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Estimating the proportion of neutral mutants
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Summary

Kimura used the heterozygosity and the number of low-frequency alleles to estimate that about
14% of mutations are selectively neutral. The method is shown to be subject to biases and to
disruption due to bottleneck effects. Let deleterious alleles have selective disadvantage, s, compared
with neutral alleles and let Ne denote the effective diploid population size. The estimator, P, of the
proportion of neutral alleles is positively biased if (roughly) 4Nes < 25 or if 4Ne s > 200. In the
former case, one cannot adequately detect the different influences of deleterious and neutral alleles,
whereas in the latter case, deleterious alleles will rarely appear in the sample. These difficulties
cause the biases in P, and are likely to cause similar biases for any estimation method based solely
on allele frequencies. There is substantial sampling variability in P in cases of practical interest,
when data from 11 loci, or even as many as 31 loci, are pooled. If there has been a recent
contraction in population size, P will be positively biased, often yielding values greater than 1 or
even being infinite. But after a recent expansion in population size, the heterozygosity will not
have made as quick an increase and P will be negatively biased. Population expansion alone can
produce P values close to those observed by Kimura, even if all alleles are neutral. In an appendix,
a new method for simulating samples of neutral and deleterious genes is described.

1. The estimator

Kimura (1983) has estimated the proportion of
mutations which are selectively neutral to be about
014, with a standard error of 006. This estimate is an
average taken over various species, namely, plaice,
humans, monkeys and fruit flies. The method used to
obtain the estimate is the following.

Let <3>(x) dx denote the expected number of alleles
(averaged over many independent loci) whose relative
frequencies are in the range x to x + dx, in a given
population. Then the expected heterozygosity, /iH, in
the population is given approximately by

within that rate, the mutation rate to selectively
neutral alleles is v. We define 6T = 4Ne vT, and 6 =
4Nev. Then under certain circumstances, (1.1) and
(1.2) may be further approximated by

pH*6/{6+l) (1.3)

and

/ i ,«0 r log(2n?) . (1.4)

The proportion of neutral mutations, among all
mutations, is

- £ x) dx. (1.1)

Provided that (1.3) and (1.4) are adequate approxi-
mations, Pneut would be given approximately by

log(2«g)

Consider a sample of In genes. The number of alleles,
whose relative frequencies in the sample are below q,
is expected to be fig, given approximately by

(1.6)

Jl/2n
O(x)cfcc. (1.2)

Here it is assumed that l/2n «̂  q, but also that q is
small, say q = 001.

Suppose now that the effective population size of
the species being sampled is Ne, that the total mutation
rate to all types of alleles is vT, but that included

Kimura suggested that /iH be estimated by H, the
average of the heterozygosities in samples of genes
taken from a large number, / say, of loci. Similarly,
/iq is estimated by na(x < q), the average of the
observed numbers of alleles whose relative frequencies
are less than q in the samples. Thus finally PBeut is
estimated by P say, given by

P =
H_log(2nq)

l-Hna(x<qY
(1.7)
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The accuracy of P as an estimate of Pneut depends on
(i) the accuracy of the continuous integration formulas
(1.1) and (1.2) for what, strictly speaking, should be
discrete summations (ii) the accuracy of the approxi-
mations (1.3) and (1.4) and (iii) the accuracy of the
sample averages H and na(x < q) as estimates of the
corresponding expectations /iH and fiQ.

In the next section we shall discuss these problems
in the very special case when all mutations are neutral
so that Pneut = 1. In the following section, we shall
concentrate on the case when there are two classes of
alleles, those which are selectively neutral and those
which have a selective disadvantage, s. In the final
section, we shall study bottleneck effects. An appendix
includes a description of a new method to simulate
samples having neutral and deleterious genes.

The conclusion of these studies is that the estimate
(1.7) is not fully satisfactory. It is subject to large
sampling variations, to inaccuracies in the various
approximations leading to (1.6) and to non-stationary
effects. The problem is obviously not an easy one to
tackle, and it may well be impossible to produce a
satisfactory method of estimation which is robust
against the various complications which arise in
population genetics.

