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MOVING WEIGHTED AVERAGES

M. A. AKCOGLU AND Y. DENIEL

ABSTRACT  Let R denote the real line Let {7} },cg be a measure preserving ergodic
flow on a non atomuc finite measure space (X, ¥, 1) A nonnegative function ¢ on R 1s
called a weight function if [g (r)dt = 1 Consider the weighted ergodic averages

Af@ = [ fTx00 dr

of a functionf X — R, where {0, } 1s a sequence of weight functions Some sufficient
and some necessary and sufficient conditions are given for the a e convergence of 4,f,
1n particular for a special case in which

0 () = (1/r)e(t — ap) /i),

where @ 15 a fixed weight function and {(ay, r¢)} 1s a sequence of pairs of real numbers
such that r, > O for all k These conditions are obtained by a combination of the meth-
ods of Bellow-Jones-Rosenblatt, developed to deal with moving ergodic averages, and
the methods of Broise-Déniel-Derriennic, developed to deal with unbounded weight
functions

A method developed by A. Nagel and E. M. Stein [13], and later by J. Sueiro [15], to
investigate the pointwise convergence for general approach regions in harmonic analy-
sis has been modified and generalized by A. Bellow, R. Jones, and J. Rosenblatt [1] to
deal with certain pointwise convergence problems in ergodic theory. These techniques,
combined with the Hardy-Littlewood Maximal Theorem and the Calderén Transfer Prin-
ciple, have been very successful (see [1, 2, 3, 11, 12, 14]) in the investigation of the
“moving” ergodic averages weighted by certain special weight functions. On the other
hand, M. Broise, Y. Déniel, and Y. Derriennic [5] have recently generalized the Hardy-
Littlewood Maximal Theorem to obtain convergence results for more general weighted
“nonmoving” averages that could not have been examined by the Hardy-Littlewood The-
orem alone (see also [6, 8, 9]). Our purpose in this note is to use this new maximal in-
equality, in a slightly modified form, in combination with the methods of Bellow-Jones-
Rosenblatt to obtain a general result for the moving averages, formulated as Theorem D
below. This theorem includes, in the one dimensional case, many of the results given in
[1] and [5], and covers new cases. Theorem C is an important special case, formulated
separately. The initial two results, Theorems A and B, show that a previously formulated
condition, usually referred to as the “Cone Condition”, is necessary and sufficient for
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the pointwise convergence of the moving ergodic averages of bounded functions, with
respect to an arbitrary weight function. We formulate this condition in an equivalent way,
in the definition of “B-sequences”, which seems to be simpler and more natural for our
purposes. Most of the results formulated here have multidimensional analogues. These
are discussed in a paper under preparation, jointly with D. Mclntosh.

We make the present paper fairly self-contained, repeating, in a somewhat different
context, some of the arguments already given in the articles mentioned above. One reason
for this is the reader’s convenience. Another reason, however, is that the reformulation
and the modification of the existing results for our present arguments would also have
required a substantial amount of work and space and would probably have resulted in a
less satisfactory presentation.

1. Introduction.

NOTATION 1.1. Let N be the set of natural numbers and Z the set of integers. The
real line is denoted by R, the o-algebra of its Borel sets by B, and Lebesgue measure on
(R, ‘B) by £. We indicate the integration with respect to Lebesgue measure either by d?,
or by dt, or in a similar way. A nonnegative function ¢ on R is called a weight function
if [r @(t)dt = [g pdl = 1. The characteristic function of set £ in any space is denoted
by xk. Let (X, F, i) be a non atomic finite measure space, {T,},ER a measure preserving
aperiodic flow on X, and let f be a function on X. Consider a sequence of weight func-
tions {0y }ren. We would like to investigate the a.e. convergence of the weighted ergodic
averages

Afe) = [ FT000)de

for certain special choices of the sequence {6, }. The basic case we will consider is the
following. Let {(ax, 1) }ren be a sequence of pairs of real numbers such that r, > 0 for
all k € N. Let ¢ be a fixed weight function. We then let

Ou(t) = Yu(0) = (1 /rp((t — ) [ ri).

In this case we will denote the corresponding sequence of weighted ergodic averages by
A7 and call them the moving weighted ergodic averages. Nonmoving averages corre-
spond to the case where a;, = 0 for all k. It will turn out that the convergence of the
moving averages is closely connected with a property of the sequence {(ay, rx)} which
we will now define.

B-SEQUENCES 1.2. Let {(a;, r:)} be a sequence in R x R such that r;, > 0 for all k.
Then this sequence will be called a B-sequence if there is a constant B such that

e({r | Ik, + ap, t +ap + 1) C I}) < BU(ID)

for every interval I C R.
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THEOREM A 1.3.  Assume that {T,},cg is an aperiodic flow. If {(ay, )} is not a B-
sequence then, for each weight function ¢ there is a bounded function f on X such that
A[f diverges on a set of positive measure.

