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MOVING WEIGHTED AVERAGES 

M. A. AKCOGLU AND Y. DÉNIEL 

ABSTRACT. Let R denote the real line. Let {Tt}te^ be a measure preserving ergodic 
flow on a non atomic finite measure space (X, <J, fi). A nonnegative function ip on R is 
called a weight function if Jĵ  <p{i) dt = 1. Consider the weighted ergodic averages 

Akf(x) = JRf(Ttxy9k(t)dt 

of a function/: X —• R, where {9k} is a sequence of weight functions. Some sufficient 
and some necessary and sufficient conditions are given for the a.e. convergence of Sfyf, 
in particular for a special case in which 

Ok(t) = (l/rkM(t-ak)/rk), 

where <p is a fixed weight function and {(ak, rk)} is a sequence of pairs of real numbers 
such that rk > 0 for all k. These conditions are obtained by a combination of the meth­
ods of Bellow-Jones-Rosenblatt, developed to deal with moving ergodic averages, and 
the methods of Broise-Déniel-Derriennic, developed to deal with unbounded weight 
functions. 

A method developed by A. Nagel and E. M. Stein [13], and later by J. Sueiro [15], to 
investigate the point wise convergence for general approach regions in harmonic analy­
sis has been modified and generalized by A. Bellow, R. Jones, and J. Rosenblatt [1] to 
deal with certain pointwise convergence problems in ergodic theory. These techniques, 
combined with the Hardy-Littlewood Maximal Theorem and the Calderon Transfer Prin­
ciple, have been very successful (see [1, 2, 3, 11, 12, 14]) in the investigation of the 
"moving" ergodic averages weighted by certain special weight functions. On the other 
hand, M. Broise, Y. Déniel, and Y. Derriennic [5] have recently generalized the Hardy-
Littlewood Maximal Theorem to obtain convergence results for more general weighted 
"nonmoving" averages that could not have been examined by the Hardy-Little wood The­
orem alone (see also [6, 8, 9]). Our purpose in this note is to use this new maximal in­
equality, in a slightly modified form, in combination with the methods of Bellow-Jones-
Rosenblatt to obtain a general result for the moving averages, formulated as Theorem D 
below. This theorem includes, in the one dimensional case, many of the results given in 
[1] and [5], and covers new cases. Theorem C is an important special case, formulated 
separately. The initial two results, Theorems A and B, show that a previously formulated 
condition, usually referred to as the "Cone Condition", is necessary and sufficient for 
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the pointwise convergence of the moving ergodic averages of bounded functions, with 
respect to an arbitrary weight function. We formulate this condition in an equivalent way, 
in the definition of "B-sequences", which seems to be simpler and more natural for our 
purposes. Most of the results formulated here have multidimensional analogues. These 
are discussed in a paper under preparation, jointly with D. Mcintosh. 

We make the present paper fairly self-contained, repeating, in a somewhat different 
context, some of the arguments already given in the articles mentioned above. One reason 
for this is the reader's convenience. Another reason, however, is that the reformulation 
and the modification of the existing results for our present arguments would also have 
required a substantial amount of work and space and would probably have resulted in a 
less satisfactory presentation. 

1. Introduction. 

NOTATION 1.1. Let N be the set of natural numbers and Z the set of integers. The 
real line is denoted by IR, the cr-algebra of its Borel sets by (B, and Lebesgue measure on 
(IR, *B) by L We indicate the integration with respect to Lebesgue measure either by dl, 
or by dt, or in a similar way. A nonnegative function ip on R is called a weight function 
if JR p(t) dt = Ju^dE = 1. The characteristic function of set E in any space is denoted 
by XE- Let (X, f, ji) be a non atomic finite measure space, {Tt}teR a measure preserving 
aperiodic flow on X, and let / be a function on X. Consider a sequence of weight func­
tions {#A:}&eN • We would like to investigate the a.e. convergence of the weighted ergodic 
averages 

Akf(x) = [f(Ttx)6k(t)dt 

for certain special choices of the sequence {6k}. The basic case we will consider is the 
following. Let {(ak, rk)}keN be a sequence of pairs of real numbers such that rk > 0 for 
all k E N. Let p be a fixed weight function. We then let 

6k(t) = Mt) = (l/rk)p((t-ak)/rk). 

In this case we will denote the corresponding sequence of weighted ergodic averages by 
!/\£ and call them the moving weighted ergodic averages. Nonmoving averages corre­
spond to the case where ak — 0 for all k. It will turn out that the convergence of the 
moving averages is closely connected with a property of the sequence {(ak, rk)} which 
we will now define. 

^-SEQUENCES 1.2. Let {(ah rk)} be a sequence in R x IR such that rk > 0 for all k. 
Then this sequence will be called a ̂ -sequence if there is a constant B such that 

l({t | 3*, (t + ak,t + ak + rk) C /}) < Bi(I) 

for every interval / C IR. 
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THEOREM A 1.3. Assume that {Tt}te^ is an aperiodic flow. If{(ak, rk)} is not a B-
sequence then, for each weight function (p there is a bounded function f on X such that 
J%£f diverges on a set of positive measure. 

