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Abstract
In recent years, there has been significant momentum in applying deep learning (DL) to machine health monitoring
(MHM). It has been widely claimed that DL methodologies are superior to more traditional techniques in this area.
This paper aims to investigate this claim by analysing a real-world dataset of helicopter sensor faults provided by
Airbus. Specifically, we will address the problem of machine sensor health unsupervised classification. In a 2019
worldwide competition hosted by Airbus, Fujitsu Systems Europe (FSE) won first prize by achieving an F1-score of
93% using a DL model based on generative adversarial networks (GAN). In another comprehensive study, various
modified and existing image encoding methods were compared for the convolutional auto-encoder (CAE) model.
The best classification result was achieved using the scalogram as the image encoding method, with an F1-score
of 91%. In this paper, we use these two studies as benchmarks to compare with basic statistical analysis methods
and the one-class supporting vector machine (SVM). Our comparative study demonstrates that while DL-based
techniques have great potential, they are not always superior to traditional methods. We therefore recommend that
all future published studies of applying DL methods to MHM include appropriately selected traditional reference
methods, wherever possible.

Nomenclature

AI Artificial intelligence
AUC Area under the curve
CAE Convolutional auto-encoder
CBLSTM Convolutional bi-directional long short-term memory
CNN Convolutional neural network
DR Discrimination and reconstruction
FN False negative
FP False positive
FSE Fujitsu systems europe
GAN Generative adversarial network
DL Deep learning
DR Discrimination and reconstruction
LSTM Long short-term memory
MAD Multivariate anomaly detection
MHM Machine health monitoring
RNN Recurrent neural networks
RUL Remaining useful life
STD Standard deviation
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SVM Supporting vector machine
TN True negative
TP True positive

Symbols

Ct centroid of statistical features for training data
Dv distance to centroid for validation data
μ mean value
σ standard deviation (STD)
υ boundary factor for one-class support vector machines
S skewness value
τ detection threshold

1.0 Introduction
In the last decade, deep learning (DL) has seen remarkable success in image recognition and natural
language processing, and researchers are now eager to apply DL to machine health monitoring (MHM).
Since most machine health data come from healthy machines, data from real-world faulty machines is
very scarce, making many MHM problems anomaly detection problems for time-series data. In a survey
of real-world applications for anomaly detection, Choi et al. [1] summarised DL-based techniques, high-
lighting certain application specific approaches and the lack of a universal approach. They compared
recently developed deep anomaly detection models for time series using benchmark datasets and offered
guidelines of selecting models and training strategies. Zhao et al. [2] provided an extensive review of
the application of DL to MHM problems and identified four categories of DL architectures that can be
applied: auto-encoder models, restricted Boltzmann machines models, convolutional neural networks
(CNN) and recurrent neural networks (RNN). They identified the ability to build machine health work-
flows without the need for hand-crafted features tailored to each machine and the ability to work with
large data sets as the key advantages of DL methods. We have recently observed an exponential growth
in the number of studies of applying DL to MHM and mechanical fault diagnostics. There were over
1,000 research papers and many review papers in the literature between 2019 and 2021 [3]. Despite
many application cases, we believe that the MHM application of DL methods remains in its infancy and
is likely to see continued substantial and rapid development that may further benefit the MHM field. A
key point that critics could argue is whether DL methodologies are always superior to more traditional
approaches to solving MHM problems.

In this paper, we will discuss this question using a real-world helicopter sensor fault dataset provided
by Airbus, which is a challenging machine learning problem of unsupervised classification. In the 2019
worldwide artificial intelligence (AI) challenge with this dataset hosted by Airbus, the first prize was won
by Fujitsu Systems Europe (FSE) with an F1-score of 93% using a DL model based on the generative
adversarial network (GAN), refer to the original paper of the method by Li et al. [4]. Another com-
prehensive study using the Airbus dataset by Garcia et al. [5, 6] compared the performance of various
modified and the existing image encoding methods for the convolutional auto-encoder (CAE) model.
They achieved the best F1-score of 91% using the scalogram as the image encoding method. We will
use these two studies as the benchmark for us to compare with basic statistical analyses and traditional
machine learning methods. We conclude in this comparative study that the DL-based techniques have
great potential but they are not necessarily always superior to traditional methods.

