
PRINCIPAL RIGHT IDEAL RINGS 

R. E. JOHNSON 

This paper is concerned with the recent work of A. W. Goldie (1 ) on prin
cipal right ideal rings (p.r.i. rings). We shall prove some of his main structure 
theorems using the methods of (3) and (4), and in so doing shall weaken 
some of his hypotheses. 

1. Basic lemmas. A p.r.i. ring is a ring with unity having the property 
that every right ideal is principal. If R is a p.r.i. ring and A is an ideal of R, 
then R/A also is a p.r.i. ring. A finite direct sum of p.r.i. rings clearly is a 
p.r.i. ring. One of the reasons that the structure of a p.r.i. ring R can be 
determined is that its lattice Lr(R) of right ideals satisfies the ascending 
chain condition (a.c.c). Of course, the lattice L(R) of ideals of R also satisfies 
the a.c.c. On the other hand, the lattice Lt(R) of left ideals of R need not 
satisfy the a.c.c. 

Some of the following lemmas may be found in Goldie's notes (1). We 
have included them here so that our paper will be essentially self-contained. 

1.1. LEMMA. If R is a p.r.i. ring and aR, bR G L(R), then aR-bR = abR. 

Proof. Evidently Rb C bR, so that aR-bR C abR. On the other hand, 
ab G aR-bR and therefore abR C aR-bR. 

1.2. COROLLARY. If R is a p.r.i. ring and aR G L(R), then (aR)n = anR 
for every positive integer n. 

1.3. LEMMA. If the a.c.c. holds for the set of annihilating right ideals of a 
ring R, then for every a G R there exists a positive integer k such that 

(an)r r\ amR = 0 

for all integers n > 0 and m > k. 

Proof. Let us select k so that (a*)r = (an)r for every n > k. If x G (a*)r H a*R, 
then x = aky for some y G R and akx = 0. Hence, a2ky = 0 and aky = 0 by 
the choice of k. Therefore, (ak)r P\ akR = 0. Since (an)r C (ak)r for every 
n > 0, and amR C akR if m > k, we have proved 1.3. 

We shall use the notation AT, as in the proof above, to designate the right 
annihilator of set A in ring R; and A1 for the left annihilator of A. We shall 
let Lr

A(R) designate the lattice of all large right ideals of i?, and Rr
A designate 
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the right singular ideal of R. Thus, A G Lr
A(R) if and only if A G Lr(R) and 

A P\ B 9e 0 for every non-zero B G Lr(R), and a 6 i?r
A if and only if 

ar G LT
A{R). The following lemma is a partial converse of (5, 3.5). 

1.4. LEMMA. If the ring R is not semi-prime, then there exists some C G LT
A(R) 

such that Cr 9e 0. 

Proof. If R is not semi-prime, there exists some non-zero A G L(R) such 
that A2 = 0. If B is a complement of A in LrCR) (that is, B is a maximal 
element of the set {D G Lr(R) | Z> H A = 0}), then C f L r

A ( i ) , where 
C = A + B. Clearly £.4 C £ H 4 = 0, and therefore C4 = 0. 

1.5. LEMMA. If R is a p.r.i. ring, then Rr
A = 0 if and only if R is semi-

prime. 

Proof. If R is semi-prime and the a.c.c. holds for Lr(R), then RT
A = 0 by 

(2, 3.2). Conversely, if R is a p.r.i. ring for which Rr
A = 0 and if C G Lr

A(R), 
then C = aR for some a £ R. Hence, a G B(R) in the notation of (5) and 
ar = 0 by (5, 3.4). Therefore, Cr = 0 and i? is semi-prime by 1.4. 

1.6. LEMMA. Let R be a p.r.i. ring and cR G L(R).Ifcl = 0,thencR G LT
A{R) 

and cr = 0. 

Proof. If cR H ^ = 0 for some ,4 G L r(i?), then ,4ci? = 0, Ac = 0, and 
^ 4 = 0 . Hence, ci? G Lr

A(R). Actually, since (cn)1 = 0 for every integer 
n > 0, we have (cn)i? G LT

A(R) for every w. Therefore, by 1.3, cr = 0. 

2. Structure theory. A ring R is called (left) faithful in (4) if Rl = 0. 
Clearly every ring with unity is (left and right) faithful. For each (left) 
faithful ring R, we may define the set F"(R) of ideals of R as in (4, p. 524). 
Thus, A G F"(R) if and only il A £ L(R) and A n A1 = 0, A = A11. A 
similar set Fr"(R) of ideals of R may be defined for a right faithful ring. 
Although F"(R) and Fr"(R) are not in general equal, it is clear that 
F"(R) = Fr"(R) in case R is semi-prime (3), since Ar = A1 for every 
A G L(R) in this case. 