2. The stationary, neutral case

If (i) all mutations produce new alleles, (ii) all
mutations are neutral, so that 0 = 0T and i>neut = 1,
and (iii) the population is at statistical stationarity,
then (Kimura & Crow (1964); Ewens (1964))

<D(x) = 0(1 - (0 < x < 1) (2.1)

is the (continuous) frequency spectrum. It is not
exact; the discrete frequency spectrum for the expected
number of alleles which are of relative frequency x =
j/2n, in a sample of size 2n genes, is

£(A/)) = 6(2n)in/U(d + 2n-\)U]] ( /= 1,2, - . , 2K) ,
(2.2)

where fl(J) is the number of alleles having j repre-
sentative genes in the sample, and where (2n)m =
2n(2n- 1)... (2n-j+ 1); see Watterson (1974a). This
expression is exact for sampling without replacement
from a Moran model population, and it is a close
approximation for sampling from a Wright-Fisher
model. However, for 2« large, there is an almost
perfect agreement between (2.1) and (2.2):

The true expected heterozygosity in a sample is

1 - S (j/2nf E(/3(j)) = (1 -1/2«) 0/(0+ 1),

4 - 1

whereas (1.1) yields the very similar

/iHx 0/(0+1), (2.3)

and for samples of sizes investigated by Kimura

(1983), these two results are essentially identical.
Nevertheless, the true expected number of alleles of
frequency less than q in a sample of 2« genes is

(2n«)*

fiQ= £ E(fi(j)), (2.4)
4 - 1

where (2nq)* is the largest integer less than 2nq. But
(1.2) yields the approximation

Q>(x)dxx6
l/2n J Hi

P x~1dx =
Jllin

d\og{2nq), (2.5)

which can be substantially in error, due mostly to the
lack of continuity correction at the terminals of the
integral. Almost perfect accuracy can be achieved by
the use of the summation

The following approximations yield quite satisfactory
accuracies, in terms of the digamma function \jr and
Euler's constant y:

ftt * d <2S 1/7 = 6[+{{2nq)* +1) + y]
4 - 1

« 0{log [(2nq)* + 1] + 0-57722- l/[2(2nq)* + 2]}.
(2.6)

As a numerical example, consider the first set of
data discussed by Kimura (1983), in which the average
sample size was 2« = 3912 and q was taken as q —
001. Then (2nq)* = 39, so that (2.6) yields fiq « 4.270
whereas (2.5) yields fiq x 3.670. Thus (2.5) can be in
error by about 14%, and similarly, the estimate P in
(1.7) can be 14% too low for this reason. For smaller
samples, the error would be worse. For instance, the
final example discussed by Kimura had an average
size of 2/i = 56806, with q = 001 so that (2nq)* = 5.
The proportionate error in P, because of the use of
(2.5), is that it is 24% too low. In effect, P would be
estimating 0-76 rather than the correct value Pneut = 1.

Kimura's reason for defining P as in (1.7), is that it
is mainly the neutral alleles which influence the
heterozygosity, whereas deleterious alleles, along with
neutral alleles, could be among those with frequencies
below q. See also Nei (1977). Thus in cases when there
is a distinction between the neutral mutation para-
meter 0, and the total mutation parameter, 8T, it is the
former which should appear in (2.3), see (1.3), and the
latter which should appear in (2.5), see (1.4). If that
were so, then the definition (1.7) would be an
appropriate way to estimate Pneut, because then, H/
(l—H) would be an estimate of 0, and no(x < q)/
log (2nq) would be an estimate of 0T. In view of the
above, a better estimate would be

- H log [(2nq)* +1] + 0-57722 -l/[2(2nq)* + 2]
~\-H na(x<q)

(2.7)
so that Kimura's first example would yield an estimate
P = 018 rather than Kimura's own estimate of 015.
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And his last example would also yield P = 018 rather
than Kimura's 013.

We now turn to consider the influence of the
number of loci on the accuracy of the estimates. An
indication that this is important can be gained from
Kimura's first example. Kimura used the mean
heterozygosity, 77 = 0106, from 46 loci, whereas for
the calculation of n~a(x < q), he used data from 11 loci.
When the mean heterozygosity was calculated by
Kimura from those same 11 loci, it became 0147. Had
the latter value been used, Kimura's estimate P = 015
would have become / = 0-23. It might be expected
that sampling variation would be even more important
in the calculation of na(x < q).

