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ON THE MONOTONE SIMULTANEOUS APPROXIMATION ON [0,1]

SALEM M.A. SAHAB

Let 2 denote the closed interval [0, 1] and let 5A denote the set of all bounded, ap-
proximately continuous functions on §2. Let Q denote the Banach space (sup norm) of
quasi-continuous functions on Q2. Let M denote the closed convex cone in Q comprised
of non-decreasing functions. Let hp, 1 < p < oo, denote the best L,-simultaneaous ap-
proximation to the bounded measurable functions f and g by elements of M. It is shown
that if f and g are elements of @, then hp converges uniformly to a best L;-simultaneous
approximation of f and g. We also show that if f and g arein bA, then A, is continuous.

1. INTRODUCTION

Let f and g be bounded measurable functions on [0, 1]. It was shown in [4] that
if f¢ M or g ¢ M, then there exists a unique h, € M such that

(1) (15 = hollg + llg = kplIE1V/? = inf [1f = Kl + llg — RIEI>.

We call h, the best L,-simultaneous approximation to f and g by elements of M and
abbreviate this to b.s.a. In [6] it was shown that if f and g are in @, then they have
the so-called simultaneous Polya property, that is h, converges uniformly as p — co.
In this paper we show that they have also the simultaneous Polya-one property, that is,
hp converges uniformly as p decreases to one to a best L;-simultaneous approximation.

To establish this property, we start in Section 2 with the case when f and g are
finite real vlaued functions. In Section 3 we generalise the results of Section 2 to the
space of step functions, and then to the space of quasi-continuous functions.

In Section 4 we establish the continuity of h, when both of f and g arein bA.

Throughout this paper we assume either f or ¢ is not in M, unless otherwise
stated.

2. CONVERGENCE OF B.S.A. ON A FINITE SET
Let X = {z1,...,zn} be a finite subset of R with z; < z» < ... < z,,. Let

B = B(X) be the linear space of bounded real functions on X and M = M(X)
the closed convex cone of nondecreasing functions in B, that is functions h satisfying
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h(z) < h(y) whenever z,y € X and z < y. For each p, 1 < p < 00, define a weighted
Lp-norm  ||-||, by

n l/P
(2) w |l fll, = (Z w; If.'l”)
=1

where f = {fi}; = {f(zi)}; € B, and w = {w;}}*; > 0 is a given weight function
n

satisfying Y z; =1.
i=1

Let f = {f:;}, and g = {¢:}, in B be fixed. For each p,1 < p < oo, we call

=1

a function hp = {hp;}%,; € M the best weighted L,-simultaneous approximation if

i/p 1/p
(wllf = hpll2 +u llg = hple) " = inf{ (w If = hIE +u llg — hIE) "+ h € M},

or,

=1

n l/p n l/P
(3 [Z wi(lfi = hpil” + 1gi — hp,-'lp)] < [Z wilfi — hef” + 1g: — hilp)] ;
=1

forall A={hi:i=1,...,n}eM.

To compute h, explicitly, we first define L C X to be a lower subset if «; € L and
z; € X, z; < z;, implies that z; € L. Similarly U C X is an upper subset if z; € L
and z; € X, z; > z;, implies that z; € U. For simplicity we will write 1 € ¥ C X
instead of z; € Y. Fix p € (1, 00). If LNU is non-empty, define pp(LNU) to
be the unique real number minimising Y {w;{|f; — u|’ + [g; —«|P]: j € LN U}. Let

j

hp ={hpi:i1=1,2,...,n} be the function defined on X by

hy; = i LnvU),
(4) P {UIP??U} {lenfgL} #p( )

= i LnvU).
ity ey P ( )
It is shown in [6] that h, is the unique solution satisfying (3).

DEFINITION: Let @ = min{—||fl., — lgll.} and b = max{|Ifll, lgll..}, and
define functions

(%) = Zwiﬂfi —wil? +1gi — wil?),

=1

rp(w) = D_willfi — ulf +lgi - wf?),

=1

where @ = (u1, 4z, ..., uy) € [a, b]™ and u € [a, b].
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Remark. By [5, Lemma 2], for each p € (1, o), xp is strictly convex and has a unique

minimiser u, € [a, b].

LEMMA 1. Under the above hypothesis, we have

(5) lim (,(%))"/* = 71(®),
and,
(6) lin (rp(1))"/? = ia(u)

the convergence being uniform on the compact sets [a, b]™ and [a, b] respectively.

PROOF: For T € [a, b]*, 1 <i<n and p < 2 we have
|fi — wil® < 2P(|filf + fusl’) < 2°¥197 < B,
where B = 2% max{b%, 1}. Similarly
lgi —uil? < 2PP < B.
Let € > 0 be given. We show that for @ € [a, b]™, there exists a9 € (0, 1) such that

@) (i@ (@) <

whenever « € (0, ao).
Notice that

® [ rira@ O @) < e @)~ (@) O

+ | @)+ - n@)|.