THEOREM B 1.4. Assume that {(a^, r^)} is a B-sequence such that either both a^ and 
rk converge to zero or r^ converges to infinity. Then fl£f converges a.e.forany bounded 
function f and for any weight function p. 

Iff is an unbounded function then, in general, the averages fl£f do not converge, 
even if {(a^)} is a B-sequence. The following theorem gives a sufficient condition for 
convergence. We need a definition to formulate this theorem. 

DISTRIBUTIONS AND REARRANGEMENTS 1.5. Let h be a nonnegative function on a 
general measure space (F, Ç, v) such that its support 

Sh = {y\ h{y) > 0} 

has finite measure. The distribution of such a function is the finite measure Dh on (R, $) 
defined by 

Dh(B) = i/(ShDh-lB)9 Be <B. 

The (decreasing) rearrangement of h is the nonnegative function h* on the measure space 
(IR, (8,1) which is zero on (—oo, 0], decreasing on (0, oo), and has the same distribution 
as h. It is easy to see that h* is unique in the sense that two rearrangements of h differ 
only on a set of Lebesgue measure zero. 

THEOREM C 1.6. Assume that {{a^, />)} is a B-sequence such that either both a^ and 
rk converge to zero or rk converges to infinity. Let Lp be a weight function with a compact 
support. Then fl£f converges a.e. for all functions f on X such that 

JR\f\*<p*de< oo. 

Note that, when the weight function ip is bounded then the last condition on / is sat­
isfied for all integrable functions. Finally we will also consider the following general 
situation. 

THEOREM D 1.7. Let {(/^} be a sequence of weight functions. Assume that these 
functions are dominated by an L\ (IR) = L\ (IR, ®, I) function O of compact support and 
converge t-a.e. to a function (p, which is necessarily another weight function. Assume 
that {(fl£, fy)} is a B-sequence such that either both ak and rk converge to zero or r^ 
converges to infinity. Then the averages 

Aif(x)= jf{T,x)ek(t)dt 
J R 

formed with the weight functions 

Ok(t) = (l/rk)n((t-ak)/rk) 
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converge a.e. on X ifthe function/ satisfies 

t\f\*Q*dl < oo. 
JR 

In this case the a.e. limit of these averages is equal to the a.e. limit of the averages %£/, 
which also exists. 

REMARK 1.8. We assume that the flow {Tt}te^ is a full aperiodic flow, rather than a 
semi-flow {Tt}r>o, just for the sake of convenience, except in Section 3, in the proof of 
Theorem A. In none of the remaining arguments is the invertibility of the transformations 
or the aperiodicity of the flow used. Hence the Theorems B, C, and D are also valid 
for a semi-flow. When dealing with a semi-flow, however, the support of all the weight 
functions involved must be in the nonnegative part of the real line. 

REMARK 1.9. We also note that all of our results, including Theorem A, are valid 
for the discrete flow {T1}^^ or the discrete semi-flow {r"}n>o, formed by the powers 
of an invertible or, respectively, a not necessarily invertible ergodic measure preserving 
transformation. In fact these flows can be imbedded in a continuous standard flow under 
a constant ceiling function of unit height. In this case, if the weight functions are also 
step functions that are constant over the intervals of the form [n, n + 1), the integrals that 
define J^f can be replaced by sums, giving weighted averages of the powers of a single 
operator. More explicitly, let {a^} and {rk} be two sequence of integers, where rk > 1 
and r^ —» oo. Let { q } , i — 0 , . . . , rfc, be a finite sequence of nonnegative numbers with 
£ j i 0 Ck = 1. To investigate the discrete averages 

xkf = tci
kr*+if 

one may, for example, consider the sequence of weight functions 

rk 

<£* = X>*+l)QX[-i-_ J±Ly 
i=0 rk+X rk+ 

If these functions converge £-a.e. to a function <p and are dominated by an L\ (R) function 
O of compact support, then Theorem D shows that the discrete averages Jfyf converge 
a.e. whenever 

[ &\f\*di<oo 
JR 

and (a^ rk) is a ^-sequence. 

EXAMPLE 1.10 a-CESÂRO MEANS. AS a special case we consider the moving a-
Cesâro averages of a transformation. The corresponding case for the nonmoving (ak = 0) 
averages was discussed in [5]. Let a > 0 be a fixed number. Let rk — k and define 
q - A£r/ /A£, i = 0 , . . . , K where A^ - 1 and 

Ap = (/?+1)03 + 2)-• •(/?+ m) = (m + P 
m 
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for any real number /? > — 1 and for any integer m > 1. We see [16] that £?=o Ck — 1, 
and 

lim -j = r(/3+l). 

From this it follows easily that 

lim <pk(t) = lim £ ( * + 1 ) % - X [ r - M)(0 

= a(l~Oa~1X[0,i)(0 

for all t G R. To see that the sequence {(^^} is dominated by an L\ (R) function it will be 
enough to show that 

inf 

In fact, if 

0 < f < 1, A: = 1,2,... > 0 . 

i + l 
<t< 

k+l - k+V 

then, with (3 — a — 1 and m = k + 1, 

¥>(*) > ¥>(*/(*+!)) 