There are two aspects to sampling variation. There
is the variation due to the choice of genes from the
population, which is not a serious matter if large
random samples are chosen. Perhaps more important
is the variation from population to population (or
from locus to locus in the one population). Their
combined effect can be checked theoretically by the
use of the second-order frequency spectrum to help
calculate variances of H and na(x < q). This spectrum
was obtained by Watterson (1974 a) in the discrete
neutral case:

for (j*k) (2.8 a)

\\2n]. (2.8b)
and

An approximation is

for (j±k,j+k^2n), (2.9 a)

) - 0)« e\\ -(2/)/(2rt)rv/
for (2/<2«), (2.9 b)

see Watterson (1974a). For large values of 2«, there is
a very close agreement between (2.8) and (2.9);
indeed, there is exact agreement when 6 = 1. For low
values of j , the /?(_/) are approximately independent
Poisson variables with E(fi(j)) « 8/j.

Using (2.9) we can obtain the approximations that,
for the average over / samples each of size 2« genes,

Var(//)= S S (j/2nf(k/2nf
i-i *-l

£
(2.10)

(2.11)

and

Cov (H, na(x <q))=£ S C//2«)2 Cov (fflj), fi(k))/l

(2nq)*6{-2/[2n(d+ l)] + [(2«a)*
-2qd/[l(0+\)]. (2.12)

The result (2.10) was found by Stewart (1976) and
Watterson (19746): (2.11) and (2.12) seem to be new.
In (2.11) /iQ is given by (2.6) and na(x < q) is essentially
the mean of / independent Poisson variables, each
having a mean /iq.

As a numerical illustration, we consider Kimura's
first example, but assuming a fully neutral model with
# = 0T = O-114 (one of Kimura's estimates), 2n =
3912, q = 001 and / = 11. Then 77 has a mean 0102
and a standard error of 0-050, while na(x < q) has a
mean of 0-485 and a standard error of 0-210. The
covariance is — 000019. As a check, we have simulated
samples with these parameters, and averaged them
over 11 independent loci. In all, 20 replicates were
calculated. The simulation method of Watterson
(1984) and Hoppe (1984) was used. The resulting 77
values varied from 0028 to 0-249, with a mean of
0117 and standard deviation 0059. The na(x < q)
values varied from 0182 to 0-636, with mean 0-391
and standard deviation 0-151. The covariance of H
and na(x < q) in the replicates was +0001. The P
values ranged from 0-316 to 3-347, with a mean of
1-417 and standard deviation of 0-888. Strictly
speaking, P has no finite mean or variance,since it is
possible that either H = 1, and/or na(x < q) = 0, in
which case P = oo in (1.7); this did not happen in our
20 replicates. (But see section 4, when it did!)

As another illustration, consider Kimura's final
example, with 2n = 56806 (on average), q — 001, / =
31; we assume that only neutral mutations can occur
and take one of Kimura's estimates for 0 = 6T =
0-215. Then from (2.10)-(2.12), we find that 77 has a
mean of 0177 with standard error 0036, na(x < q) has
a mean of 0-491 and standard error 0126, while the
covariance between them is —0.00011. If H and na

(x < q) take their expected values, then P becomes
0-76 (not Pmat = 1). If H were one standard deviation
above its mean and na(x < q) were one standard
deviation below its mean, then P=l-29 . If the
variations went in the opposite directions, then P =
0-46. As a further check, 10 replicate simulations, each
of / = 31 loci, produced H values ranging between
0138 and 0-230, with mean 0180, standard deviation
0033, na(x < q) values ranging between 0-290 and
0-645, with mean 0-452 and standard deviation 0092,
while the / values themselves ranged between 0-624
and 1148, with mean 0-864 and standard deviation
0170. The covariance between H and na(x < q) was
+ 00016. _

The conclusion here is that H, na(x < q) and P are
all very variable, if based on /= 11 or even as many as
/ = 31 loci.