THEOREM B 1.4.  Assume that {(ay, ry)} is a B-sequence such that either both a; and
ri converge to zero or ry converges to infinity. Then A f converges a.e. for any bounded
functionf and for any weight function .

If f is an unbounded function then, in general, the averages A;f do not converge,
even if {(ayry)} is a B-sequence. The following theorem gives a sufficient condition for
convergence. We need a definition to formulate this theorem.

DISTRIBUTIONS AND REARRANGEMENTS 1.5. Let 4 be a nonnegative function on a
general measure space (Y, G, v) such that its support

Sp={y| h(y) >0}

has finite measure. The distribution of such a function is the finite measure D;, on (R, B)
defined by
Dy(B) =v(S,Nh~'B), BeB.

The (decreasing) rearrangement of % is the nonnegative function #* on the measure space
(R, B, £) which is zero on (—00, 0], decreasing on (0, 00), and has the same distribution
as h. It is easy to see that 2* is unique in the sense that two rearrangements of s differ
only on a set of Lebesgue measure zero.

THEOREM C 1.6.  Assume that {(ay, ry)} is a B-sequence such that either both a; and
1y converge to zero or ry converges to infinity. Let ¢ be a weight function with a compact
support. Then A7 f converges a.e. for all functions f on X such that

A If|""dt < oo.

Note that, when the weight function ¢ is bounded then the last condition on f is sat-
isfied for all integrable functions. Finally we will also consider the following general
situation.

THEOREM D 1.7. Let {¢i} be a sequence of weight functions. Assume that these
functions are dominated by an L|(R) = L,(R, B, ) function ® of compact support and
converge (-a.e. to a function p, which is necessarily another weight function. Assume
that {(ay,ry)} is a B-sequence such that either both a; and ry converge to zero or ry
converges to infinity. Then the averages

Af ) = [ FT0)0u(0)di
formed with the weight functions

0i(t) = (1) r)pe((t — @) [ e
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converge a.e. on X if the function f satisfies

AX f|"®" df < oo.

In this case the a.e. limit of these averages is equal to the a.e. limit of the averages ﬂ,f f,
which also exists.

REMARK 1.8.  We assume that the flow {7} },cg is a full aperiodic flow, rather than a
semi-flow {77} >0, just for the sake of convenience, except in Section 3, in the proof of
Theorem A. In none of the remaining arguments is the invertibility of the transformations
or the aperiodicity of the flow used. Hence the Theorems B, C, and D are also valid
for a semi-flow. When dealing with a semi-flow, however, the support of all the weight
functions involved must be in the nonnegative part of the real line.

REMARK 1.9. We also note that all of our results, including Theorem A, are valid
for the discrete flow {7"},c7 or the discrete semi-flow {7"},>¢, formed by the powers
of an invertible or, respectively, a not necessarily invertible ergodic measure preserving
transformation. In fact these flows can be imbedded in a continuous standard flow under
a constant ceiling function of unit height. In this case, if the weight functions are also
step functions that are constant over the intervals of the form [n, n+ 1), the integrals that
define Z,f can be replaced by sums, giving weighted averages of the powers of a single
operator. More explicitly, let {a;} and {r;} be two sequence of integers, where r; > 1
and r, — o0. Let {C}}, i = 0,...,r, be a finite sequence of nonnegative numbers with
¥k, Ci = 1. To investigate the discrete averages

Af =3 GTf

one may, for example, consider the sequence of weight functions

T
Pk = Z(rk + I)C;(X[;lil—‘)
i=0 Tt e
If these functions converge /-a.e. to a function ¢ and are dominated by an L;(R) function
® of compact support, then Theorem D shows that the discrete averages 4,f converge
a.e. whenever
/R O |f|*dl < o0

and (ay, ry) is a B-sequence.

EXAMPLE 1.10 a-CESARO MEANS. As a special case we consider the moving «-
Cesaro averages of a transformation. The corresponding case for the nonmoving (¢, = 0)
averages was discussed in [5]. Let « > 0 be a fixed number. Let r, = k and define
C, = A JAZ,i=0,... .k where A] = 1 and

AB

m

m! m

_ B+ 1D)@E+2)-Bam) _ (m+6>
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for any real number 3 > —1 and for any integer m > 1. We see [16] that 3% C} = 1,
and

B
lim 2% = T@+1).

m—o00 AZ -

From this it follows easily that

k Aa~l

. _ . k—1
kli‘&‘p"(t)_;}ir&zo(kJ'l) AT Xip ey (0)

= o1 =" xpo.n()

= (1)

for all 7 € R. To see that the sequence {; } is dominated by an L;(R) function it will be
enough to show that

inf{ #(0) 'O<t<1,k:1,2,... >0.
(1)

In fact, if
+1

+1

~.

i
<t
k+1 — <

then, withg=a—landm =k +1,

o o (i/k+D)
e~ i/ (k+ 1)

(1_£>6(1+m€i)“.(1+m€1)<1+§)’

where 0 <i < m— 1 and m > 2. The infimum of this last expression, as i and m change
over the above ranges, is strictly positive. This follows easily from the observations that
the infinite product

)

x~

i

B
H(l + ;> exp(—3/n)
is convergent for 5 > —1, and that the sequence
1 1
1+§+---+;~logn
is bounded.