Since the map s — 3/(1+2) is continuous for = > 0, there exists § > 0 such that

‘zl/(1+a) _ yl/(1+a)’ <2,

whenever

(9) |z —y] < 6.
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Let = = T14a(%) and y = 71(@). Then the first summand of (8) is less that /2
provided we show there is « small enough to satisfy (9). Indeed

|z —y| =

n n n n
Dowilfi—wl T+ Y wilg — ™ =Y wilfi - il = Y wilgi — uil
=1 =1 =1 t=1

n n n n

1
Yowilfi—wl™ = wilfi - wil D wilg - w0 wilgi — uil
=1 =1 i=1 =1

< +

Now we use the same technique as was used in [5, Lemma 3] to obtain an a; > 0
such that (9) holds for all a € (0, ).

For the second summand in (8) we give more details following the same line of
proof in [5, Lemma 3]. So let £ = 7;(%). Then

0<z=> willfi—uil+lgi —uil)

i=1

<) wi(2b+2b) = 4b = B*.

i=1

Define G by

G(wy a) = xl/(l+u) — .
Then 8G/8z = (14 ) '2=2/(+e) _1 = 0 only when z = zo = (1 +a)—(l+l/a)’
and G(2o,0) = (1+@) ™" = (1407 *? = 14y (1-(1-0a)7") =
—a(l+ a)_(Hl/a) 50 Hﬁ} G(z9, ) = 0. Let
1/(14a)

T(e) = 2 max{|G(zy, a)|, |B* — B* }

Then sup{|G(z,a)]: 0 < = < B*} < T(a). But liilgG(zo,a) = 0, and

1/(1+a)

lilll‘} B* - B* = 0 implies the existence of a; > 0 such that |T(a)] < €/2
x

for all a € (0, @z). Consequently
Gz, )] = |0+ | < e/2
which is what we need when we substitute for z = 7;(u).

Finally take aq = min(ai, @;) and the proof of (5) is complete. To obtain (6)
take @ = (u, u, ..., u) in (5). This establishes the lemma. |
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Remark. Let M,, denote the space M as defined in the beginning of this section. For
1<p<oo,let

da(p) = inf{u||f — T, +w llg —Tl, : T € M.}
=inf{u||f —¥ll, +w llg —Zll, : T € Mn N a, b]"}.
Then it follows from (7) that

(10) lim dn(p) = dn(1).
By putting @ = (u, u, ..., ©) it also follows that
(1) i d(p) = d(1)
where
d(p) = inf{u||f — ull, +w llg —ull, : v € [a, 8]}
THEOREM 2. For p € (1, 00), let y, be the unique minimiser of k,. Then I;ﬁl up =
u; exists. Moreover u; is a minimiser of Ky .

PROOF: Minor changes are needed on the proof of [5, Theorem 4] to obtain the

desired results. ]

THEOREM 3. The solution hy, (given by (4)) which satisfies (3) convergesas p | 1
to a solution hy = {hy;:1=1,2, ..., n} satisfying

n

(12) > willfi — hagl + 1gi — hail) < Y willfi — hal + lgi — hal)

i=1 i=1
forall h={h;:i=1,...,n} € M,.
PROOF: Similar to the proof of Theorem 5 in [5] with the role of g, played by
hy. ~ I
3. GENERALISATIONS OF QUASI-CONTINUOUS FUNCTIONS

DEFINITION: Let 7 be a finite partition of [0, 1] with points {¢;: 0,1, ..., n}
such that 0 = ¢y < t; <...<t, =1. Let Ig denote the indicator function of a subset
E of [0,1]. Let S, be the linear space comprised of all step functions of the form

f=Ffidp + Z fiI(z,-_l,t‘-]’
=2

where f; € R for every i.
We recall the following four results from [8].
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LEMMA 4. Let f and g bein S,. Let hy,,1 <p < oo, be the b.s.a. to f and g
by elements of M. Then h, € S,.

LemmMa 5. Fix p € (1, oo). Let f1, f2, g1 and g, be elements of S,. Let hy
and hy be the b.s.a. to f1, g1 and fi, g2 respectively. If fy < f, and g; < g2, then
h] < hz .

LEMMA 6. Let f and g be elements of Sy. If hy is the b.s.a. to f and g, then
hp + c is the b.s.a. to f+c and g +c.

THEOREM 7. Let f and g be elements of S, given by
f=Ffiljoy + Zfif(,'._l,t'.],
=2

and

9 =g1ljo 4} + Zgil(t.-_l,ta]’

=2

For every p € (1, 00), let w, = {w,;:i=1,...,n} be defined by

wpi =t — iy
for all ©. Let hy = {hpi:i=1,2,...,n} begiven by (4). Then the b.s.a. to f and
g is given by

(13) by = hoilion] + D hoile,_, o)
=2

The next theorem establishes the convergence of A as p — 1.