3. Deleterious mutations

In the previous section, all mutations lead to neutral
alleles. The technique suggested by Kimura was
designed for cases when both neutral and deleterious
alleles could occur. We mainly discuss genie selection,
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although recessive deleterious alleles will be mentioned
later.

Suppose that the mutation parameter for deleterious
mutations is 6d, so that 6T = d + 8d. Further, suppose
that the deleterious mutants each have the same
additive effect; each deleterious gene causes a re-
duction of amount s in fitness. A diploid having two
neutral genes has fitness 1, while one having one
neutral and one deleterious gene has fitness 1 —s and
one having two deleterious genes has fitness 1 — 2s.
Then, at stationarity, the frequency spectrum is given
by

<D(x) = x'\l -x)t>T-1[deSx + dd\

M(0,6T,S(l-x))/M(0,dT,S), (3.1)

where M is the confluent hypergeometric function

T{b) «
M(abX) =

and where S = 4Nes. See Ewens & Li (1980, (36)).
For large S and small x, Ewens & Li (1980), (39),

(40)) show that

<D(x) ~ x~\l -xf'1

while for small S,

see Watterson (1978, p. 410).
Ewens and Li (1980) also quote the heterozygosity

formula

= 0M(d + 2,dT + 2,S) + 6dM(O,dT + 2,S)
M''" ~ 0T(0T + 1) M{6,6T, S)

which for large S becomes

,iHKe/(\+6) + 2dJ[S(\

while for small S,

(3.2)

(3.3)

- S26dJ[dT(dT + I)2 (0T + 2) (fiT + 3)] + O(53). (3.4)

Similarly, for large S we find, analogously to
(2.6),

fig x 0{log [(2nq)* + 1] + 0-577 22 - 1 /[2(2nq)* + 2]}

e-Si/2n/j, (3.5)

while for small S we find

- S*0dd(2nq)*/[2n0T(dT +1)]. (3.6)

Whether S is extreme or not, a possible computational
formula for fiQ would be to use

®{j/2n)/2n (3.7)

Comparing (3.5) with (1.4), or even with (2.6), we
see that the latter two are not satisfactory when S is
large. Hence the estimator P in (1.7) is not likely to
yield accurate estimates of PneM except perhaps for
values of S in some intermediate range. When S is
very large even compared to 2n the 0d terms in (3.3)
and (3.5) can be neglected, and /iH and /iq are given
approximately by (1.3) and (2.6) respectively, /would
be estimating the right side of (1.6), which then
becomes

i-l

with <S> given now by (3.1).

+ 0-57722- l/[2(2nq)* + 2]} (3.8)

and which bears no relation to Pneut = 6/6T.
At the other extreme, when S is very small (1.6),

(3.4) and (3.6) show that / would again be estimating
the quantity in (3.8) rather than /»neut. When S is small,
it is difficult for any estimator based on allele
frequencies to detect the difference between neutral
and deleterious alleles. On the other hand, when 5 is
large, usually a sample would contain only neutral
alleles, and again the estimator cannot be expected to
perform well. The fact that P is not estimating 1, but
rather, (3.8), in these circumstances is because the
approximation (1.2) is inadequate when used to derive
A

To illustrate the way in which S can influence P, we
have calculated its value as in (1.7), but assuming that
infinitely many loci have been sampled so that 77 is
equal to its mean /iH in (3.2) and na(x < q) is equal to
/iq as in (3.7), subject to (3.1). The calculations were
done using two sets of parameter values as estimated
by Kimura. For his first example, he estimated 0 =
0114, 0T = 0-744 (so that dd = 0-63), with q = 001
and In = 3912. If these were the true parameter
values, Pneat = 0153 (as estimated by Kimura), except
when 5 = 0 for which Pneul = 1 since all mutants are
then neutral. The results are given in Table 1 under the
heading ' P, oo loci', and in Fig. 1. We see that when
S is small, say S < 1, or large, say S > 50000, P is
estimating 0-86, the quantity in (3.8), rather than Pneut.
For an intermediate range, say 25 ^ S ^ 200, P is
approximately 018 rather than the correct Pneul =
015. So P is positively biased (except at 5 = 0), but it
is reasonably close to the true value over the range
25 < S < 200.