2. B-Sequences.

NOTATION 2.1. All the intervals we are going to consider are bounded intervals in
R and have nonempty interiors, either by construction or assumption. If / is an interval
with the end points p and ¢, and @ and r are real numbers, then a + r/ denotes the interval
with the end points a + rp and a + rg. We will always assume that r > 0. In this case
Lla+rD) = ri().
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B-SEQUENCES OF INTERVALS 2.2. Let {I;} be a sequence of intervals. Then we will
say that {/;} is a B-sequence if there is a constant B such that, for all intervals /,

0{t] Ik €N, e+ 1, CI}) < BL().
REMARK. If {/;} is a B-sequence of intervals then
¢({t| 3k € N,t+1I, CE}) < BU(E)

for any Borel set E.

LEMMA 2.3.  Let {(ay, i)} be a sequence in R X R and assume that r, > 0 for all k.
Let I and J be two intervals. Then I}, = ay+ryl is a B-sequence if and only if Jy = ay+riJ
is a B-sequence.

PROOE. Let V = (—R,R) be a fixed symmetric interval about zero that contains
both I and J. Find o > 0 such that £(V) = (1 + a){(J). Given any interval W, let
W be the interval with the same center as W and satisfying £(W) = (1 + 2a)0(W). If
t+Jy = t+a+nrJ C Wthen we see that 7 + a; + ,V C W and, consequently,
t+a; +nd C W. Hence, if {I;} is a B-sequence with a constant B, then {J;} is also a
B-sequence with a constant (1 + 2c)B.

DEFINITION 2.4.  Let {(a;, r)} be a sequence in R x R such that r, > 0 for all k. We
say that {(ay, ry)} is a B-sequence if a; + ri I is a B-sequence of intervals for an interval /.
The previous lemma shows that this definition is independent of the choice of the interval
I

REMARK. The defining condition for being a B-sequence is equivalent to the “Cone
Condition”, formulated and used by Nagel, Stein, Sueiro, Bellow, Jones, and Rosenblatt
in [13, 15, 1] (see also [14]). This equivalence is obtained below, although we are not
going to use the Cone Condition, formulated as (C) below.

LEMMA 2.5.  Let {(ay, )} be a sequence in R X R such that r, > 0 for all k. Then
the following two conditions on this sequence are equivalent.
(B) There is a constant B, such that for all intervals I,

0({t| Ik, (t + .t + ag + r) C 1Y) < BE).
(C) There is a constant C, such that for all positive numbers s,

F({t[ Fk, |t —a| < (s— rk)}) < Cs.

PROOF. Assume (B). Given s > 0, let I = (—s, s) and define

E = {r| 3k,

t—ai| <(s—r},

and
E ={t| 3k (t+ayt+a+r) Cl}.
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Then we verify that E C —E'. Hence,
U(E) < ((—E) = U(E") < BU(I) = 2Bs,

which means that (C) is satisfied with C = 2B.
Now assume (C). Let I = (u, v) be an interval. Define

E ={t| 3k (t+a,t+a+nr)CI},

and, fors > 0,
E(s) = {t| 3k, |t —ar] < (s —r)}.

We verify that if t € E' then — + u € E(v — u). Hence
U(E") < (u—E(v —w) = L(Ev —u) < C(v — u),

which is (B) with B = C.

3. Divergence of averages. In this section we prove Theorem A. This result shows
that the moving ergodic averages over non B-sequences, with respect to any weight func-
tion, always diverge for some bounded functions.

LEMMA 3.1. Assume that {(as,r)} is not a B-sequence. Then for each R > 0, K,
and € > 0 we can find two sets C and D in X such that

0 <Ru(C) < (D),

and such that
sup A7 xc(x) > 1 — ¢
k>K

forallx € D.

PROOF. Since the flow is aperiodic, given any S > 0 we can find a mapping
r(-$,8—%

and a number ¥ > O such that for any Borel subset E of (—S, S) and for any numbers s
and ¢, where s, t, and s + r are all in (—S, S),

(a) T(E) € ¥,

(b) p(TEB) =7UE),

(c) T(s+1) = TI(s),
where I'(E) = |, T'(#). This follows easily by considering the given flow as the standard
flow under a ceiling function and by taking a sufficiently tall Rohlin tower for the base
transformation. In fact we can also make ,u(l"((—S, S))) arbitrarily close to 1(X) but this
fact is not needed.