If R is a faithful ring, then F"(R) can be made into a lattice by taking 
A C\ B to be the usual set-theoretic intersection of A and £ , and defining 
A yj B = (A + £ ) n for A,B £ F"(R). It is proved in (4, 1.4) that F"(R) 
is a Boolean algebra, with Al being the unique complement of each A G F"(R). 
By the very definition of F"(i?), (4 + 4 ' ) 1 = 0 for every A G F"(R). 

2.1. THEOREM. If R is a p.r.i. ring, then R = A + .4*jfor e^er^ ,4 G F"(R). 

Proof. Let 4 = ai?, ^ ' = bR, and 4 + 4 l = ci?. Since c' = 0, also cr = 0 
by 1.6. Now a = eu, b = «>, and c = aa' + bb' for some w, v, a', 6' G i?. Hence, 
c = cwa' + arô' and 1 = ua' + vb'. Therefore , R = uR + z/i?. Since 4̂̂ 4 ' = 0, 
we have ab = 0 and c#Z> = 0. Hence, ub = 0 and « C i because Z>* = 4̂ " = A. 
Consequently, ur Q A and, similarly, vR C. A1. It follows that R = A + A1. 
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The lattice F"(R) is finite in case the a.c.c. holds. For if A is a maximal 
element of F"(R), A ^ R, then A1 is an atom of F"(R). Evidently each B 
of F"(R) is contained in a maximal element, and consequently each B con
tains an atom of F"(R). By the a.c.c. and the fact that F"(R) is a Boolean 
algebra, F"(R) contains only a finite number of atoms. Hence, F"(R) contains 
only a finite number of elements. 

If R is a p.r.i. ring and A Ç F"(R), A 9^ 0, then A is a p.r.i. ring in view 
of 2.1. By (4, 1.7), F"{A) = {B \ B Ç F"(R), B C A}. Thus, we may extend 
2.1. by mathematical induction as follows. 

2.2. THEOREM. 7/ R is a p.r.i. ring, then R = Ai + . . . + An where 
{A 1, . . . , An) is the set of atoms of F"(R). 

In case the ring R is semi-prime, then F"(R) — {Arl \ A Ç L(R)} according 
to (3, p. 376). Also, each atom of F"(R) is a prime ring by (3, 2.7). Thus, we 
have the following corollary of 2.2. 

2.3. THEOREM. A semi-prime ring is a p.r.i. ring if and only if it is a finite 
direct sum of p.r.i. prime rings. 

Next, let us assume that R is a p.r.i. ring and that N is the prime radical 
of R. Since the a.c.c. holds in Lr(R), TV is a nilpotent ideal of R. Let iN desig
nate the index of nilpotency of N. The p.r.i. ring Rr = R/N is semi-prime, 
and for each A' G F"{R'), Rf = A' + B', A' = B,r = B'\ B' = A'T = A'1. 
If A and B are the ideals of R corresponding to A1 and Bf, then we must 
have 
R = A + B, A C\B = N, NA-1 = A~*N = B} NB~l = B~lN = A. 

Let A = aR and B = bR, so that A' = a'R' and B' = b'R\ where a' = a + N 
and b' = b + N. Since A1 is a p.r.i. ring and A'1 = a'1 = 0 in ^4', we have 
a,r = 0 in A' by 1.6. Therefore, a , r = B' in i?'. It follows that ax £ N for 
x € i? if and only if x £ B. Since ai? D iV, we must have aB = N. Hence, 
abR = N and, similarly, baR = iV. This means, in view of 1.1, that 

A C\ B = AB = BA = N. 

Consequently, AnBn = (^4B)ra = 0 for every integer n > iN. 

2.4. THEOREM. If R is a p.r.i. ring with prime radical N and if A G L{R)y 

ADN, then A/N Ç F"(R/N) if and only if An G F"{R) for some positive 
integer n. 

Proof. We first assume that A' = A/N € F,f{R/N) and that B' = A'1. If 
B is the ideal of R corresponding to Bf, then the ideals A and B of R have 
the properties stated above. Let us prove that R = An + Bn for every positive 
integer n. If k is an integer for which R = Ak + 5*, then 1 = a*w + bkv for 
some «, v e R and TV = akuN + bkvN C Ak+1 + Bk+l. Since 

2? = (A* + Bk)(A + B) C ^4*+1 + £*+1 + N = ,4*+1 + 5**1, 
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It follows by mathematical induction that R = An + Bn for every positive 
integer n. 

According to 1.3, there exists an integer k such that {an)T C\anR = 0 for 
every positive integer n > k. If we select n > iN, then anbn = 0 and 
Bn C ( O r . For such a choice of », R = An + £ n and An C\ Bn = 0. Thus, 
1 = e + / for orthogonal idempotents e and / , where e (z An and / G J3n, 
and ^ n = eR, Bn = /R. Consequently, (&R)1 = 22/ = /i?, (/K)1 = Re = «£, 
and 4» G 7?" (2?). 