The rest of the paper is structured as follows. The information about the Airbus dataset is summarised
in Section 2, followed by the review of the results generated using the DL approaches and other poten-
tially useful DL techniques in Section 3. In Section 4, the data are analysed using conventional methods
with some commonly used statistical features. A simple statistical method, a distance-to-centroid method
and a one-class supporting vector machine (SVM) were applied and their results are reported and
compared to those of the deep learning methods. In Section 5, concluding remarks are presented.
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2.0 The Airbus helicopter sensor fault dataset
One of the main challenges in aerospace industry is to test the validity of flight test data from heavily
instrumented aircraft due to possible faulty sensors. Ensuring that healthy sensors are used for aircraft
health monitoring is of vital importance because faulty sensors can lead to incorrect or misleading
detection and diagnosis of aircraft faults, which in turn affects the safe flight of aircraft. Because of the
sheer volume of measured signals that need to be validated, manual validation is no longer possible. It
is crucial to automate the validation process. For this purpose, Airbus collected and released a set of
helicopter vibration measurement data from different flight tests – publicly available on https://doi.org/
10.3929/ethz-b-000415151.

Damage tolerant structures and redundant systems are relevant design features for aircraft safety.
Multiple vibration sensors installed on a helicopter may arguably be seen as an increased redundancy
and tolerance of sensor damage. In all operating conditions of the helicopter collected from different
flights, multiple accelerometers were placed at different positions of the helicopter, in different directions
(longitudinal, vertical, lateral) to measure the vibration signals with a constant sampling rate of 1,024Hz
and sampling length of 1 minute. The training data is composed of 1,677 accelerometer data sequences
from healthy sensors. The testing (or validation) data has 594 sequences consisting of streams from
either healthy or faulty sensors. Measurement locations and directions in the testing data may or may
not be identical to those of the training data. All signals in the dataset were normalised so that absolute
values do not have physical meaning.

With this dataset, Airbus hosted a worldwide AI challenge in 2019 to classify the testing sequences
into healthy and faulty sequences. Firstly, only the training data were released for model training to
ensure that all the models were trained without a priori knowledge about the testing data. After the
submission of trained models, Airbus released the testing data.

3.0 Review of results by deep learning methods
Among the 140 competing teams, FSE won the first prize with an F1-score of 0.93 using a DL
model based on multivariate anomaly detection with the generative adversarial network (MAD-GAN)
(https://www.fujitsu.com/emeia/about/resources/news/press-releases/2019/emeai-20191211-fujitsu-wi
ns-first-prize-for-predictive.html). There is no publication about the details of the winning method.
In the original paper of MAD-GAN [4], an unsupervised multivariate anomaly detection method
was proposed based on GANs. The authors used the long short-term memory based recurrent neural
networks (LSTM-RNN) as the base models for both the generator and discriminator in the GAN
framework. Their MAD-GAN framework treated the entire variable set concurrently and each data
stream independently to capture the latent interactions amongst the variables. They used a novel
anomaly score (DR-score) to detect anomalies through the discrimination and reconstruction (DR)
phases. The test results showed that the proposed MAD-GAN is an effective method in detecting
anomalies caused by cyber attacks on some complex real-world digital systems. Apparently, FSE’s
winning result proved the efficacy of MAD-GAN in detecting anomalies caused by faulty sensor
measurements.

Garcia et al. [5] stressed the fact that it is uncommon to find application cases of unsupervised DL
(e.g. AE and CNN)-based anomaly detection. They compared six image encoding strategies such as
Gramian angular field, Markov transition field, recurrence plot, grey scale encoding, spectrogram and
scalogram to transform the raw time series data into images for a CAE network. They defined a more
robust encoding method by modifying each of these six existing algorithms. Training the DL model only
on healthy condition data, they extracted the 99th percentile in the distribution of the residuals of all sub-
series to define the detection threshold τ. They then monitored the maximum residual over the sub-series
(for the detection of local anomalies) and measured it against the threshold τ beyond which an anomaly
is considered detected. Using the Airbus dataset, they conducted a comprehensive study comparing the
modified and the existing encoding methods and showed an improved performance by using the encoded
images against using the raw time series. All the modified versions were observed to perform better than
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their un-modified counterparts, in which the scalogram indicated the best performance with an F1-score
of 0.91 and area under the curve (AUC) score of 0.92.