Similarly, in Table 2 and Fig. 2, we show the
corresponding results for Kimura's last example,
supposing that 6 = 0-215, dd = 1-385, 0T = 1-6, q =
001 and 2« = 568. When P is based on infinitely many
loci, then it is too low when S = 0, it is too high
otherwise, but it is fairly reasonable for cases when
25 < S < 200, say.

In Figs. 1 and 2, the scale on the S axis is linear for
log(l + S), in order to cope with the wide range of 5
values required. Not only do the figures show the P
(oo loci) values, but also the H and na(x < q) values.
It is clear that H is not being much influenced by
deleterious alleles having S 5= 100, say, whereas
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Table 1. Variation of P with selection

159

s
0
01
1
5

10
25
50
75

100
200
500

1000
5000

10000
50000

True Pneut

1
0153
0153
0153
0153
0153
0153
0153
0153
0153
0153
0153
0153
0153
0153

P

oo loci

0-86
0-86
0-85
0-51
0 31
0-21
018
018
018
019
0-24
0-30
0-61
0-78
0-86

11 loci

Mean"

101
0-95
0-89
0-62
0-30
018
016
015
0-24
019
0-25
0-23
0-65
1-36
1-56

S.D."

0-39
0-43
0-32
017
014
005
010
006
013
Oil
008
008
0-52
0-70
0-72

Parameters In = 3912, q = 001, 6 = 0114, 6T = 0744
° Based on 10 replicate simulations.

1-U

0-75

0-50

0-25

-

<

i

\ \\y

t

- 3

-2

-1

0 1 10 100 1000
S (on log (1 +S) scale)

10000 50000

Fig. 1. Variation of H, na(x < q) and P with Selection.
Parameters: In = 3912, q = 001, 6 = 0-114, 6T = 0-744,
/ = o o .

na{x < q) is being influenced by such alleles, even up to
S = 10000 say. It is for reasons like this that Kimura
proposed his estimator. However, the estimator P is
reasonably effective only over the region where the P
graph is near its minimum.

In section 5 of Ewens & Li (1980), formulae are
given for the alleles' frequency spectrum, O(x), when
deleterious alleles are recessive. Using those formulae,
it may be shown that biases in P under recessive
deleterious alleles are similar to those found above for
additive deleterious alleles.

As in section 2, we can here expect sampling
fluctuations to be very important when P is calculated
from averages, H and na(x < q), based on only / = 11
or / = 31 loci. Theoretical studies would be possible
using Griffiths' (1983, (7)) result for the higher order
frequency spectra, analogous to (2.9) above for the
neutral case. Instead, however, we proceed by simu-
lation studies. In the appendix we give a new method

for simulating samples from a stationary population
which may include both neutral and selectively
deleterious genes. We have used this method to obtain
10 replicates for each of the two examples discussed
already, with / = 11 and / = 31 loci each, and for the
same values of S as studied above. When P is
calculated from finite samples from a finite number of
loci, it does not have a finite mean or standard
deviation (P = oo is possible). Nevertheless, in Tables
1 and 2 we show the means and standard deviations
observed over the 10 replicates, as a way of indicating
the sort of P values obtained, and their variability.

The results in Tables 1 and 2 indicate that P (/ loci)
takes values around its theoretical value (oo loci), but
with considerable sampling variation. For instance,
when S = 50 so that P (oo loci) is reasonably close to
Pneal, still the 10 replicates varied between P = 006
and 0.33 in the Table 1 example, and between P =
008 and 0-24 in the Table 2 example. There is evidence
that P in Table 2 is less variable than in Table 1, a not-
unexpected result considering the higher number of
loci (more than offsetting the smaller sample size) in
the Table 2 example compared with the Table 1
example. It is interesting that, in Table 1, with / = 11
loci the distribution of / seems skewed towards higher
values (compared with the oo loci results) in the
extreme cases 5 = 0 and S = 10000, or 50000, when
virtually all genes in the sample would be neutral. The
same tendency is much less marked in Table 2, with
/ = 3 1 loci.