V m/ V m — iJ V m—1/V m/ 

where 0 < / < ra — 1 and m > 2. The infimum of this last expression, as / and m change 
over the above ranges, is strictly positive. This follows easily from the observations that 
the infinite product 

n ( l + ^)exp(-/3/rc) 

is convergent for (3 > — 1, and that the sequence 

1 1 
1 + - + . . . + - -log/2 

2 n 

is bounded. 
2. ^-Sequences. 

NOTATION 2.1. All the intervals we are going to consider are bounded intervals in 
R and have nonempty interiors, either by construction or assumption. If / is an interval 
with the end points/? and q, and a and r are real numbers, then a + rl denotes the interval 
with the end points a + rp and a + rq. We will always assume that r > 0. In this case 
l(a + rl) = ri(I). 
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^-SEQUENCES OF INTERVALS 2.2. Let {Ik} be a sequence of intervals. Then we will 
say that {Ik} is a B-sequence if there is a constant B such that, for all intervals /, 

i({t\ 3keN,t + Ik Cl})<Bl(I). 

REMARK. If {Ik} is a B-sequence of intervals then 

t({t\ 3k <E Nj + Ik CE}) <Bl(E) 

for any Borel set E. 

LEMMA 2.3. Let {(ak, rk)} be a sequence in R x R and assume that rk > Ofor all k. 
Let I and J be two intervals. Then Ik = ak + rkI is a B-sequence if and only ifJk = ak + rkJ 
is a B-sequence. 

PROOF. Let V — (~R,R) be a fixed symmetric interval about zero that contains 
both / and J. Find a > 0 such that £(V) = (1 + a)l(J). Given any interval W, let 
W be the interval with the same center as W and satisfying l(W) = (1 + 2a)(.(W). If 
t + Jk — t + ak + rkJ C W then we see that t + ak + rkV C W and, consequently, 
t + ak + rkI C \y. Hence, if {4} is a B-sequence with a constant B, then {/̂ } is also a 
B-sequence with a constant (1 + 2a)B. 

DEFINITION 2.4. Let {(ak, rk)} be a sequence in IR x R such that rk > 0 for all £. We 
say that {(ak, rk)} is a B-sequence if ak + rkI is a B-sequence of intervals for an interval /. 
The previous lemma shows that this definition is independent of the choice of the interval 
/. 

REMARK. The defining condition for being a B-sequence is equivalent to the "Cone 
Condition", formulated and used by Nagel, Stein, Sueiro, Bellow, Jones, and Rosenblatt 
in [13, 15, 1] (see also [14]). This equivalence is obtained below, although we are not 
going to use the Cone Condition, formulated as (C) below. 

LEMMA 2.5. Let {(ak, rk)} be a sequence in R x R such that rk > Ofor all k. Then 
the following two conditions on this sequence are equivalent. 

(B) There is a constant B, such that for all intervals I, 

l({t\ 3k,{t + ak,t + ak + rk) C/}) < Bl(I). 

(C) There is a constant C, such that for all positive numbers s, 

l({t\3k,\t-ak\<(s-rk)})<Cs. 

PROOF. Assume (B). Given s > 0, let / = (—s, s) and define 

E={t\3k,\t-ak\ <(s-rk)}, 

and 
É = {t | 3k, (t + ak,t + ak + rk) C / } . 
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Then we verify that E C — E!. Hence, 

1(E) < l(-E') = 1(E) < Bl(T) = 2Bs, 

which means that (C) is satisfied with C — IB. 
Now assume (C). Let / = (w, v) be an interval. Define 

É = {t | 3k, (t + ak,t + ak + rk) C / } , 

and, for s > 0, 
E(s) = {t\3k,\t-ak\<(s-rk)}. 

We verify that if t G E' then — t + u G £(v — u). Hence 

£(£') < £(w - E(v - u)) = l(E(y - uj) < C(v - u), 

which is (B) with B = C. 

3. Divergence of averages. In this section we prove Theorem A. This result shows 
that the moving ergodic averages over non /^-sequences, with respect to any weight func­
tion, always diverge for some bounded functions. 

LEMMA 3.1. Assume that {(a^ T>)} is not a B-sequence. Then for each R > 0, K, 
and e > Owe can find two sets C and D in X such that 

0 < R^i(C) < /i(D), 

and such that 

supjtfxc(x)> 1 ~£ 
k>K 

for all x G D. 

PROOF. Since the flow is aperiodic, given any S > 0 we can find a mapping 

r : ( - 5 , S ) - > J 

and a number 7 > 0 such that for any Borel subset E of (—5, S) and for any numbers s 
and t, where s, t, and s +1 are all in (—5,5), 

(a) T(E) G J , 
(b) /x(r(£)) = 7«£) , 
(c) r(j + o = r,r(j), 

where T(E) — \Jt£E T(t). This follows easily by considering the given flow as the standard 
flow under a ceiling function and by taking a sufficiently tall Rohlin tower for the base 
transformation. In fact we can also make /x(r((—5,5))) arbitrarily close to fi(X) but this 
fact is not needed. 

