ON THE MONOTONE SIMULTANEOUS APPROXIMATION ON [0,1]

SALEM M.A. SAHAB

Let Ω denote the closed interval [0, 1] and let bA denote the set of all bounded, approximately continuous functions on Ω . Let Q denote the Banach space (sup norm) of quasi-continuous functions on Ω . Let M denote the closed convex cone in Q comprised of non-decreasing functions. Let h_p , $1 , denote the best <math>L_p$ -simultaneaous approximation to the bounded measurable functions f and g by elements of M. It is shown that if f and g are elements of Q, then h_p converges uniformly to a best L_1 -simultaneous approximation of f and g. We also show that if f and g are in bA, then h_p is continuous.

1. INTRODUCTION

Let f and g be bounded measurable functions on [0, 1]. It was shown in [4] that if $f \notin M$ or $g \notin M$, then there exists a unique $h_p \in M$ such that

(1)
$$[\|f - h_p\|_p^p + \|g - h_p\|_p^p]^{1/p} = \inf_{h \in M} [\|f - h\|_p^p + \|g - h\|_p^p]^{1/p}.$$

We call h_p the best L_p -simultaneous approximation to f and g by elements of M and abbreviate this to b.s.a. In [6] it was shown that if f and g are in Q, then they have the so-called simultaneous Polya property, that is h_p converges uniformly as $p \to \infty$. In this paper we show that they have also the simultaneous Polya-one property, that is, h_p converges uniformly as p decreases to one to a best L_1 -simultaneous approximation.

To establish this property, we start in Section 2 with the case when f and g are finite real vlaued functions. In Section 3 we generalise the results of Section 2 to the space of step functions, and then to the space of quasi-continuous functions.

In Section 4 we establish the continuity of h_p when both of f and g are in bA.

Throughout this paper we assume either f or g is not in M, unless otherwise stated.

2. CONVERGENCE OF B.S.A. ON A FINITE SET

Let $X = \{x_1, \ldots, x_n\}$ be a finite subset of **R** with $x_1 < x_2 < \ldots < x_n$. Let B = B(X) be the linear space of bounded real functions on X and M = M(X) the closed convex cone of nondecreasing functions in B, that is functions h satisfying

Received 11 February 1988

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 \$A2.00+0.00.

S.M.A. Sahab

[2]

 $h(x) \leq h(y)$ whenever $x, y \in X$ and $x \leq y$. For each $p, 1 , define a weighted <math>L_p$ -norm $w \|\cdot\|_p$ by

(2)
$$w \|f\|_{p} = \left(\sum_{i=1}^{n} w_{i} |f_{i}|^{p}\right)^{1/p}$$

where $f = \{f_i\}_{i=1}^n = \{f(x_i)\}_{i=1}^n \in B$, and $w = \{w_i\}_{i=1}^n > 0$ is a given weight function satisfying $\sum_{i=1}^n x_i = 1$.

Let $f = \{f_i\}_{i=1}^n$ and $g = \{g_i\}_{i=1}^n$ in *B* be fixed. For each $p, 1 , we call a function <math>h_p = \{h_{p,i}\}_{i=1}^n \in M$ the best weighted L_p -simultaneous approximation if

$$\left(w \|f - h_p\|_p^p + w \|g - h_p\|_p^p\right)^{1/p} = \inf\{\left(w \|f - h\|_p^p + w \|g - h\|_p^p\right)^{1/p} : h \in M\},\$$

or,

(3)
$$\left[\sum_{i=1}^{n} w_{i}(|f_{i}-h_{p,i}|^{p}+|g_{i}-h_{p,i}|^{p})\right]^{1/p} \leq \left[\sum_{i=1}^{n} w_{i}(|f_{i}-h_{i}|^{p}+|g_{i}-h_{i}|^{p})\right]^{1/p},$$

for all $h = \{h_i : i = 1, ..., n\} \in M$.