Variation increases as / itself increases. Thus for
the 10 replicates for S = 50000 in Table 1, the smallest
was / = 0.48 and the largest was P = 2.88. Of course,
/ values greater than 1 would, presumably, be
truncated to 1 in practice.
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Table 2. Variation of P with selection

160

s
0
01
1
5

10
25
50
75

100
200
500

1000
5000

10000
50000

True Pneut

1000
0-134
0134
0134
0134
0-134
0134
0-134
0134
0-134
0-134
0134
0134
0134
0134

P

oo loci

0-76
0-76
0-76
0-53
0-30
019
016
016
016
019
0-31
0-50
0-76
0-76
0-76

31 loci

Mean"

0-80
0-72
0-78
0-60
0-30
017
014
014
015
016
0-26
0-42
0-51
0-59
0-93

S.D."

010
006
015
008
007
002
005
003
002
005
005
Oil
0-11
015
0-36

Parameters In = 568, q = 001 , 6 = 0-215, 0T

" Based on 10 replicate simulations.
= 1-6.

10

0-75

1
0-50

0-25

A

\ \

'na(x <«>

\
\
\
\
\
/

p

/
/

//
/

- 2

1

V
H

0 1 10 100 1000 10000 50000
S(onlog(l +S) scale)

Fig. 2. Variation of H, na(x < q) and P with Selection.
Parameters: In = 568, q = 0-01, d = 0-215, dT = 1-6,
/ = oo.

4. Bottleneck effects, neutral alleles only

In this section, we investigate the effects that bottle-
necks may have on the estimation of Pneut. In the
previous sections, calculations were done assuming
the population was at a statistically stationary
equilibrium. Now, we discuss cases when that assump-
tion does not hold.

Suppose that time is measured backwards into the
past, in units of 2Ne generations (where Ne is the
diploid effective population size at the time in
question). The sample will be taken to be at time / =
0, and for the period 0 < t ^ t1 in the recent past the
population was of constant size Nt and the mutation
parameter was 6X = 4 ^ vr. For the more remote past
with t1 < t ^ t1 +12, the population was of constant
size N2 and the mutation parameter was d2 = 4N2 v2.
For still more remote past times, we assume that the

population size varies periodically between Nx and
N2, over respective time intervals of lengths t± and t2,
and having respective mutation parameters 6X and 62.

Here, we emphasize that we are now assuming all
mutants are new and selectively neutral, so that the
mutation parameters Qx and 62 both correspond to
6 = 0T, but they apply at different time periods in the
past.

Suppose that a random sample of 2n genes is chosen
from each of / independent loci. Unknown to the
experimenter is the fact that the true proportion of
neutral mutants is Pneut = 1. The sample estimate P, if
it differs from 1, does so partly because of the intrinsic
bias in (1.7), partly because of small-sample effects, as
discussed above, and now, partly because of the non-
stationarity in the population caused by the periodic
bottlenecks in the past.

In Watterson (1988), a method of studying such
samples by computer simulation is presented. We
use that method here to investigate the behaviour of
/ . As a particular example, we again use parameters
suggested by Kimura's (1983) first example. We take
a sample of 2n = 3912 genes, from each of / = 11 loci,
and use the cut-off q = 001. For 0 values, we take 0x =
0-114 and 62 = 0-744 (which are numerically identical
with 6 and 6T used earlier, but which now have
different interpretations). With such d values, our
sample is being taken at the end of a period of small
population size which was preceded by alternating
large and small population phases. We also consider
the opposite case 61 = 0-744, 62 = 0114 in which our
sample is drawn from a large population, following on
from earlier small and large phases. The lengths of the
time periods, tr and t2, are varied, to see their effects
on P. In particular, by taking t1 = oo we can study the
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Table 3. Variation of P after periodic bottlenecks (true Pneut = 1)

161

't

001

01

1

10

0 0

001

a

3-47
(1-40)
2-52

(0-81)
2-21

(0-68)
2-78

(112)

01

107
(0-39)
3-79

(100)
613

(2-57)
5-85"

(207)
4-97

(2-40)

1

1 96
(1-29)
1-39

(053)
2-75

(2-67)
2-81

(1-95)
3-64

(2-29)