Find an interval J such that the integral of the given weight function ¢ on J is greater
than 1 — . Then the same is also true for the integral of v, on J;, = a; + riJ, for any
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k Since {J;} 1s not a B-sequence, 1ts tail {J; },> 18 not a B-sequence etther, for any K
Hence we can find an 1nterval / such that

({t| Ik >K,t+J, CIP) >R >0
Then there 1s an integer L such that 1f
F={t|3k K<k<L t+J, CI}

then £(F) > R{(I) We now find a number S such that the interval (—S, S) contains /,
F, and all the intervals of the form ¢ + J;, where t = Qort € Fand K < k < L If
I' (—S,5) — X 1s a mapping as described at the beginning of this proof, we then let
C=T({)and D =T(F)

We will verify that the requirements of the lemma are satisfied Since

0 < REI) < UF),

we see that
0 <Ru(C) < (D),

by (b) Letx € D Then there1s at € F such that x € I'(#) Hence there 1sa k > K such
that # + J; € I, which implies that Tsx € C, for all s € J; Then, with these choices,

AL X = [ Xe(T0) vils) ds
> [ Xe(Tx) () ds
= /J Ye(s)ds > 1 —¢

PROOF OF THEOREM A 32 Given two numbers € > 0 and > 0, we use the
previous lemma to find two sequences of sets {C,} and {D,} in X and a sequence of
numbers {K,} such that

(a) K, converges to infinity,

(b) Zu(Gy) <,

(©) X u(Dp) = 00,

(d) supgg, A xc (x) > 1 —¢forallx € D,

We can do this easily 1n stages, at each stage choosing a finite segment of our se
quences Suppose that at the m-th stage we have the sets C and D satisfying the con
ditions of Lemma 3 1 with R = 2™ and K = m Hence u(C) < 2 "u(X) Then the
m-th segments of the sequences {C, }, {D,} and {K,} will have u,, terms, obtained by
repeating C, D, and m u,,-times, respectively, where u,, > 1 1s the smallest integer such
that u,,u(C) >2 ™ '(X) Note that the sum of the terms of {u(C,)} over this segment,
which 18 just u,u(C), 18 still less than 2 "u(X) The sum of the terms {u(D,)} over the
same segment 1S u,u(D), which 1s greater than 2"u,,u(C) > 2";L(X) Hence we see
that 3~ u(C,) < oo and 3~ u(D,) = oo Then by cutting off an 1nitial segment of these
sequences we obtain the desired sequences
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Now we note that if {C,}, and {D,} are two sequences satisfying the conditions
above, then, for any choice of the numbers t,, the sequences {T,,C,}, and {7, D, } will
also satisfy the same conditions. Since Y u(D,) = 00, we claim that there is a choice for
the sequence {7, } such that

u( U Tt,.Dn) = pX)
n>N
for all N. This follows easily from the fact that, given any two sets A and B in X and any
number M > 1, there is a ¢ such that u(A N 7;B) < Mu(A)u(B). This fact, in turn, is
a direct consequence of the mean ergodic theorem (see also the related Lemma 1.24 in
Chapter XIII of Zygmund [16]). We now let f be the characteristic function of U, T, C,,
with this choice of {r,}. Then it is clear that [y f du < n but

limsup 47f > 1—¢
k
a.e. on X. Hence the averages for this function f can not be convergent.

4. Rearrangements.

REARRANGEMENTS 4.1. The definitions we are going to give apply to nonnegative
functions f on a measure space (X, F, 1) having supports

Sp={x|fx) >0}
of finite measure. The distribution of such a function is the finite measure D; on (R, B)

defined by
Dy(B) = w(S;Nf'B), Be€ B.

Note that this measure is contained in (0, 00). We will call any finite measure on the
Borel subsets of (0,00) a distribution. A nonnegative function on the measure space
(R, B, £) will be called a (decreasing) rearrangement function if it has compact support,
is zero on (—00, 0], and decreasing on (0, 00). It is easy to see that given any distribu-
tion there is a rearrangement function whose distribution is the given one. Also, any two
rearrangement functions with the same distribution differ only on a set of Lebesgue mea-
sure zero. The rearrangement of f is the rearrangement function f* which has the same
distribution as f. We see that there is a measure preserving map 7: S — Sy+, which is
not necessarily invertible, such that f(x) = f*(7x) for almost all x € Sy. This map can be
extended in an arbitrary way to the outside of these supports, if convenient.

LEMMA 4.2. Let f be a nonnegative function on R with a support of finite measure.
Given a rearrangement function & on R, there is a function g such that g* = £ and such
that

[ fede= [ fg dt = [ frear.
Furthermore, if the support of £ is contained in the support of f*, then the support of g

is contained in the support of f.