There are several highly cited studies in the literature that demonstrated improved MHM results
delivered by DL, which may potentially be applied to the Airbus dataset. General consensus is that it is
difficult to feed the raw sensory data like the Airbus dataset directly into classification and regression
models. This is why many previous works focused on feature extraction/fusion methods that requires
expensive human labour and high-quality expert knowledge. Based on the development of DL methods
in previous years, which redefined representation learning from raw data, Zhao et al. [7] designed a deep
neural network structure of convolutional bi-directional long short-term memory networks (CBLSTM)
to address the raw sensory data. The CBLSTM firstly used CNN to extract local features that are robust
and informative from the sequential input. The bi-directional LSTM was used to encode temporal infor-
mation, where the LSTM captures long-term dependencies and models the sequential data, and the
bi-directional structure allows the past and future contexts to be captured. Then, fully connected layers
and the linear regression layer were stacked on top of bi-directional LSTMs to predict the target value.
They applied this method to a tool wear test dataset, and found that the CBLSTM was able to predict
the actual tool wear with raw sensory data input. The experimental results showed that their model
outperformed several state-of-the-art baseline methods.

Li et al. [8] proposed a novel intelligent remaining useful life (RUL) prediction method based on DL.
The time-frequency domain information was explored for prognostics, and multi-scale feature extraction
was implemented using the CNN. A popular rolling bearing dataset prepared from the PRONOSTIA test
platform was used to show the effectiveness of the proposed method. By comparing other approaches,
they demonstrated the superiority of the proposed method with highly accurate RUL prediction. Using
transfer learning to enable and accelerate the training of deep neural network, Shao et al. [9] developed
a new DL framework to achieve highly accurate machine fault diagnosis. They demonstrated that the
proposed method was faster to train (e.g. less epochs) and more accurate (e.g. quantified by both positive
and negative predictions) by comparing with other existing methods. They first converted original sensor
data to images using a wavelet transform to obtain time-frequency distribution images. They used a
pretrained network to extract lower-level features. They then fine-tuned the higher levels of the neural
network architecture with labelled time-frequency images. They used three datasets of induction motors,
gearboxes and bearings with sizes of 6,000, 9,000 and 5,000 time-sequences, respectively, to verify the
effectiveness and generalisation of the proposed technique. They achieved a test accuracy of nearly
100% on each dataset, and a significant improvement from the previous benchmark of 94.8–99.64% in
accuracy with the gearbox dataset.

4.0 Results by non-deep learning-based techniques
We will use the results from the above two studies with the Airbus dataset where F1-scores were 0.93 and
0.91 by FSE and Garcia et al., respectively, as the benchmark for us to compare with simple statistical
analyses, a distance-to-centroid method and a one-class SVM classifier.

4.1 Simple statistical analysis method
Using basic statistical analyses, we propose a new simple statistical technique in the paper to classify the
sensor health data. We firstly calculate the two most commonly used statistics, i.e. the mean μ and the
standard deviation (STD) σ , for every sequence (1,677 in total) in the training data. We then visualise the
distributions of the mean and STD values by a 2D histogram (histogram2 in Matlab) as shown in Fig. 1.
As we can see that the distributions are widely spread on both side of the mean values and mostly on the
right side of the STD values. With a given rate of outliers, e.g. 5% (or 2.5% on either side) as opposed
to the two-sigma principle for a Gaussian distribution, we can draw the boundary lines as indicated by
the four red dashed lines in Fig. 1. This rate can be prescribed based on the practical requirements of
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Figure 1. 2D histogram of mean and STD values in the training dataset (red dashed lines are bounds
set by 95th percentiles).