10

oo" \
(°o*)
0-88

(0-46)
ooc

(oo<)
1-91

(2-83)
1-49

(118)

00

1-42"
(0-89)

Parameters In = 3912, l=\\,q = 001, 61 = 0.114, 02 = 0-744; tabulated: mean P
(s.d. P) for 10 replicates.
" Not computed; thousands of periods required.
6 One replicate had na(x < q) = 0, P = oo. The other 9 replicates had average
P= 1-48, s.d. =0.57.
c One replicate had na(x <q) = 0, P = oo. The other 9 replicates had average
P = 1-26, s.d. = 1.19.
* Based on 20 replicates.

Table 4. Variation of P after periodic bottlenecks (true Pneut = 1 )

h

001

01

1

10

0 0

' i

001

a

0-33
(010)
0-22

(013)
018

(011)
019

(009)

01

0-85
(019)
0-49

(012)
0-26

(0-07)
017

(006)
018

(011)

1

0-96
(0-23)
0-92

(0-17)
0-83

(0-27)
0-79

(019)
0-59

(0-24)

10

0-90 \
(0-29)
0-90

(0-27)
0-88

(0-21)
0-94

(021)
0-90

(0-21) )

00

0-89
(018)

Parameters In = 3912, / = 11, q = 001, <9L = 0.744, 02 = 0114; tabulated: mean P
(s.d. P) for 10 replicates.
" Not computed; thousands of periods required.

stationary case, while if t2 = oo with tx < oo, we have
a case when only one change of population size
occurs.

Each set of parameter combinations was replicated
10 times, so that the means and standard deviations of
U and na(x < q) could be estimated and sample means
and standard deviations for P obtained. Recall that
each replicate itself involves averaging over / = 11
loci, as per Kimura's example. The results for P are
presented in Table 3, where 6X < d2, and in Table 4
when #! > 82.

In Table 3, we see that P usually takes values which
are impossible for Pneut, namely values greater than 1.
The variability is substantial; for instance when tY =
t2 = 1, the ten replicate values varied from P = 0-77 to
10-18. The two worst instances were, however, when
ft = 10 and t2 = 001 or t2 = 10. In both cases, one

of the ten replicates had 11 loci all with na(x < q) =
0, so that na(x < q) = 0 and P = oo. It is possibly
fortuitous that in both cases, t± = 10. There was a
replicate (for tl = t2 = 1) in which ten of the eleven
loci had na(x < q) = 0, while the eleventh had na(x <
q) = 1; but the same also occurred with tl = t2 = 10.

In Table 4, with 0x > 62, the P values are typically
below the true value Pneut = 1, due to bottleneck
effects. These are most marked, as might be expected,
when /x is small (001 or 01) so that there has recently
been a rapid population expansion, but the heter-
ozygosity has not yet risen correspondingly. Indeed,
the P values then are of similar magnitude to
those found by Kimura, and indicate that a recent
population expansion could produce effects which
might be erroneously attributed to the presence of
deleterious alleles.
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Of course it may be possible to correct P for the
effects of any known bottlenecks. Simulation studies,
similar to those used here, may help.

Appendix

It is a straightforward matter to simulate samples
from a population with two classes of alleles. We first
discuss some preliminary results. Let X denote the
proportion of genes in the population which are of
neutral allelic type. Then (Griffiths 1983 (4)) A'has a
probability density

for (0 < x < 1),

where

which has mean

0M(6+\,OT+\,S)
6TM(0,6T,S) •

Suppose that a random sample of 2« genes is to be

chosen. The number, Y say, of these genes which are

of the neutral types will have the mixed-binomial

distribution

\xy{\-xfn-yf(x)dx

y)

T(0T) (2n\ r Sx y+e_1

T(0)T{0d)M(0,0T,S)\y))o
e *

(A 1)

= (2n\
\y)

\2n + 0T,S)
M(6,8T,S)

That is,

,2n + 0T,S)

(6T\2n) M(6,6T,S) '

for (y = 0,\,2,...,2n), (A 2)

where 6<y) = 6(6+ 1)... (6+y-1).
While simple recursion relations exist from which

such probabilities can be computed fairly easily, it is
perhaps preferable to proceed differently. From (A 1),
we have

T(0T)
Y(6)T(6d)M(d,6T,.