THEOREM 8. Let f and g in Sy and h; be as given in Theorem 7 above. Then
h; convergesas p |1 to the monotone non-decreasing function hi in S« given by

(14) h; = hl)"I[tOvtI] + Z hz‘iI(ti—lvti]
=2

where hy; = liin hp,i is as described earlier in Theorem 3. Moreover, h} is a best
plil

L, -simultaneous approximation of f and g by non-decreasing functions.

PROOF: Foreach i =1,...,n,let z; = (t; +t,_1)/2 and let X = {=z;, ..., z,}.
Consider {fi = f(zi):1 =1,2,...,n} and {g;: = g(=:): ¢t = 1,2, ..., n} as finite
real valued functions on X. Let w = {w;: ¢ = 1,..., n} be as defined above. Then
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Theorem 3 implies that h; converges to hy. Therefore liilll h, exist and is given by
P

(14).
For the second part of the theorem, notice that (12) holds for any positive weight

n
function w = {w;: ¢ =1, ..., n} satisfying > w; = 1. Thus for each i, 1 <i < n,let
=1

w; = 1/n; then (12) implies that

DT fi = hagl+ lgi — hagl) < Do n7M(If = Ral + lgi = hal)

=1 i=1
forall h={h;:i=1,...,n} € M,. Hence

n

D (fs = hagl + 1gi = hagl) < | f = Rlly + llg = Rl

=1

for all h € M,,, so h} is a best L;-simultaneous approximation to f and g by elements
of Sr. Now let h be a non-decreasing function on [0, 1]. We show that there is a

non-decreasing function h* € S, such that
If = A3lly + llg = R*lly < IIf = Ally + llg = &, -

Indeed if h is not constant on (¢;_1, ¢;], assume without loss of generality that f; > g;.

We have two different cases to consider:

Case 1. If g; h(tf_l) < h(t;) < fi, then clearly taking h* = ¢ for any ¢ € [g;, fi]

will imply
t; ¢
[ =t lg—cdt= [ (1fe ~ bo)l +Ioe — o).
ti—t tioa
Case 2. If h(t]) > fi, then h(t) > f; on a sub-interval (¢; — §, ¢;], whence taking
h* = h on (t;_1,t; — 6] and h* = f; on (f; — §, ;] implies

t;

[ = w o= wde < [ (1 - b+ b - bo)ae

ti ti_y

The case h(t?_l) < g; is similar. All other cases are treated similarly. This establishes
the theorem. B

We finish this section with an outline of the case when f and g are quasi-
continuous, that is, functions having discontinuities of the first kind only. More precisely
we shall assume that f € Q if f(0) = f(0%) and f(z) = f(z~),0< z < 1.
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DEFINITION: Let f be a bounded measurable function on [0, 1], and let = be a
partition of [0, 1]. Then f, in S, is defined by

F.(z) = sup{f(y): O0<y<t}, z €0, t]
) sup{f(v): tia <y <}, @€ (fioa, ti],i> 1.

f . is defined similarly by replacing sup with inf. A bounded function f isin Q@ if and
only if, for any € > 0, there exists a partition 7 of [0, 1] such that 0 < f, — f.<e.
Thus lim f, = lim f, = f. This characterisation enables us to use the previous results

for step functions.
To this end we adapt the proofs of Lemma 6 and Theorem 4 of [6] which were
based on the results of [3] to yield the principal result of this section.

THEOREM 9. Let f and g be in Q. Let f,., 3., ._f_ﬂ_, g, be as defined above,

and let E,,,p, h, , be the best L,-simultaneous approximations of fr G, and fo g,

respectively. If h, is the b.s.a. to f and g, then limhy, = limhb, , = hpy, and
w L4 ’

liin hp = hy exists. Moreover hy is a best Ly-simultaneous approximation to f and g.
rll

Remark. Theorem 5 in [6] shows that the continuity of f and g implies that of h,
for all p € (1, o). Since h, — h; uniformly, then h; is continuous in this case.

4. APPROXIMATE CONTINUITY OF f AND g

DEFINITION: If A is a measurable subset of  and I is a subinterval of £, the

relative measure of 4 in I is defined by
m(A4, I) =m(AnI)/m(I).
The upper metric density of A at z € 0 is defined by

m(A, ) = lim sup{m(A, I):Iis an interval, z € I and mI < l}
n—oo g n

The lower metric density m(A, z) is defined similarly, with sup replaced by inf. A has
a metric density at = only when m(4, z) = m(4, =) = m(4, z).