The proof follows easily from the observation made above, by letting g(r) = £(7¢).
Another property of rearrangements is given in the following theorem, which we state
without proof. For a further discussion see [10].
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THEOREM 4.3. Let f and g be two nonnegative functions on a measure space
X, F,p). Let A € F and let o = pu(A). Then

[ fedu < [[(Frarexar at
< [(Fxargde

< ["rwgwa.

We now consider a sequence of nonnegative functions {f,} on X with pairwise dis-
joint supports. Let f be the sum of these functions. The distribution of f is the sum of the
distributions of f;’s. In general there may not be an easy way to express the rearrange-
ment of f in terms of the rearrangements of f;’s. As an important special case, however,
assume that the rearrangement of each f; is of the form £*(r) = £(r/k,), where £ is a fixed
rearrangement function and k,’s are constants, k, > 0. In this case the rearrangement
function of f is given by f*(t) = £(t/K), where K = ¥, k,, assumed to be finite. In fact,
Dy = kD¢, and, consequently, Dy = KD¢. A continuous version of this result is also
true, which will be stated at the end of the next paragraph.

Let (Y, G, v) be another measure space and consider the Cartesian product space X X Y
with the product measure p x v. For a nonnegative function f on X x Y let f denote the
function on X x R such that, for any x € X, the function f(x, -) on R is the rearrangement
of the function f(x, -) on Y. It is easy to see that there is a measurable function f with these
properties. Note that the function f on X X Y has the same distribution as the function
f on X x R. Hence f* and f* are the same functions on R. Then, for two non-negative
functions f and gon X X Y,

[ [ ey gty vidy) o) < [ [ 7980 ds (e
< [Fog

by applying the theorem above twice. In particular, if there is a single rearrangement
function ¢ and a strictly positive integrable function k on X such that g(x,7) = & (t / k(x)),
then we see easily that g*(r) = £(t/K), where K = [y k(x)p(dx). We collect these obser-
vations in the following lemma.

LEMMA 4.4. Let f and g be two nonnegative functions on the Cartesian product
X XY of two measure spaces. Assume that there is a fixed rearrangement function £ such
that, for each fixed x € X, the rearrangement of g(x,-): Y — R is given by £(t/k(x)),
where k is a strictly positive and integrable function on X. Then

| fredvdn< [ Froee/Kar,
where K = [y k(x)u(dx).

Finally, we mention the following simple result which will be used on several occa-
sions. It is proved by an obvious change of variables.
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LEMMA 4.5. Let € and 1 be two rearrangement functions and let a > 0. Then

/R £(t)yn(t/a) dt < max(1,a) A () n(t) dr.

5. Maximal theorems. Our purpose in this section is to prove the following maxi-
mal inequality.

THEOREM 5.1. Consider a weight function ¢ with a compact support, and a B-
sequence {(ar,rv)}. Let {T,} be a measure preserving flow on a finite measure space
X, F, ). We let

ALfD) = [ fT0 w0y d,
where
() = (1/r)e((t = ap) [ i),

and f is a function on X. Then there is a constant C such that

u({x | 3 A7F0 > A}) < /f* “de
for all nonnegative functions f on X, and for all A > 0. If J is an interval containing the
support of the weight function o then the constant C can be taken as
C = 4B(£() + (X))
where B is a constant corresponding to the B-sequence of intervals
Jy = ap +rJ,
as defined in 2.2, i.e. a constant such that
({t| 3k, t+J, C 1}) < BUI)
for any interval I.

The proof will consist of several lemmas. Theorem 5.5 is the corresponding maximal
inequality on R. The main inequality on X is then obtained by an application of Calderén’s
Transfer Principle.

NOTATION 5.2.  Let ¢ be a weight function which has a compact support contained in
an interval J. Let F be another nonnegative function on R with compact support. Starting
with ¢ and F we define, for each Borel set E with nonzero finite measure,

B ()
p(E) = HD/mwaw( yr

U(E)
Then we see that for each Borel set E there is a function 1 with support in E such that
tJ
= ( )
Vi 05)
and such that w
= Fygdl.
p(E) = E) Jn YE

The reason for defining p is given by the following lemma.

https://doi.org/10.4153/CJM-1993-023-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1993-023-x

460 M A AKCOGLU AND Y DENIEL

LEMMA5.3. Leta€ Randr>0.1If

(/n [ F@y (@t —a)/r)d>

then

pla+r)) >

PROOF. Let 9(r) = <p((t —a) / r). Since the support of ¢ is contained in J, the
support of 1 is contained in a + rJ. Also, the rearrangement function of 1 is given by
Y*(r) = *(¢/r). Hence we see that

A</ [ F@ye(t—a)/r)dr
= (1/r)/WJF(z)<p((t_a)/r)dt
< (/1) [[(Fxam)' @ "¢/ dr

) )
= S [ Fxam) @ ¢ (tZ(a+r.D)dt
= pla+rJ).