S

2»

S fs(ni)gm(y),
m—0

(A3)

Y{6T)
T(0) M(6,6T, S) m\ T(m + 6T)

Sm 6
'dT,S)V (« = 0,1,2,...),

(A 4)

and

y) (m+eT\tn)

= 0,l,...,2n). (A 5)

Both {fs(m)} and {gm(y)} are probability distri-
butions. The former is denoted Ex CB by Gurland
and Tripathi (1975), and it is a three parameter hyper-
Poisson distribution. If 6 = 6T, it reduces to a Poisson
distribution, mean S. In general, it has a probability
generating function G(^) = M(8,6T, S$)/M(d, 6T, S),
from which it can be shown that, for large S, m is
approximately normal with mean and variance ap-
proximately equal to S—6d and S respectively. Apart
from the first term

UO)=l/M(d,0T,S), (A 6)

the remaining terms are given by the recurrence

(m+\)(0q
fsim). (A 7)

The second factor in (A 3), gm(y), is the Polya-
Eggenberger distribution, corresponding to the proba-
bility of drawing y neutral genes in 2« draws from an
urn, in which initially there were m + 0 neutral genes,
6d deleterious genes, and in which the drawing is with
replacement and, moreover, in which one extra gene is
added to the urn after each drawing, of the same class
(neutral or deleterious) as the one just drawn.

Suppose that the proportion, X, of neutral genes in
the population is given. Kingman (1980 p. 58) and
Griffiths (1983) have shown that those neutral genes
are distributed among the neutral alleles according to
the Poisson-Dirichlet distribution with mutation
parameter 0. Similarly, the deleterious allele relative
frequencies, when divided by 1 — X, have the
Poisson-Dirichlet distribution with mutation para-
meter 6d. The corresponding results within a sample
of 2« genes, given that Y = y of them are neutral and
2n— y are deleterious, are that the neutral genes are
distributed among the neutral alleles according to
Ewens' (1972) sampling distribution with parameter 0
and sample size y, whereas the deleterious alleles also
have Ewens' distribution with parameter 6d and
sample size 2n—y.

Now it is known, Hoppe (1984) and Watterson
(1984), that the allelic types of genes in a sample can
be easily simulated by a Polya urn scheme, consistent
with Ewens' distribution. So it is very neat that, for a
given m, the number y of neutral alleles, their allelic
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types, and the allelic types of the remaining 2M —y
deleterious alleles, can all be simulated by the one pass
through a Polya-urn scheme computer subroutine.
The total simulation scheme is then as follows:

(a) For given S,6,dT, calculate the probabilities
(A 4), using (A 6) and (A 7), or, for large S (say 5 ^
50) use a normal approximation, mean S — dd, variance
S.

(b) Use a standard method to simulate a variate, m,
having (A 4) or the approximating normal as its
distribution, e.g. the alias method (Kennedy & Gentle,
(1980) pp. 197-200).

(c) For theyth gene in the sample (J =1,2, ...,2n),
suppose that in they— 1 previous draws, x neutral and

j — 1— x deleterious genes have been drawn. Then,
consistent with (A 5), decide whether the y'th gene is
neutral (with probability (m + d + x)/(m + dT+j-l))
or deleterious (with probability (0d+j—\—x)/
{m + 6T +j— 1)). If the gene is to be neutral, it is either
a new mutant allele (with probability 8/(6 + x)) or it
copies the allelic type of one of the x already-allocated
neutral genes (each having probability l/(d + x) of
being copied). On the other hand if the yth gene is to
be deleterious, its type is either a new mutant allele
(with probability 0J(dd+j— 1 —x)) or a copy of the
type of an allocated deleterious gene (each having
probability l/(0d+j—\—x) of being copied).

The above scheme for two classes of genes can be
generalized to any number of classes, using Griffiths'
(1983, pp. 9, 10) results.

I thank Bob Griffiths for very helpful suggestions con-
cerning the simulation scheme presented in the appendix.
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