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1. Introduction and Notation
Over a field of characteristic p > 0 the group algebra of a finite group has a

unique maximal nilpotent ideal, the Jacobson radical of the algebra. The
powers of the radical form a decreasing and ultimately vanishing series of ideals
and it would be of interest to determine the least vanishing power. Apart
from the work of Jennings (3) on ^-groups little is known in general (cf. (5))
about this particular power of the radical (cf. Remarks of Brauer in (4), p. 144.
Problem 15). In this paper we give non-trivial lower bounds for the index of
the least vanishing power of the radical when the group is /^-soluble. Of the
lower bounds we give we show that that lower bound, which is dependent solely
on the order of the group, is the best possible such bound and that this bound is
invalid if the assumption of ̂ -solubility is omitted.

We consider a fixed algebraically closed field K of characteristic p > O. The
group algebra of a finite group G over K is denoted by K(G) and JK(Gr) is the
Jacobson radical of K(G). e is the identity of G. We wish to determine the
least positive integer t(G)>0 such that

[JK(G)]«G) = {0}.

If p does not divide the order of G then JK(G) = {0} and t(G) = 1 whereas if
the order of G is divisible by p then JK(G) ± {0} and t(G)> 1.

2. Factor Groups
We begin with a,theorem on embeddings for which the finiteness of the

group G is not essential.

Theorem 2.1. Let M be a normal subgroup of G of order prime to p. Let I
be the ideal which is the kernel of the algebra homomorphism ofK(G) onto K(G/M)
induced by the natural homomorphism of G onto G/M. Then there exists an ideal
A ofK(G) such that

(1) K(G) is the direct sum of I and A and

(2) A is isomorphic to K{GjM).

Proof. Let
G = (J Max

AeA
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be a coset decomposition of M in G, A being an indexing set. Then / has a
vector basis over K consisting of all elements of the form (e—x)ax (xeM,
x ¥= e, X e A). Let

A = ( £ y)K(G).
yeM

Then A is clearly an ideal of K{G) and A consists of all elements of K(G) of the
form

*,( ZE 0 , 2 ( £ K 2 , ( Z
yeM yeM yeM

where aXl e K (i = 1,2, ..., r). Let M have order m. In the homomorphism
of K(G) onto K(G/M) induced by the natural homomorphism of G onto G/M
such an element as above maps onto the element

+. .,+a.xm(MaXr).

Since the cosets MaXl (i = 1, 2, ..., r) are distinct and since m is prime to p
this element is non-zero. Thus Ar\I = {0}. To prove that K(G) = I+A it is
sufficient to show that if g e G then # 6 I+A. Now gr = xvav (xv e Af, v e A)
(say) and thus

g = -(e-xv)av + av

= -(e-xv)av+ - [ £ (e-jOav+( I y)av]
m M M

It remains to be shown that A is isomorphic to K(G/M). We assert that
the set S given by

{m yeM

is multiplicatively a group (of linearly independent elements of K(GJ) isomorphic
to G/M under the mapping

- ( I y)ax-*Max(leA).
ttl yeM

The verification is straightforward and clearly A = K(S). The isomorphism
of the groups S and G/M then extends linearly to an isomorphism of A and
K{G/M).

Theorem 2.2. Let M be a normal subgroup of G of order prime to p. Then
t(G) ^ t(G/M).

Proof. In the notation of the previous theorem K(G) = I® A where A is
isomorphic to K(G/M). Thus A, and hence K(jG), has a nilpotent ideal isomor-
phic to JK{G/M). This establishes the inequality.

Remark. The above inequality is the best possible for if G is abelian and
if P is a ^-Sylow subgroup of G then JK(G) = JK(P)K(G) and t(G) = t(P)
= t(G/M).
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In order to establish our next theorem we require some elementary facts
concerning />-groups.

Lemma 2.3. Let P be a p-group of order pc (c> 0). Then

(2) [JK(P)J<n~l is spanned by £ x and

(3) if s = £ °xX (<rz eK,zeP) then s e JK(P) if and only if £ ax = 0.
xeP ieP

Proof. (1) Since dim JK(P) = pc-\ we have immediately pc ^ t(P). In
the notation of Jennings (3), t(P) = E AdA(p-l) + l where, as X varies, p"1* is
the order of successive factor groups in a certain chain of descending normal
subgroups. Thus S dx = c and hence

(2) Since P is a />-group it follows, from the definition of t(P), that for all
yeP

and this implies that [JK(P)JiP)~l is spanned by X! *•
IEP

(3) The last statement is a direct consequence of the fact that the elements
(e—y) (yeP,y ^ e) form a vector basis for JK(P).