Find an interval J such that the integral of the given weight function ip on J is greater 
than 1 — e. Then the same is also true for the integral of i/jk on Jk = ak + rkJ, for any 
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k. Since {Jk} is not a ^-sequence, its tail {Jk}k>K is not a ^-sequence either, for any K. 
Hence we can find an interval / such that 

£({t \3k>K,t + JkCl})> R£(I) > 0. 

Then there is an integer L such that if 

F={t\3k,K<k<L,t + Jk<Zl} 

then 1(F) > R£(I). We now find a number S such that the interval (S,S) contains /, 
F, and all the intervals of the form t + Jk, where t = 0 or t E F and K < k < L. If 
T: (—S, S) —* X is a mapping as described at the beginning of this proof, we then let 
C = T(I) and D = T(F). 

We will verify that the requirements of the lemma are satisfied. Since 

0 < Rl(I) < 1(F), 

we see that 
0 < /ty(Q < fi(D\ 

by (b). Let x E D. Then there is a t E F such that x E T(t). Hence there is a k > K such 
that t + Jk E /, which implies that 7pc E C, for all s £ Jk. Then, with these choices, 

A*Xc(x) = J^xc(Tsx)4)k(s)ds 

> f xc(Tsx)i)k(s)ds 
jjk 

= / ^k(s)ds > 1 — £. 

PROOF OF THEOREM A 3.2. Given two numbers e > 0 and 77 > 0, we use the 
previous lemma to find two sequences of sets {Cn} and {Dn} in X and a sequence of 
numbers {Kn} such that 

(a) ATn converges to infinity, 
(b) Z^(Cn)<r], 
(c) E/z(Dn) = 00, 
(d) s u p ^ ^ ^ x c „ W > 1 - £ for all x E Dn. 
We can do this easily in stages, at each stage choosing a finite segment of our se­

quences. Suppose that at the ra-th stage we have the sets C and D satisfying the con­
ditions of Lemma 3.1 with R = 2m and K = ra. Hence x̂(C) < 2~mii(X). Then the 
ra-th segments of the sequences {Cn}, {Ai} and {Kn} will have wm terms, obtained by 
repeating C, D, and ra j/m-times, respectively, where um > 1 is the smallest integer such 
that umfi(C) > 2~m"l^t(X). Note that the sum of the terms of {^(Cn)} over this segment, 
which is just wm/x(C), is still less than 2~m/i(X). The sum of the terms {^i(Dn)} over the 
same segment is um[i(D), which is greater than 2mum[i(C) > 2~lfj,(X). Hence we see 
that E l^(Cn) < 00 and £ n(Dn) — 00. Then by cutting off an initial segment of these 
sequences we obtain the desired sequences. 
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Now we note that if {Cn}, and {Dn} are two sequences satisfying the conditions 
above, then, for any choice of the numbers tn, the sequences {TtnCn}> and {TtnDn} will 
also satisfy the same conditions. Since £ p,(Dn) = oo, we claim that there is a choice for 
the sequence {tn} such that 

M ( U TtHDn)=n(X) 
Kn>N 7 

for all N. This follows easily from the fact that, given any two sets A and B in X and any 
number M > 1, there is a t such that fi(A n 7)5) < Mji(A)fi(B). This fact, in turn, is 
a direct consequence of the mean ergodic theorem (see also the related Lemma 1.24 in 
Chapter XIII of Zygmund [16]). We now let/be the characteristic function of UnTtnCn, 
with this choice of {tn}. Then it is clear that Sxfd^i < r] but 

lim sup Jtff > 1 — e 
k 

a.e. on X. Hence the averages for this function/ can not be convergent. 

4. Rearrangements. 

REARRANGEMENTS 4.1. The definitions we are going to give apply to nonnegative 
functions/ on a measure space (X, J, [i) having supports 

Sf = {x\f(x)>0} 

of finite measure. The distribution of such a function is the finite measure Df on (R, (B) 
defined by 

Df(B) = ti(Sfnf-lB), Be<B. 

Note that this measure is contained in (0, oo). We will call any finite measure on the 
Borel subsets of (0, oo) a distribution. A nonnegative function on the measure space 
(IR, $, I) will be called a (decreasing) rearrangement function if it has compact support, 
is zero on (—oo,0], and decreasing on (0, oo). It is easy to see that given any distribu­
tion there is a rearrangement function whose distribution is the given one. Also, any two 
rearrangement functions with the same distribution differ only on a set of Lebesgue mea­
sure zero. The rearrangement of/ is the rearrangement function/* which has the same 
distribution as / . We see that there is a measure preserving map r: Sf —> Sf*, which is 
not necessarily invertible, such that/(x) =f*(rx) for almost all x G Sf. This map can be 
extended in an arbitrary way to the outside of these supports, if convenient. 