LEMMA 54. Let {E,} be a sequence of pairwise disjoint Borel sets and let
E = UE,. Then

2 UENN(E) < UE)p(E) < UE) ) p(E).

PROOF.  For the first inequality, with the notations above,

b %(g)ﬁp(a) X
= FY g, df
= JiFxe) b, e
< ey (S vE) ar
= [(Fxor ¢ (r%) di
= %p(E)-
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For the second inequality,

“B
0, B) = [ Fosdt
= /E Fypdl
=3 L Fypdl
<3 [ Fxe)vrde

0
-Z/<FXE) Ory ( E(E))dt

5 LB o)
L](E)/( FxE)* (1) ¢* ( Z(E)) dr

K(E)
E),
=0 2 > p(E)

where the last inequality follows from Lemma 4.5.

THEOREM 5.5. Let A > O0andM > 0 be fixed. Let G be the union of all open intervals
I C (—M, M) for which p(I) > ). Then

(G) < M/F*(t) ( K(J))

PROOF. Let
= {tl s, -M<t<s <M,p((t,s)) > >\/2}.

It is easy to see that L is an open subset of (—M, M), and that, for each ¢ > 0, there are
finitely many pairwise disjoint intervals I, C (—M, M) such that p(1,) > X/2 for each
i and such that £(L) — ¢ < {(E) < 2M, where E is the union of these intervals. Hence
p(E) > X\ /2 by the previous lemma. This means that

L,(E)/(Fxb-) 0 ¢" ( (J))

_ ) )
< 7o W OF (2M)

A2 <

Then we conclude that
UL) — e < U(E) < W)jp*() ( Z(J)) dr.

Hence

2 (J) (e
oL < == / F )y (tm) d.

https://doi.org/10.4153/CJM-1993-023-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1993-023-x

462 M. A. AKCOGLU AND Y. DENIEL

Similarly we see that if
L'={t|3s5,—M <s <t <Mp(s.0)>1/2},

then
n o 2L(J) -~ NRiv))
= _)\—/R O (’W)d"

We claim that G C LUL'. To see this let € G. Then there is an interval I C (—M, M) that
contains t such that p(/) > A. If ¢ is an end point of / then our claim is clear. Otherwise /
is divided into two intervals I; and I, by t. The previous lemma shows that A < p(I) <
p(I1) + p(Iy). Hence either p(I;) > A/2 or p(I>) > X/2. This means that  belongs to at
least one of L or L'. Hence our claim has been proved. Then

(G) < L)+ (L) < @ ./RF*(I) P (t%) dr.

NOTATION 5.6. Let M > 0 be a fixed number and I = (—M, M). Instead of a single
function F: R — R* with compact support, we will now deal with a (measurable) function
F: X x R — R* whose support is contained in X x I, where (X, F, i) is finite measure
space. We fix, as before, a single weight function ¢ whose support is contained in an
interval J with ¢(J) > 1. With a given A > 0 and with the same M > 0 as above we
define p and G for each x € X separately, using the function F(x, -): R — R* in each case.
To denote the dependence on x we will now use the notations p(E, x) and G(x) instead of
their corresponding previous versions. We also let

H={(x0]|re G}

It is easy to see that H is a measurable subset of X X R. In fact, in the definition of G(x)
it is enough, for example, to consider only intervals with rational end points.

LEMMA 5.7. We have

(wx o < 2 [ g (t

tJ)
1k ) dt

2Mu(X)

where F*: R — R* is the rearrangement function of F: X X R — R* and ¢*: R — R* is
the rearrangement function of p: R — R*. In particular, if F(-,t): X — R* has the same
rearrangement function € for each t € I and is zero fort ¢ I, then

0 ),
2MuX))

o oy < 250 [ e(s/m) i

PROOE. Let the (measurable) function F: X x R — R* be defined by the condition
that F(x, -) is the rearrangement of F(x, -), for each fixed x € X. Note that F and F have the

https://doi.org/10.4153/CJM-1993-023-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1993-023-x

MOVING WEIGHTED AVERAGES 463

same rearrangement function. By Fubini’s theorem and by Theorem 5.5 and Lemma 4.4,
(1 x O(H) = [ £(G0)u(a)
4(
(J)// Fx,1) ¢" ( ))dtu(dx)

40(J) of, D)
< ——X—.RF*(I)@ (IZMp(X)) dt

The second statement follows again from Lemma 4.4.