Theorem 2.4. Let P be a normal p-subgroup of G'-. Then

t(P)t(G/P) ^ t(G) ̂  «P) + t(G/P)-l.

Proof. Let
G = Pa1vPa2<u...yjPan

be a coset decomposition of P in G.
Then

*((?) = K(P)ai+K(P)a2 + ... + K(P)an,

JK(P)K(G) = . / ^ (PK +JK(P)a2 + ... +JK{P)an.

Now JK(P)K(G) is, first, the kernel of the homomorphism of K(G) onto K(G/P)
induced by the natural homomorphism of G onto G/P and is, secondly, a nil-
potent ideal of K(G). Thus we have the two isomorphisms,

K(G/P) s K(G)IJK(P)K(G),

JK(G/P) 3 JK(G)/JK(P)K(G).

Hence [JK(G//3)]'(C/'>) = {0} implies that

[JX(G)]'(C/P) £ JK(P)K(G).
Hence, as

= {0}

https://doi.org/10.1017/S0013091500012505 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500012505


130 D. A. R. WALLACE

we have
[/K(G)]t(G/P)t<p) = {0}

and therefore t(P)t(G/P) ^ t(G).
We now prove the second inequality. Since

IJKIG/PW"*-1 * {0}
it follows, from the second isomorphism above, that there exists

w e [JK(G)]"G/P)-1 and w $JK(P)K(G).

Thus if w = s1a1+s2a2 + •••+snan (SIBK(P), i = 1,2, ...,ri) then there exists
j (1 ^JS n) such that Sj $ JK(P). Then, by Lemma 2.3.(3),

sj= E GxX (ay e K, y e P)
PE

xeP
where E (rx ^ 0. Consider now [ . / ^ (P) ] ' ^ ' 1 which, by Lemma 2.3. (2), is

xeP

spanned by J] y. Then
yeP

CZ y)we[JK(P)J(py-1 {JK(G)Jl0/r)-1. But(YJy)w¥=0
yeP yeP

for
( £ ) ( E > ( I O ( E V

yeP yeP yeP yeP
and in this expression of ( E y)w a s a s u m °f elements from distinct cosets of

yeP
P in G we have, for those elements from the y'th coset,

( E y)sJaj = ( E
yeP yeP

= ( E
XT 1. X E i >

Hence we have
) - 2

and this implies that t(G) ^ t(P) + t(G/P)-l.

Remark. The bounds given in the above theorem cannot be improved, for
suppose that p = 2 and that G has order 4. Let P be a subgroup of order 2.
Then t(P) = f(G/P) = 2 and so

4 = 2.2 ^ / ( G ) ^ 2 + 2 - 1 = 3.

If G is cyclic then t(G) = 4 and if G is the four-group then t{G) = 3.

3. p-Soluble Groups

The group G is said to be /^-soluble ((2), p. 331) if there exists a normal
series
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of subgroups Ht of G (i = 0, 1, ..., m) such that Hj+1/Hj is either a p-group
or has order prime to p (j = 0,1, •'•-, m — l). For such a group we have the
following result.

Theorem 3.1. Let G be p-soluble and have a normal series (*). Then

1 7 1 - 1

KG)* I [t(HJ+1IHj)-i] + l.
j = o

Proof. We argue by induction on the number of normal subgroups appear-
ing in a series of type (*). If m = 1, G is either a /?-group or has order prime to
p and in either case the inequality is trivially satisfied.

Suppose m>\. Then H1/H1<=H2IH1<=...<=:Hm/Hl = G/Ht is a normal
series for the /^-soluble group G\HX the factors of which are either /^-groups or
have orders prime to p since

{HJ+JHJKHJ/HJ s HJ+1/Hj.

We now assume the theorem is true for G\HX. If Ht has order prime to p
then, by Theorem 2.2,

KG) ^ t(G/Ht) = "ff

- 1

; = o

On the other hand, if HY is a /?-group, it follows, by Theorem 2.4, that

- 1

= KHJH0)+

This completes the proof.
Of all possible normal series of type (*) for G we now consider the upper

p-series ((2), p. 331). This is the series

l^Nl = G (••)

for which NJPi is the maximal normal subgroup of order prime to p of GfPt

(/ = 0, 1, . . . ,/) and PJ+1/Nj is the maximal normal /^-subgroup of G/Nj
(j = 0, 1,..., / - I ) . From Theorem 3.1 we have immediately the following
result.
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Theorem 3.2. Let G be p-soluble and have a normal series (**). Then

Utilising this theorem we obtain a simple bound for t(G) dependent only
on the order of G.