Figure 2. Confusion matrix using a simple statistical analysis method with a recall score of 99.66%
(296/297) and a F1-score of 96.1%.

false positive (or false alarm) rate or false negative (or missed detection) rate. For example, in aerospace
industry false negative can be fatal thus it should be minimised by using a relatively large rate of outliers,
such as the 5% chosen here.

In classification with the testing (or validation) data, we obtain the μ and σ values for each of the
594 sequences and compare them with the boundary values obtained from the training data. If either
the μ or σ value from a sequence in the testing data goes beyond the respective boundary values, we
classify this as positive, i.e. the sequence was from a faulty sensor. This represents the essence of our
simple statistics-based classification method. The classification result is presented in a confusion matrix
shown in Fig. 2. In the testing data, the ground truth is that there are 297 negative sequences (measured
by healthy sensors) and 297 positive sequences (measured by faulty sensors). We can see that the true
positive (TP) rate, or the recall score, is very high at 99.66%, and a good F1-score of 0.961, which is in
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Table 1. Classification with mean and STD as features

Rate of outliers True negative False negative False positive True positive
(297+297=594) (TN) (FN) (FP) (TP) F1-score
1% 293 (98.65%) 32 4 265 (89.23%) 93.64%
3% 288 (96.97%) 7 9 290 (97.64%) 97.32%
5% 274 (92.26%) 23 1 296 (99.66%) 96.10%

3.6% 98%

Table 2. Classification with mean and skewness as features

Rate of outliers True negative False negative False positive True positive
(297+297=594) (TN) (FN) (FP) (TP) F1-score
1% 297 (100%) 43 0 254 (85.52%) 92.20%
3% 295 (99.33%) 34 2 263 (88.55%) 93.59%
5% 281 (94.61%) 31 16 266 (89.56%) 91.88%

Figure 3. 2D histogram of mean and skewness values in the training dataset.

fact better than the results delivered by the DL-based methods at considerably reduced computational
cost and complexity. The F1-score here is defined as:

F1 = 2 × TP

2 × TP + FP + FN

where TP, FP and FN are true positive, false positive and false negative, respectively.
When other outlier rates are chosen, the results are summarised in Table 1. We can see the results at the

outlier rate of 3% have improved the classification performance with an F1-score of 0.9732. If we would
know a priori the ground truth in the testing data, we could further optimise the F1-score by searching
for the outlier rate. We found that the best F1-score of 0.98 can be achieved by setting the outlier rate to
3.6% while using the μ and σ values as the features. We can replace the STD with the skewness S (a 3rd
order statistic), where the corresponding results can be seen in Fig. 3 and Table 2. Obviously, replacing
STD with skewness produces lower F1 scores. The mean plus skewness combination may not be able to
detect the possible faulty-sensor sequence of all-zero values, which has a STD of zero and a skewness
of infinity (or NAN – not a number).
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Table 3. Classification with mean, STD and skewness as features

Rate of outliers True negative False negative False positive True positive
(297+297=594) (TN) (FN) (FP) (TP), Recall F1-score
1% 293 (98.65%) 25 4 272 (91.58%) 94.94%
3% 286 (96.30%) 4 11 293 (98.65%) 97.50%
5% 268 (90.24%) 0 29 297 (100.0%) 95.35%

3.57% 98%
3.85% 100%

Figure 4. Confusion matrices using a simple statistical analysis method with the highest recall score
of 100% (left) and the highest F1-score of 98.01% (right).

The corresponding results with the three-feature combination of μ, σ and S are listed in Table 3. We
can see that an extra feature of skewness only improves the performance marginally from the μ and σ

combination at the outlier rates of 1 and 3%, and produces weaker performance at the 5% outlier rates.
Further with the three-feature combination, we have found the highest recall score (100%) at outlier rate
of 3.85%, and the highest F1-score (98.01%) at 3.57% outlier rate, as shown in Fig. 4. It is worth noting
that the detection criterion is through an ‘OR’ logical operator, where as long as one of the features
goes out of bounds, we will have a positive (or faulty sequence) detection. Perhaps the ‘OR’ operation
among the three features made the difference for the superb performance by the simple statistical analysis
method, which will be explored further in Section 4.2. In addition, we added the fourth feature of kurtosis
(the 4th order statistic) and found that the added feature does not help improve the performance. Despite
the fact that it would be difficult to choose the right outlier rate before knowing the ground truth a priori,
we can demonstrate that the simple statistical analysis method with any reasonable outlier rate is at least
comparable to the two DL-based methods discussed previously.