NOTATION 5.8. Let {(ay, rx)} be a B-sequence and define J; = a; + riJ, where, as
before, J is an interval containing the support of the weight function ¢ and ¢(J) > 1. We
fix an integer K > 1 and find a number R > 0 such that the interval (—R, R) contains Jj
for k < K. We then fix an arbitrary number S >0 andlet M = R+ Sand I = (—M, M).
We then consider a nonnegative function f on X and define F on X x R by F(x,t) =
f(Tx) if [f) < M and F(x,7) = 0 otherwise, where {7, },cg is a measure preserving flow
acting on the finite measure space (X, F, ). The previous notations will now apply to
this particular choice of F. Note that F satisfies the hypothesis stated in the second part
of the Lemma above. In fact, since the flow is measure preserving, the distribution of
F(-,t) = f(T}) is equal to the distribution of f for each ¢ € I and zero otherwise. Hence
we see that F*(t) = f *(t / (2M)). We define G(x) as before with these choices of F and M
and with a fixed A > 0. Recall that

ALf0) = [ TR w0y d,

where

Yit) = (1/r)e (= an) /).
LEMMA 5.9. Letk <K and |t| < S. If A7 f(Tx) > X then t + Ji, C G(x).

PROOF. We have

A< AT = [ f(Tue) o (s —an)/n)(1/r) ds.

Since the support of ¢ is contained in J, the integral above can be taken over J; only,
instead of R. By a change of variables we obtain

A< APF(Ti) = /Mk f(Tyx) <p<(s —(t+ap) /rk)(l /) ds.

Since k < K and |7] < S we see that # + J; C I. Hence we can also replace f(7Tx) by
F(x,s) in the integral above. Then Lemma 5.3 shows that this integral is dominated by
p(t + Ji, x). Therefore t + J;, C G(x).

LEMMA 5.10. Let
V={x]3k< K,ﬂ;’f(x) > A}
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Then

4BML(J) .. o L)
wv) < —)\S—/I;if @ (tu—(})—) dt,

where B is the constant for the B-sequence of intervals
Jy=a + rJ,

as defined in 2.2.

PROOF. Let
W={@n|l] <S8 TxeV}

We calculate (1 x £)(W) in two different ways, by Fubini’s Theorem. First,
(1 x O)(W) = /R/XXW(x, ) u(dx) de
’ d
= [ Jxr v iy dr
=25u(V).

For the second order we integrate on R first, for a fixed x € X. We see that (x,7) € W if
|f] < S and if there is a k < K such that

Af(Tx) > A
Then the previous lemma shows that
W) = {t]| (.)€ W} C {t]| Ik 1+J, C G)}.

Hence Z(W(x)) < BZ(G(x)). Therefore,

x OW) = [ ¢(We)u@ < B [ ¢(G)u@.

The last integral gives (u X £)(H), with the notations of Lemma 5.7. Hence, by applying
this lemma and observing that the rearrangement function £ is now f*,

aBI) [, (i tD
(ux OW) < == [ F(c/ @) (’2M;L(X)) @

SBMUW) [ . ()

Combining these two expressions for (u X £)(W) we conclude the proof.

PROOF OF THE MAIN THEOREM 5.1.  We recall that M = R + S, where R > 0 was a
fixed number determined by K € N and § > 0 was arbitrary. By letting S go to infinity
we see that, for any K € N,

u({x | <K AL > 0}) < — fre (I;L(—X)) a
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Hence we conclude that

4B¢
p({x | & A7fx) > A}) < (J)/f() ( gg))dt

Finally, by Lemma 4.5, the last integral is dominated by

wX) o %
(HW) fRf 1) (1) dt.

Hence the constant

pw(X)
oJ)

satisfies the requirements of the theorem.

C= 43@(1)(1 +2=2 ) = 4B(£(J) + p(X))

6. Convergence of averages.

NOTATION 6.1.  Let {(ay, rx)} be a sequence in R x R such that r, > 0 for all k. We
recall that

ALF) = [ AT (o) dr,

where ¢ is a weight function and

Yi(t) = (= ar) [re)(1 /o).
We also let
Mef(x) = sup AL,
and observe that

p(fx | Mof@) > A}) < / If|*¢* dt,

by the maximal theorem. Note that if the support of ¢ is contained in an interval J then
the support of 1/ is contained in the interval J; = a; + rJ. The following simple lemma
is useful for the investigation of A, for bounded functions f.

LEMMA 6.2. Let ¢ and ¢’ be two weight functions. Then

127F(0) = A7 £ < Nl — @' 11 If lloor

Hence, for a given bounded function f, if ﬂl;f f converges a.e. for a class of weight func-
tions that approximate any weight function in the L(R)-norm, then A f converges a.e.
for any weight function.