LEMMA 4.2. Letf be a nonnegative function on R with a support of finite measure. 
Given a rearrangement function £ on R, there is a function g such that g* = £ and such 
that 

Furthermore, if the support oft; is contained in the support off*, then the support of g 
is contained in the support off. 

The proof follows easily from the observation made above, by letting g(t) = ^(rt). 
Another property of rearrangements is given in the following theorem, which we state 
without proof. For a further discussion see [10]. 
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THEOREM 4.3. Let f and g be two nonnegative functions on a measure space 
(X, 7, M). Let A e f and let oc = /x(A). Then 

!AfZ*»< lR(fXAT(gXAT d£ 

<fRVXAT8*dl 

<[f(t)g\t)dt. 

We now consider a sequence of nonnegative functions {/•} on X with pairwise dis­
joint supports. Let/ be the sum of these functions. The distribution of/ is the sum of the 
distributions of / ' s . In general there may not be an easy way to express the rearrange­
ment of/ in terms of the rearrangements of/ 's . As an important special case, however, 
assume that the rearrangement of each/ is of the form/*(0 = £(t/ki), where £ is a fixed 
rearrangement function and fc/'s are constants, ki > 0. In this case the rearrangement 
function of/ is given by f*(t) — ^(tjK), where K = £/ kt, assumed to be finite. In fact, 
Dft — kiD^, and, consequently, Df = KD^. A continuous version of this result is also 
true, which will be stated at the end of the next paragraph. 

Let (Y, Ç, i/) be another measure space and consider the Cartesian product space X x Y 
with the product measure \i x v. For a nonnegative function/ on X x Y let / denote the 
function on X x R such that, for any x G X, the function/(x, •) on R is the rearrangement 
of the function/(x, •) on Y. It is easy to see that there is a measurable function/ with these 
properties. Note that the function/ on X x Y has the same distribution as the function 
/ on X x R. Hence/* and/* are the same functions on R. Then, for two non-negative 
functions/ and g on X x Y, 

L Lf(x>y)8(x>y)v(dy)v(dx) < f I[f(x9s)g(x,s)dsii(dx) 
JX J Y JX JWL 

< ff*(t)g\t)dt, 

by applying the theorem above twice. In particular, if there is a single rearrangement 
function £ and a strictly positive integrable function k onX such that g(x, t) — ^(t/k(x)^j, 
then we see easily that g*(t) — £(t/K), where K = Jxk(x)^(dx). We collect these obser­
vations in the following lemma. 

LEMMA 4.4. Let f and g be two nonnegative functions on the Cartesian product 
XxY of two measure spaces. Assume that there is a fixed rearrangement function £ such 
that, for each fixed x G X, the rearrangement of g(x, ):Y —> R is given by ^(t/k(x)\ 
where k is a strictly positive and integrable function on X. Then 

fxf/gdvdv<fRr(t)t(t/K)dt, 

where K = Jx k{x)ji{dx). 

Finally, we mention the following simple result which will be used on several occa­
sions. It is proved by an obvious change of variables. 
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M({x I 3*. J%f(x) > A}) < j / R / V * dl 

LEMMA 4.5. Let £ and rj be two rearrangement functions and let a > 0. Then 

[ i(t) r\(tja) dt < max(l, a) f £,(t) rj(t) dt. 

5. Maximal theorems. Our purpose in this section is to prove the following maxi­
mal inequality. 

THEOREM 5.1. Consider a weight function ip with a compact support, and a B-
sequence {(ak,rk)}. Let {Tt} be a measure preserving flow on a finite measure space 
(X, J , //). We let 

-**7to= jj{Ttx)Mt)dU 

where 
il>k(t) = (l/rk)<p((t-ak)/rk), 

andf is a function on X. Then there is a constant C such that 

C 
A 

for all nonnegative functions f on X, and for all A > 0. If J is an interval containing the 
support of the weight function tp then the constant C can be taken as 

C = 4B(l(J) + /X(X)) 

where B is a constant corresponding to the B-sequence of intervals 

Jk = ak + rkJ, 

as defined in 2.2, i.e. a constant such that 

i({t\ 3k,t + Jk cI})<Bt(I) 

for any interval I. 

The proof will consist of several lemmas. Theorem 5.5 is the corresponding maximal 
inequality on R. The main inequality onX is then obtained by an application of Calderôn's 
Transfer Principle. 

NOTATION 5.2. Let <p be a weight function which has a compact support contained in 
an interval J. Let F be another nonnegative function on R with compact support. Starting 
with ip and F we define, for each Borel set E with nonzero finite measure, 

p(E) = M [(FXE)*(t)ip* (t^-)dt. 
HK } 1(E) MK x } K)^ \ 1(E)) 

Then we see that for each Borel set E there is a function XJJE with support in E such that 

and such that 

The reason for defining p is given by the following lemma. 
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LEMMA 5.3. Leta eR and r > 0. If 

(l/r)JRF(t)<p((t-a)/r)dt>\ 

then 

p(a + rJ) > A. 

