense of [20]) of a D-normal space is 
normally situated. Every normally situated subspace of a normal 
topological space is normal [19]. 

PROPOSITION 3. Every normally situated subspace of a D-normal topo
logical space is D-normal. 

The proof of Proposition 3 is based on the following easy to prove 
lemmas: 

LEMMA 1. Every Fa-subset of a D-normal space is D-normal. 

LEMMA 2. Let (A(i))ier be a locally finite open Fa-cover of a topological 
space X such that A (i) is D-normal for every i £ / . Then X is D-normal. 

Proof of Proposition 3. Let 5 be a normally situated subspace of a 
D-normal space X. Consider a pair A, B of disjoint closed subsets of 5. 
There are closed subsets D,EoiX such that D C\ S = A and E C\ S = B. 
Since S C X\(D C\ E), there exists an open set 0 such that 5 C 0 C 
X\{pr\E) and 0 = U {0(i)\ i g / } , where (0(i))ia is a family, 
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locally finite in 0, of open /vse ts of X. By virtue of Lemma 1 and 
Lemma 2 0 is D-normal. Therefore there exist disjoint closed GVsets 
F, G of 0 such that D H 0 C F and E H 0 C G. Hence F n 5 and 
G Pi 5 are disjoint closed G5-sets in 5 such that A C F C\ S and 
B d G C\ S, which proves that 5 is Z}-normal. 

Arbitrary coproducts t>f Z}-normal spaces are Z>-normal. This fact is 
an immediate consequence of Lemma 2. On the other hand even the 
product of two paracompact Hausdorff spaces need not be D-normal. In 
fact, in [1] K. Alster and R. Engelking provided an example of a para
compact Hausdorff P-space X such that X X X is a non-normal P-space. 
Since D-normal P-spaces are normal, XXX cannot be D-normal. That 
quotients of D-normal spaces need not be D-normal is a consequence of 
a result of J. R. Isbell, who proved in [14] that every topological space 
is a quotient of a paracompact Hausdorff space. 

Following J. Chaber a topological space is called subnormal if for every 
pair A, B of disjoint closed subsets there exists a pair P, G of disjoint 
Gs-sets such that A C Pand B C G [8]. Obviously every D-normal space 
is subnormal, but there exist subnormal Hausdorff spaces which are not 
D-normal (see for instance [17] for a subparacompact, hence subnormal, 
metacompact Hausdorff space which is not D-normal). However, the 
following statements can easily be verified. 

PROPOSITION 4. (1) Every dosed image of a D-normal space is subnormal. 
(2) Every closed-and-open image of a D-normal space is D-normal. 

Remark. Our Theorem 1 suggests the question whether there exists a 
single developable Pi-space D such that a topological space X is .D-normal 
if and onky if every pair of disjoint closed subsets of X can be separated 
by a continuous mapping/ from X into D. Quite recently N. C. Helder-
mann (using essentially different methods) has answered this question 
in the affirmative [10]. 
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