PROOE. Follows from the fact that

/R“P((t— ak)/rk) - 90'((1 - ak)/rk)‘ dt=|l¢ —¢'|h.
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LEMMA 63  Let ¢ be a weight function and let {(a;, r;)} be a sequence such that
both a; and ry converge to zero Then A f converges a e for any function f of the form
f(x) = [§ g(Tsx)ds, where g 15 a bounded function

PROOF  Without loss of generality we can assume that the weight function ¢ has
compact support, because of the previous lemma The function f(T\x) = [** g(T,x) ds 15
a bounded and continuous function of ¢ foraa x To complete the proof it is enough to

show that if F R — R 1s a bounded and continuous function then
/R F(to + 1) Y (t) dt

converges to F(t), for each to € R To see this assume that F(zy) = 0, without loss of
generality Let J be an interval containing the support of ¢ Find a number 6 > 0 such
that |[F(1)| < e whenever |t — 1| < é Then find a kg € N such that J; C (—6,6) for all
k > ko Then, for k > ko,

| Flto+ Dy vuyde] = | [ Flto+0)vuoydr
< [ IFto+0] vunyde < ¢

THEOREM 6 4 Let {(ay, ry)} be a B-sequence such that both a; and r, converge to
zero Let p be a weight function Then A[f converges a e for each bounded function f

PROOF  Again we will assume that the weight function ¢ has compact support, with-
out loss of generality Let f be a bounded function with M = ||f]|o, Then the family of
functions f,(x) = (1/a) [ f(T,x) dt converge to f 1n L;(X), as a approaches to 0" Also,
this famuly of functions 1s uniformly bounded by the same bound M If 4, f does not
converge on a e , then there 1s a set E C X of u-measure m > 0 and a number A > 0 such
that iminf and limsup of 4 f differ by more than A on E Since A;’f, 1s convergent, we
see that liminf and limsup of A (f — f,) also differ by more than A on E, for each a > 0
This means that

EC{x| M?|f —ful() > A/2},

for any a > 0 This, however, violates the Maximal Inequality 5 1, which says that the
measure of the last set 1s dominated by

2C ..
= st

In fact, this integral converges to zero as a — 0%, since the integrand converges to zero
¢-ae on R and 1s dominated by an L; function

THEOREM 6 5  Let {(ay, rx)} be a B-sequence such that ry converges to infinity Let
@ be a weight function The /‘Zl,f f converges a e for each bounded function f

PROOF Let u and v be two numbers, u < v, and assume that

e =(1/0=w)Xwun
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In this case the a.e. convergence of 4/ f is obtained easily if f is of the form
fx) = h(x) + g(T1x) — g(x),

where g and & are two bounded functions and #4 satisfies h(T)x) = h(x). Any bounded
function can be approximated by functions of this form in the L;(X)-norm, as, for ex-
ample, an application of the mean ergodic theorem for 77 in L,(X) shows. Then we see
that ﬂ,f f converges a.e. for every bounded function, applying the maximal inequality as
in the proof of the previous theorem. If ¢ is a linear combination of weight functions of
this special form, that is, if ¢ is a step function, then it is clear that 4,f also converges
for each bounded function f. Since any weight function can be approximated by step
functions in the Lj-norm, the proof is completed by an application of Lemma 6.2.

THEOREM 6.6. Assume that {(ay, )} is a B-sequence such that either both a; and
Iy converge to zero or ry converges to infinity. Let @ be a weight function with a compact
support. Then A f converges a.e. for all functions f on X such that

J e de < oo

PROOE. It is enough to restrict the attention to nonnegative functions. We know that
A7 f converges for bounded functions. The proof is completed by an application of the
maximal inequality, as in the proof of Theorem 6.4. We give some of the details. Let f
be a nonnegative function such that

/Rf*ap* dt < oco.

Let f,, be the minimum of f and the constant function n. Then each f,, is a bounded function
and

Lttt

converges to zero as n approaches infinity. If 47 f diverges on a set of positive measure,
there is a constant A > 0 and a set E of positive measure such that limsup and liminf of
A7f differ by more than A on E. Then this is also true for A/ (f — f,), for any n. Hence

EC{x| M(f —f)(x) > A},

for all n. The maximal inequality is then again violated, as the measure of the last set
must be less than

C
AR

which is arbitrarily small if n is sufficiently large.
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THEOREM 6.7. Let {1} be a sequence of weight functions. Assume that this se-
quence is dominated by an Ly(R) = L|(R, B, ) function ® of compact support and
converges {-a.e. to a function yp, which is necessarily another weight function. Let

Af ) = [ F(T0) 00
where
0(t) = (1/ rpe((t — @) [ 7).

If the function f satisfies
/R f|"®" de < oo,

then
F = |Af — A
converges a.e. to zero.
PROOF. Let
Dn(1) = SUp[ (1) — pm (1)
and

W) = (l/rk)‘bn((t - ak)/rk)'
Then we see that @}, is dominated by ®* and converges ¢-a.e. to zero. Hence, if
]R f|"®* dt < oo,

then
e, ae
converges to zero. Also, if k > n then
F = |ALf — Af|
< [Vl T — 6l de
< A [f[9nsde.

Hence, by the maximal inequality, for any A > 0,

(x| sup Fe@ > A}) < g/RWq:;de.

k>n

This completes the proof, as the last integral converges to zero as n approaches infinity.
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