PROOF. Let ijj(t) — (f((t — a)/r). Since the support of <p is contained in 7, the 
support of ip is contained in a + rJ. Also, the rearrangement function of ip is given by 
\l)*(i) = (p*(t/r). Hence we see that 

\<(l/r)JRF(t)ip((t-a)/r)dt 

= (l/r)Ja+rjF(t)<p((t-a)/r)dt 

< ( l / r ) f(FXa+rjnt)ip*(t/r)dt 

i(a + rJ)J^ V £(a + rJ)J 

= p(a + r7). 

LEMMA 5.4. Let {£/} Z?e a sequence of pairwise disjoint Borel sets and let 
E — UiEj. Then 

J2 l(EMEi) < KE)p(E) < 1(E) £ p(Ei). 

PROOF. For the first inequality, with the notations above, 

«El ) Çij^-ÇjO" 

< jR(FxEr{E^,ydt 

1U)P(E)-
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For the second inequality, 

T&«E> = LF**dt 

< 

JE 

i JEi 

zjR(FxExrEdt 

Y- ^ [<V W A *(f™}* 

^iml-{FXE'){t)*\!-mr 
< 

urn XX^), 

where the last inequality follows from Lemma 4.5. 

THEOREM 5.5. Let A > 0 and M > 0 be fixed. Let G be the union of all open intervals 
I C (-M, M)for which p(J) > A. Then 

« o < ^ i^-mh 
PROOF. Let 

L= {t\ 3s,-M<t<s<M9p((t,sj) >A/2}. 

It is easy to see that L is an open subset of (—M, M), and that, for each e > 0, there are 
finitely many pairwise disjoint intervals /,- C (—M,M) such that p(/,-) > A/2 for each 
/ and such that £(L) — e < t(E) < 2M, where E is the union of these intervals. Hence 
p{E) > A/2 by the previous lemma. This means that 

< 

Then we conclude that 

2KJ) 
l(L) -s<l(E)< — ^ L^Wh 

Hence 

«^TW^)* 
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Similarly we see that if 

L' = {t\ 3s,-M < s < t < M, p({s,t)) > A/2}, 

then 

A k * V 2M J 

We claim that G C LUL'. To see this let t G G. Then there is an interval / C (-M, M) that 
contains r such that p(I) > A. If Ms an end point of / then our claim is clear. Otherwise / 
is divided into two intervals I\ and h by t. The previous lemma shows that A < p(I) < 
p(I\) + p(h)- Hence either p(I\) > A/2 or p(I2) > A/2. This means that t belongs to at 
least one of L or U. Hence our claim has been proved. Then 

KG) < 1{L) + l(L') <***à( F*{t) <p* (t^à) dt. 

NOTATION 5.6. Let M > 0 be a fixed number and / = (—M, M). Instead of a single 
function F: R —> IR+ with compact support, we will now deal with a (measurable) function 
F: X x IR —* R+ whose support is contained in X x /, where (X, J, p) is finite measure 
space. We fix, as before, a single weight function ip whose support is contained in an 
interval J with l(J) > 1. With a given A > 0 and with the same M > 0 as above we 
define p and G for each x G X separately, using the function F(x, •)• R —* R+ in each case. 
To denote the dependence on x we will now use the notations p(E, x) and G(x) instead of 
their corresponding previous versions. We also let 

H={(x,t)\teG(x)}. 

It is easy to see that H is a measurable subset of X x R. In fact, in the definition of G(x) 
it is enough, for example, to consider only intervals with rational end points. 

LEMMA 5.7. We have 

where F*: R —> R+ is the rearrangement function ofF\ X x M + and if*: R —> R+ is 
the rearrangement function oftp: R —> R+. In particular, ifF(-, t)\ X —> R+ has the same 
rearrangement function Çfor each t G / and is zero for t $ I, then 

i f«x»,<?i f(./«)»'(^)* 

PROOF. Let the (measurable) function F: X x IR -^ R+ be defined by the condition 
that F(x, •) is the rearrangement of F(x, •), for each fixed x £ X. Note that F and F have the 
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same rearrangement function. By Fubini's theorem and by Theorem 5.5 and Lemma 4.4, 

(/xx l)(H) = J £(G(xj)ii(dx) 

~ A JR ^ V 2Mp(X)J 

The second statement follows again from Lemma 4.4. 

NOTATION 5.8. Let {(ak, rk)} be a 5-sequence and define Jk = ak + rkJ, where, as 
before, J is an interval containing the support of the weight function <p and i(J) > 1. We 
fix an integer K > 1 and find a number R > 0 such that the interval (—/?, /?) contains 7̂  
for k < K. We then fix an arbitrary number S > 0 and let M = /? + S and / = (—M, M). 
We then consider a nonnegative function f on X and define F on X x R by F(x, 0 = 
f(Ttx) if\t\ < M and F(x, 0 = 0 otherwise, where {7)}rGK is a measure preserving flow 
acting on the finite measure space (X, J, \i). The previous notations will now apply to 
this particular choice of F. Note that F satisfies the hypothesis stated in the second part 
of the Lemma above. In fact, since the flow is measure preserving, the distribution of 
(̂•» 0 — fiTt') is equal to the distribution of/ for each t G I and zero otherwise. Hence 

we see that F*(t) =/*(f/(2M)). We define G(x) as before with these choices of F and M 
and with a fixed A > 0. Recall that 

• ^ / t o = Lf<Ttx)Mt)dU 
JH. 

where 

tl>k(t) = (l/rk)<p((t-ak)/rk). 