4.2 Absolute distance to centroid method
To verify that the ‘OR’ operation among the three features was the key to achieve the remarkable perfor-
mance by the simple statistical analysis method, we can fuse the three features into a distance-to-centroid
metric for classification with the selected outlier rates, which is another novelty of the paper. The outlier
is measured by the absolute distance to the centroid of the three statistical features. Using the same sta-
tistical features such as mean, STD and skewness for the training data, we firstly calculate the centroid
(same as the median for this Airbus dataset), denoted as Ct = [Cμ, Cσ , CS]. For the validation data, we
calculate the features (mean μ, STD σ and skewness S) for each of the 594 sequences, then we obtain
the absolute distances Dv by the sum of the three absolute differences
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Figure 5. Confusion matrices using the absolute distance to centroid method with the highest precision
score of 100% but lower F1-scores than those in Section 4.1 and the benchmark scores by the DL
methods.

Dv = ∣
∣μ − Cμ

∣
∣ + |σ − Cσ | + |S − CS|

With two selected rates of outliers at 3 and 5%, we obtained the confusion matrices shown in Fig. 5.
We can see that the absolute distance to centroid method is not performing as well as the simple sta-
tistical method with the ‘OR’ operation and the benchmark DL methods by the F1-score, despite that
the former has the highest precision score of 100%. The low recall score (79% and 82%), meaning too
many missed detections of faulty sensors, tend to prevent this method from being the ideal choice for
this application which is to identify faulty sensors and for other aerospace applications. The results pre-
sented in Fig. 5 confirms the importance of the ‘OR’ operation among the three features to achieving
the better performance by the simple statistical analysis method.

4.3 One-class SVM classification with simple statistics
SVMs were developed to classify datapoints separated by complex (i.e., non-linear) multidimensional
boundaries [10]. Subsequently, SVMs were extended to address single-class classification problems,
where the points belonging to the single class are separated by a hyperplane from the points regarded
as ‘outliers’. For this reason, one-class SVMs are considered as robust unsupervised outlier detection
algorithms, and they have been widely used in machine fault monitoring and anomaly detection prob-
lems over the past two decades [11, 12]. One advantage of using one-class SVMs for machine condition
monitoring is that they only require healthy data to fit a hyperplane that is then used to identify anoma-
lous behaviour (i.e. points outside the hyperplane). They also have the benefit of providing a strong
generalisation ability using relatively small-sized datasets [13], which is a crucial aspect for machine
condition monitoring applications.

Therefore, we tested the ability of a one-class SVM to identify the anomalous or faulty sequences
in the Airbus dataset. The one class SVM was set up with radial-basis-functions kernel and a boundary
factor of υ = 0.1 (usually the default value). Instead of giving the full sequences to the SVM, we used
the same pre-computed statistical features (mean, STD, skewness and kurtosis) as inputs. When using
mean and STD only, a F1-score of 97% was achieved (Fig. 6), which compares well with the F1-score of
96% in Fig. 2. We also conducted a leave-one-out analysis to see which features were the most important
out of the four tested, the accuracy metrics for each case are presented in Fig. 7.

It seems that the most important feature is the mean, as when it is left out the accuracy drops signif-
icantly, while when leaving out the kurtosis, all four accuracy-metrics improve to almost 95%. This is
in agreement with the previous results with simple statistical analysis method.
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Figure 6. Classification result using a one-class SVM with mean and STD as features.

Figure 7. Leave-one-out analysis showing the effect of excluding one of four different statistical features
from the one-class SVM classification.

We further show in Fig. 8 the performance of different combinations of statistical features, including
mean-STD-skewness as well as the same combination including peak-to-peak (maximum minus mini-
mum of each sequence). We can see that the mean-STD-skewness combination performs slightly worse
than mean-STD only, while including peak-to-peak produces the best result with a recall score of 0.98
and F1-score of 0.98.
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Figure 8. Classification results of one-class SVM with different combinations of statistical features.