DEFINITION: A function f:  — R is said to be approximately continuous at
z € N if, for any £ > 0, the set

Ae ={y: |fly) — f(=)| <<}

has metric density equal to 1 at z; f is said to be approximately continuous on 2 if
it is approximately continuous at each point in . Notationally we write f € bA.
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THEOREM 10. Let f and g be elements of bA. Then for all p € (1, 00), h=h,
is continuous.

PROOF: Suppose first that both f and ¢ are in M NbA. Then both have at
most discontinuities of the first kind, that is, for any y € (0, 1) the left and right hand
limits exist. Thus f(y~) = lzl%lylf(y) and f(y*) = EE}f(y) both exist. So if f is
not continuous at y, then f(y~) < f(y*), and so f ¢ bA. This is a contradiction.
Therefore f must be continuous and so is g. By [8, Section 4] we may consider f
and g as limits of non-decreasing step functions having their mean as their best Lp-
simltaneous approximations. Taking limits as in [8], we conclude that the b.s.a. to f
and g is nothing but (f + ¢g)/2 which is clearly in M NbA. Hence (f+g)/2="h is
continuous. A similar argument works out if h=f or h=g.

For the general case wehave f ¢ M, g ¢ M. So f # h # g. We start with points
y € (0, 1) where g(y) < h(y) < f(y). The case f(y) < h(y) < g(y) is similar. Suppose
Hy) — h(y) = €1 > €2 = h(y) — g(y). We may assume that

bo) = lim, h(z)
= h(y+) .

Let e = (g1 — €2)/5 > 0. Let Q € (0, 1) be a fixed real number which we specify later.
Since f is approximately continuous at y, there exists §; = §:(Q) > 0 such that

p({z: f(z) > f(y) — ¢}, ) > Q,

for any interval I containing y and I C B(y, §;) = (y — 61, y + &;1). Similarly there
exists & = 62(Q) such that

p{z: lg(=) — 9(y)l < e}, I) > Q,

for any interval I containing y and I C B(y, 62) = (y— 62, y+62). Let 1 > § =
min (&, 6;) and [ = (y — §,y]. Let

F=In{z: f(z) > f(y) — ¢},
and
G=In{z: |g(z) - g(y)| <&}

Then both F and G have measures greater than 6Q.

Suppose h is not continuous at y. We show this assumption yields a contradiction.
Let 7 = min{h(y) — h(y~), e} > 0. Define h*: 1 — R by

h(a) = { h(z) +n, ifz€(y—6y),

h(z), otherwise.
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Apply the Mean Value Theorem to the functions s — s? where p > 1, so there
exists u € (s, s + o) such that

(15) (s+ o) — s = puP~lo > psP~ o,
or,
(16) (s+0)P —s? <p(s+0) 0.

Hence for ¢t € F', we obtain by applying (15)
IF(&) = R()I° = |7(2) = R* I > p|F(2) — R ()" m,
whence

(17) _/F|f~h|"—/F|f—h'lp21117/Flf—h‘|"“.

Similarly, for t € G, we obtain by applying (16)

(18) /ly—h‘l"—/ |g—h|"<pn/ lg — R
G G G

Subtracting (17) from (18) we obtain

(19) /If-h‘l"+/ Ig—h‘l"</1f—hl"+/ |9 — AP — pnB,
F G F G

where B = [ |f —h*P7' = [5lg—h*P! > 0.
Notice also in general that

F(8) = R* (@)1 = 1£(2) — )L < p(2 || fll )P 7" R7() - R(2),

thus,
(20) / f— P < / 1 = BIP + p(2 || fllos)? T — F).
I-F -F
Similarly
(21) / lg— P < / lg ~ [P + p(2k)* " nu( — F),
I-G I-G
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where k = max (||l » 17"l co) -
After observing that u(I — F) < §(1 — Q) <1 — Q we add (19), (20) and (21) to get

Jis=wr [la-wp< [1r-nr+ [1g-np - B
I I I I

+ (1= Q2N lle) ™ + (2K,

</U—hv+/w—hﬂ
I I

provided @ was chosen so that

or,

(1 - Q2 fll0)*™" + (2k)*7"] < B,

1>Q>1-B/[2]foll)" + (2k)*7'] > 0.

Thus, h* is a better simultaneous approximation to f and g. This is a contradiction.

This verifies the continuity of A at y in this case.

For the case when ¢; < €; we argue similarly on [y,y + §) to obtain a contradiction

by lowering the value of h.

If f(y) = h(y) or g(y) = h(y) and h is not continuous at y, then h(y) —h(y~) =

3c > 0. We apply again a similar argument on (y — §,y] when h(y) = g(y) < f(y) and
on [y,y+6) when f(y) = h(y) > g(¥).

(1)
(2]
(3]
(4]
(5]
(o]

This establishes the theorem. ]
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