LEMMA 5.9. Letk<Kand \t\ < S. Iffl£f(Ttx) > A then t + JkC G(x). 

PROOF. We have 

A < A£f(Ttx) = JRf(Tt+sx) <p((s - ak)/rk)(l/rk)ds. 

Since the support of <p is contained in 7, the integral above can be taken over Jk only, 
instead of R. By a change of variables we obtain 

A < S%f(Ttx) = jt^f{Tsx)^((s - (t + ak))/rkyi/rk)ds. 

Since k < K and \t\ < S we see that t + Jk C /. Hence we can also replace f(Tsx) by 
F(x,s) in the integral above. Then Lemma 5.3 shows that this integral is dominated by 
p(t + Jk,x). Therefore t + JkC G(x). 

LEMMA 5.10. Let 

V={x\ 3k<K,A£f(x)>\}. 
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Then 

where B is the constant for the B-sequence of intervals 

h — ak + nJ, 

as defined in 2.2. 

PROOF. Let 

W={(x,t)\ \t\ <S,Ttxe V}. 

We calculate (ji x i.)(W) in two different ways, by Fubini's Theorem. First, 

Ozx£)(W)= / [Xw(x,t)n(dx)de 
JKL JX 

= J_sJxXT->v(x)v(dx)dt 

= 2S/x(V). 

For the second order we integrate on R first, for a fixed x E X. We see that (x, 0 G W if 
\t\ < S and if there is a £ < K such that 

J \ 7 ( 7 » > A. 

Then the previous lemma shows that 

W(x) = {t | (JC,0 G W} C {t | 3 M + A C G(x)}. 

Hence l(W(xj) < Bi(G(x)). Therefore, 

(/i x t)(W) = J l(W(x))fi(dx) <B J l(G(xj)ii(dx). 

The last integral gives (fi x £)(//), with the notations of Lemma 5.7. Hence, by applying 
this lemma and observing that the rearrangement function £ is now/*, 

Combining these two expressions for (/i x £)(W) we conclude the proof. 

PROOF OF THE MAIN THEOREM 5.1. We recall that M = R + S, where fl > 0 was a 
fixed number determined by K £ N and S > 0 was arbitrary. By letting S go to infinity 
we see that, for any K G N, 

M({* I 3* < AT. JÇ/W > A}) < ^ /Rr(0 „' ( * M ) A. 
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Hence we conclude that 

„({* i a*, jtf/w > A» < ̂  /Rr (o ̂  ( / M j dL 

Finally, by Lemma 4.5, the last integral is dominated by 

Hence the constant 

c = 4m(j)[i + ^ j = 4*(*c/) + MX)) 

satisfies the requirements of the theorem. 

6. Convergence of averages. 

NOTATION 6.1. Let {(ak, rk)} be a sequence in R x IR such that rk > 0 for all fc. We 
recall that 

-**/(*) = ff{Ttx)fa(t)du 

where 99 is a weight function and 

We also let 

and observe that 

Mt) = <p{(t-ak)/rk)(l/rk). 

r({x\M*f(x)>\})<jJR\f\'<p*dl, 

by the maximal theorem. Note that if the support of (p is contained in an interval / then 
the support of fa is contained in the interval Jk = ak + rkJ. The following simple lemma 
is useful for the investigation of J%£f for bounded functions/. 

LEMMA 6.2. Let ip and <p' be two weight functions. Then 

W W = K'f^\ < \W - ^llillflu. 

Hence, for a given bounded function f\ if fl£f converges a.e. for a class of weight func­
tions that approximate any weight function in the L\(K)-norm} then fl£f converges a.e. 
for any weight function. 

PROOF. Follows from the fact that 

jj<p((t-ak)/rk) - tp''((t - ak)/'rk)\dt = \\<p - p'\\x. 
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LEMMA 6.3. Let Lp be a weight function and let {(ak, rk)} be a sequence such that 
both ak and rk converge to zero. Then J%£f converges a.e. for any function f of the form 
f(x) — Jo g(Tsx) ds, where g is a bounded function. 

PROOF. Without loss of generality we can assume that the weight function <p has 
compact support, because of the previous lemma. The function/(r,jc) = ft

+a g(Tsx) ds is 
a bounded and continuous function of t for a.a. x. To complete the proof it is enough to 
show that if F: R —> R is a bounded and continuous function then 

[ ^ o + OWO* 

converges to F(to), for each to £ ^- To see this assume that F(to) — 0, without loss of 
generality. Let J be an interval containing the support of ip. Find a number 6 > 0 such 
that \F(t)\ < £ whenever \t - t0\ < 6. Then find a k0 G N such that Jk C (-8,6) for all 
k > ko. Then, for k > ko, 

= \f F(to + t)i>k(t)dt\ 

< / \F{to + t)\Mt)dt<e. 
JJk 

THEOREM 6.4. Let {(ak, rk)} be a B-sequence such that both ak and rk converge to 
zero. Let (f be a weight function. Then J%£f converges a.e. for each bounded function f. 