ST
D

Figure 9. Scatter plot of the two statistical features.

4.4 Analysis of the ground truth data
To analyse the ground truth data, we propose a simple way of visualising the training and validation data.
Figure 9 displays scatter plots of two statistical features, μ and σ , along with zoomed-in versions of two
marked areas in Figs 10 and 11. The marked areas contain 26 and 33 positive data sequences acquired by
faulty sensors, which are challenging to distinguish from negative points in the training data (represented
by green circles). In particular, the area in Fig. 11 presents a difficult case, requiring a lower threshold of
σ < 0.06 for better classification. Without this threshold, the best classification result achievable through
simple statistical analysis is an F1-score of 93.5%. However, with the lower σ threshold at 0.06, the
F1-score can be increased to 98.34% by adjusting other bounds or thresholds that have a lesser impact
on the F1-score (see Fig. 12). In addition, nine out of the ten false positive (FP) points shown in Fig. 12
can be located within the area of σ < 0.06 in Fig. 11.

It is suspected that the distance-to-centroid method misclassified most of these two difficult areas,
resulting in a F1-score of only 90%. These areas account for approximately −10% in true positive
(TP) cases and +10% in false positive (FP) cases if misclassified, i.e. (26+33)/594 = 0.0993, which
may explain why the distance-to-centroid method reaches a ceiling F1-score of around 90%, as shown
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ST
D

Figure 10. Scatter plot of the two statistical features – zoomed version of Fig. 9 (dashed box with 26
positives is the first difficult area in to classify).

ST
D

Figure 11. Scatter plot of the two statistical features – zoomed version of Fig. 9 (dashed oval with 33
positives is the second difficult area to classify).

in Fig. 5. This suspicion is supported by Fig. 13, where 54 false negative (FN) points are marked by
red asterisks. It is clear from Fig. 13 that the dashed circle area in Fig. 11 is mostly misclassified
(33 out of 43).

5.0 Concluding remarks
In traditional machine learning, unsupervised classification can be a challenging problem. Deep
learning-based methods have demonstrated significant potential to address this challenge. With the
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Figure 12. Classify with mean of [−0.2, 0.7], or STD of [0.06, 1.5] or skewness [−0.6, 0.7] where the
lower threshold of STD at 0.06 is the most influential bound.

ST
D

Figure 13. Classify with distance to centroid method at 5% outlier rate, misclassified (FN) points in
red ∗ symbols and the dashed circle area is mostly (33 FN out of 43) misclassified.

Airbus dataset, deep learning methods, such as the GAN and CAE, can deliver good performance in
classifying sensor data into ‘good’ or ‘bad’ when the deep learning models are trained on ‘good’ data
only. In this paper, we are not disputing the effectiveness of deep learning methods, rather we want to
remind people that traditional statistical analysis and machine learning methods can often perform as
well as, and sometimes better than, the newer and more sophisticated deep learning methods. In the
example of the Airbus dataset, most of our simple statistical analysis methods and the one-class SVM
with simple statistical features can outperform the deep learning counterparts. The absolute distance
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to centroid method performed less effectively than the DL learning benchmarks. However, one might
argue that we could have seen the testing data prior to forming our framework, which would make
the comparison unfair. Our counter argument would be to begin by using proven simpler methods as
benchmarks before starting the journey of applying more complex and computationally expensive deep
learning methods. For example, we have demonstrated that we could use the mean and standard devi-
ation and 5% outlier in the training data, refer back to Fig. 1, to set up the boundaries/thresholds for
anomaly detection without the need of any fine tuning by the testing data.

In conclusion, for MHM problems, it is not necessarily true that DL methods are always superior to
traditional methods, and it is a good practice to start solving a MHM problem with simpler methods.
Similar views and arguments can be found in a case study by Wang et al. [14] in another DL application
to MHM. Based on the results present here, we therefore recommend that where possible all future
published studies of applying DL methods to MHM include appropriately selected traditional reference
methods.
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