Theorem 3.3. Let G be p-soluble of order pam, (p, m) = 1. Then

t(G) = a(p-l) + \.

Proof. In the above notation let PJ+JNj have order pttJ (j = 0,1, ..., l — i).
Then a 1 +a 2 + --- + a/_1 = a and, from Lemma 2.3. (1),

t{Pi
Thus, by Theorem 3.2,

t(G)= '%
7 = 0

Remark. The bound given in Theorem 3.3 is the best possible if it is merely
known that G is /^-soluble of order p"m, (p, m) = 1. To see this suppose G
is an abelian group of order pam, (p, m) = 1 whose /J-Sylow subgroup P is ele-
mentary abelian. Then JK(G) = JK(P)K(G) and t(G) = t(P). But, as P is
elementary abelian, it follows ((3), p. 184-185) that t{P) = a ( p - l ) + l. Hence

t{G) = a(p-l) + l.

Theorem 3.4. Let G be p-soluble of order pam, (p, m) = 1 where p is odd.
Then t{G) = 3 implies that p" = 3.

Proof. By Theorem 3.3,
3 = t(G)Za(j>-l) + \.

This implies that a = 1 and p = 3 or that a = 2 and p = 2 from which the
theorem follows.

Remark. The result is false in the above theorem if the assumption that p
is odd is omitted, a counterexample being afforded by the Klein four-group.

4. Omission of p-Solubility Condition
Let G be a finite group, not necessarily ^-soluble. We shall show that the

bound for t(G) given in Theorem 3.3 no longer holds. In order to do this we
first prove two lemmas concerning the decomposition of K(G) into a direct
sum of left ideals.

Lemma 4.1. Let eu e2, •••,en be orthogonal idempotents in K(G) such that

(1) e = el+e2 + ...+en and

(2) K{G) = K(G)e,+K{G)e2 + ...+K{G)en

is a decomposition of' K(G) into a direct sum of indecomposable left ideals K(G)et

(i = 1, 2, ..., n). As a K(G)-module let K(G)ei have r{ irreducible modules
occurring as composition factors in a composition series. Then

t(G) ^ max{rur2,...,rn}.
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Proof. Suppose s{ is the least strictly positive integer such that

r/K(G)]s'e, = {0} (i = 1, 2, ..., n).

Then the factors of the series

X(G)e, => JK(G)ei => [JK(G)]2e,- =>... o [Jl^G)]1 '"1*, => [JK(G)]S|e, = {0}

are the st completely reducible ^(G)-modules

KyUjeilJK((j)ei, JKyb)eJ\JKyb)\ et, ..., \_JK(G)] e^yjK\\J)\ Cj.
Since the above descending chain may be refined to a composition series of rf

factors we have s, ^ rt (j = 1, 2, ..., n). Let

5 = max {sus2, ...,sn}
and then

s g max{ri ,r2 , ...: rn}.
Furthermore

and thus

Hence t(G) ^ s and this establishes the lemma.
In our next lemma and in the example that follows we employ the conven-

tions of (1).

Lemma 4.2. Let G have exactly k non-isomorphic modules Fu F2, ..., Fk

and k corresponding indecomposable modules U^, U2,..., Uk. Let C = (CKA) be
the Cartan matrix. Then

k

t(G) g max
i s K s k

Proof. In a composition series for UK the irreducible modules appearing as
composition factors are Fx appearing cKl times, F2 appearing CK2 times and so
on. Thus the number of irreducible modules in a composition series for UK is

The result now follows from Lemma 4.1.

Example. We consider as our group G the LF (2, 5) for the prime p = 5"
This group is simple of order 60 and its irreducible modules have been given
by Brauer and Nesbitt ((1), p. 589-590).

The Cartan matrix is here

V l °1
1 3 0

Lo o l j
from which, by Lemma 4.2,

t(G) ^ max {3, 4, 1} = 4.
On the other hand the bound in Theorem 3.3 for t(G) is, under the assumption
of/7-solubility,

l . ( 5 - l ) + l = 5
and this shows that Theorem 3.3 is false without this assumption.
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