PROOF. Again we will assume that the weight function <p has compact support, with­
out loss of generality. Let / be a bounded function with M — ||/||oo- Then the family of 
functions fa(x) — (1 ja) $f(Ttx)dt converge t o / in L\(X), as a approaches to 0+. Also, 
this family of functions is uniformly bounded by the same bound M. If fl^f does not 
converge on a.e., then there is a set E C X of /x-measure m > 0 and a number A > 0 such 
that liminf and limsup of J%£f differ by more than À on E. Since S^fa is convergent, we 
see that liminf and limsup of J%£(f —fa) also differ by more than À on E, for each a > 0. 
This means that 

Ec{x\M*\f-fa\(x)>\/2}9 

for any a > 0. This, however, violates the Maximal Inequality 5.1, which says that the 
measure of the last set is dominated by 

In fact, this integral converges to zero as a —» 0+, since the integrand converges to zero 
£-a.e. on R and is dominated by an L\ function. 

THEOREM 6.5. Let {(ak, rk)} be a B-sequence such that rk converges to infinity. Let 
(f be a weight function. The J%£f converges a.e. for each bounded function f. 

PROOF. Let u and v be two numbers, u < v, and assume that 

If F(to + t)il)k(t)dt\ 

(f = ( 1 / ( V - M ) ) X ( M , V ) . 

https://doi.org/10.4153/CJM-1993-023-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-023-x


MOVING WEIGHTED AVERAGES 467 

In this case the a.e. convergence of fl£f is obtained easily iff is of the form 

f(x) = h(x) + g(TlX)-g(x), 

where g and h are two bounded functions and h satisfies h(T\x) = h(x). Any bounded 
function can be approximated by functions of this form in the L\ (X)-norm, as, for ex­
ample, an application of the mean ergodic theorem for T\ in L2 W shows. Then we see 
that Sl^f converges a.e. for every bounded function, applying the maximal inequality as 
in the proof of the previous theorem. If (f is a linear combination of weight functions of 
this special form, that is, if <p is a step function, then it is clear that J%£f also converges 
for each bounded function/. Since any weight function can be approximated by step 
functions in the Li-norm, the proof is completed by an application of Lemma 6.2. 

THEOREM 6.6. Assume that {(ak, rk)} is a B-sequence such that either both ak and 
rk converge to zero or rk converges to infinity. Let tp be a weight function with a compact 
support. Then J%£f converges a.e. for all functions f on X such that 

jf[/1V<H<oo. 

PROOF. It is enough to restrict the attention to nonnegative functions. We know that 
%£f converges for bounded functions. The proof is completed by an application of the 
maximal inequality, as in the proof of Theorem 6.4. We give some of the details. Let / 
be a nonnegative function such that 

/ R / V ^ < O O . 

Let/n be the minimum of/ and the constant function n. Then each/„ is a bounded function 
and 

JK(f-fnTSdl 

converges to zero as n approaches infinity. If J%£f diverges on a set of positive measure, 
there is a constant À > 0 and a set E of positive measure such that limsup and liminf of 
J%£f differ by more than À on E. Then this is also true for J%£(f —/n), for any n. Hence 

Ec{x\M*(f-fn)(x)>\}9 

for all n. The maximal inequality is then again violated, as the measure of the last set 
must be less than 

which is arbitrarily small if n is sufficiently large. 

https://doi.org/10.4153/CJM-1993-023-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-023-x


468 M. A. AKCOGLU AND Y. DENIEL 

THEOREM 6.7. Let {<pk} be a sequence of weight functions. Assume that this se­
quence is dominated by an L\(R) = L\(R, 'B, I) function O of compact support and 
converges t-a.e. to a function ip, which is necessarily another weight function. Let 

¥ W = jxf(T,x)6k(t)dt 

6k(t) = (l/rk)tpk((t-ak)/rk). 

JR{f\*^*dl<œ, 

Fk=\^f-J^f\ 

where 

If the function f satisfies 

then 

converges a.e. to zero. 

PROOF. Let 

and 

O„(0 = sup|</>(0-y>m(0| 
m>n 

K,k(t) = (l/rk)<!>n((t-ak)/rk). 

Then we see that O* is dominated by O* and converges £-a.e. to zero. Hence, if 

jf[/r**</«<oo, 

then 

converges to zero. Also, if k > n then 

Fk = \X£f-Akf\ 

<fR\f\\A-Ok\dt 

<fRm,kJt 

Hence, by the maximal inequality, for any À > 0, 

C 
»({x\wVFk{x)>\})<- f [f\*&ndL 

k>n 

This completes the proof, as the last integral converges to zero as n approaches infinity. 
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