Conversely, if -4 Ç L(J?), -4 D iV, and if ^4n g ^"(2?) for some positive 
integer », then let A\ = 4̂W and i?i = ^4i*. By 2.1 and what is given, 
R = Ax + Bu A1C\B1 = 0, and Bx

l = Ax. If we let A = Ax + N and 
B = Bx + N, then ÀC\Ë = N. Hence, 2?' = 4 ' + B\ Af C\ Bf = 0, where 
R' = R/N, Af = À/N, and B' = B/N. It follows that A' G JF"CR). We need 
only show that À = A to complete the proof. If 1 = e + / , e £ Ai a n d / G £ i , 
then i4 = *4 + fA and 4 n = («4)» + (fA)\ Hence, ^ i = An = (ei)w and 
( /4) n = 0. This shows t h a t / 4 C N and therefore that A CAX + N. Conse
quently, .4 = Â and the proof of 2.4 is completed. 

2.5. THEOREM. If R is a p.r.i. ring with radical N, then the Boolean algebras 
F"(R) and F"(R/N) are isomorphic under the correspondence A —> {A + N)/N, 
A G F"(R). 

Proof. If A G F"(R) and B = A\ then R = A + B and A C\ B = 0. 
Hence, A + N = A + Ni for some ideal NiC B C\ N and 

(4 + i\0* = Ak = 4 

for every k > iN. Therefore, (A + N)/N G F"(R/N) by 2.4. 
Conversely, if A' G F"(R/N) and yl is the corresponding ideal of R, then 

An G F"(R) for some positive integer » by 2.4. We may show, as in the 
proof of 2.4, that A = An + N. Hence, there exists some An G F"(R) such 
that (An + N)/N = 4 ' . 

Finally, let us show that the mapping 6 : 6(A) = (A + N)/N, A G F"(R), 
of F"(R) onto F"(R/N) is 1-1. If 0(Ai) = d(A2)1 then ^ + N = ^ 2 + tf 
and (^4i + iV)* = (A2 + iV)* for every positive integer k. If we select k > %, 
then we get that Ai = Af C (-4i + #)* C -41 and hence that A i = (4i+iV)*. 
Similarly, A2 = (^2 + #)* and Ai = A2. This completes the proof of 2.5. 

A ring R is called (left) irreducible if and only if F"(2?) = {0,R}. If R is 
a p.r.i. ring with radical N, then R is irreducible if and only if R/N is by 
2.5. If R is semi-prime, then R is irreducible if and only if it is prime (3, 
2.7). Thus, we have the following result. 

2.6. THEOREM. / / R is a p.r.i. ring with radical N, then R is irreducible if 
and only if R/N is a prime p.r.i. ring. 

Let us now look at the irreducible p.r.i. rings. We first prove the following 
lemma. 
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2.7. LEMMA. If R is an irreducible p.r.i. ring with prime radical N and if 
aR e L(R), aR (£ N, then aT = 0 and N C aR. 

Proof. Let B = aR + N and Bf = B/N, a non-zero ideal of R' = R/N. 
We know that B'T = Bn = 0, since Rr is a prime ring. Therefore, if B = bR 
and b' = b + N, b'1 = 0 in Rf and also b'T = 0 by 1.6. Hence, bx € N, for 
x 6 R, if and only if x £ N. Since iV C bR, evidently N = îV. It follows 
that N = bnN and that N Q Bn for every positive integer w. Therefore, there 
exists a positive integer k by 1.3 such that br C\Bk = 0. Since 6r C N C -S*, 
this means that 6r = 0. However, Bn = (ai? + iV)n C aR if w > iN and 
therefore iV C aR and i? = ai?. Thus, the lemma is proved by letting b = a. 

A ring R is called (left) primary if and only if whenever i , 5 Ç Z (R) are 
such that AB = 0, then either An = 0 for some integer w > 0 or B = 0. Of 
course, each prime ring is also primary. 

2.8. THEOREM. / / R is a p.r.i. ring, then R is primary if and only if it is 
irreducible. 

Proof. If R is irreducible and A,B 6 L(R), with AB = 0, then either 
A (IN, the radical of R, and B = 0 by 2.7, or A C N and .4* = 0 for « = ^ . 
Therefore, R is primary. 

If i? is primary and A G F"(R), A j* 0, then An = A for every positive 
integer w. Since A A1 = 0, we must have 4̂* = 0. Therefore, A = R and i? 
is irreducible. 

On combining 2.2 and 2.8, we obtain the following result. 

2.9. THEOREM. A ring is a p.r.i. ring if and only if it is a finite direct sum 
of p.r.i. primary rings. 

Theorem 2.3 was obtained by Goldie in (1, 6.3). He obtains Theorem 2.9 
also (1, 6.20), but only under the added assumption that the a.c.c. holds 
for the lattice of left ideals of the ring. 
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