To compute h_p explicitly, we first define $L \subseteq X$ to be a lower subset if $x_i \in L$ and $x_j \in X, x_j \leq x_i$, implies that $x_j \in L$. Similarly $U \subseteq X$ is an upper subset if $x_i \in L$ and $x_j \in X, x_j \geq x_i$, implies that $x_j \in U$. For simplicity we will write $i \in Y \subseteq X$ instead of $x_i \in Y$. Fix $p \in (1, \infty)$. If $L \cap U$ is non-empty, define $\mu_p(L \cap U)$ to be the unique real number minimising $\sum_j \{w_j[|f_j - u|^p + |g_j - u|^p]: j \in L \cap U\}$. Let

 $h_p = \{h_{p,i} \colon i = 1, 2, ..., n\}$ be the function defined on X by

(4)
$$h_{p,i} = \max_{\{U: i \in U\}} \min_{\{L: i \in L\}} \mu_p(L \cap U),$$
$$= \min_{\{L: i \in L\}} \max_{\{U: i \in U\}} \mu_p(L \cap U).$$

It is shown in [6] that h_p is the unique solution satisfying (3).

DEFINITION: Let $a = \min\{-\|f\|_{\infty}, -\|g\|_{\infty}\}$ and $b = \max\{\|f\|_{\infty}, \|g\|_{\infty}\}$, and define functions

$$\tau_{p}(\overline{u}) = \sum_{i=1}^{n} w_{i}(|f_{i} - u_{i}|^{p} + |g_{i} - u_{i}|^{p}),$$

$$\kappa_{p}(u) = \sum_{i=1}^{n} w_{i}(|f_{i} - u|^{p} + |g_{i} - u|^{p}),$$

where $\overline{u} = (u_1, u_2, \ldots, u_n) \in [a, b]^n$ and $u \in [a, b]$.

402

Remark. By [5, Lemma 2], for each $p \in (1, \infty)$, κ_p is strictly convex and has a unique minimiser $u_p \in [a, b]$.

LEMMA 1. Under the above hypothesis, we have

(5)
$$\lim_{p|1} (\tau_p(\overline{u}))^{1/p} = \tau_1(\overline{u}),$$

and,

(6)
$$\lim_{p\downarrow 1} \left(\kappa_p(u)\right)^{1/p} = \kappa_1(u)$$

the convergence being uniform on the compact sets $[a, b]^n$ and [a, b] respectively.

PROOF: For $\overline{u} \in [a, b]^n$, $1 \leq i \leq n$ and p < 2 we have

$$|f_i - u_i|^p \leq 2^p [|f_i|^p + |u_i|^p] \leq 2^{p+1} b^p \leq B,$$

where $B = 2^3 \max\{b^2, 1\}$. Similarly

$$|g_i - u_i|^p \leq 2^{p+1} b^p \leq B.$$

Let $\varepsilon > 0$ be given. We show that for $\overline{u} \in [a, b]^n$, there exists $\alpha_0 \in (0, 1)$ such that

(7)
$$\left| \left(\tau_{1+\alpha}(\overline{u}) \right)^{1/(1+\alpha)} - \tau_1(\overline{u}) \right| < \epsilon$$

whenever $\alpha \in (0, \alpha_0)$.

Notice that

(8)
$$\left| \left(\tau_{1+\alpha}(\overline{u}) \right)^{1/(1+\alpha)} - \tau_{1}(\overline{u}) \right| \leq \left| \left(\tau_{1+\alpha}(\overline{u}) \right)^{1/(1+\alpha)} - \left(\tau_{1}(\overline{u}) \right)^{1/(1+\alpha)} \right| + \left| \left(\tau_{1}(\overline{u}) \right)^{1/(1+\alpha)} - \tau_{1}(\overline{u}) \right|.$$

Since the map $s \mapsto s^{1/(1+\alpha)}$ is continuous for $x \ge 0$, there exists $\delta > 0$ such that

$$\left|x^{1/(1+\alpha)}-y^{1/(1+\alpha)}\right|<\varepsilon/2,$$

whenever

$$(9) |x-y| < \delta.$$

Let $x = \tau_{1+\alpha}(\overline{u})$ and $y = \tau_1(\overline{u})$. Then the first summand of (8) is less that $\epsilon/2$ provided we show there is α small enough to satisfy (9). Indeed

$$|x - y| = \left| \sum_{i=1}^{n} w_i |f_i - u_i|^{1 + \alpha} + \sum_{i=1}^{n} w_i |g_i - u_i|^{1 + \alpha} - \sum_{i=1}^{n} w_i |f_i - u_i| - \sum_{i=1}^{n} w_i |g_i - u_i| \right|$$

$$\leq \left| \sum_{i=1}^{n} w_i |f_i - u_i|^{1 + \alpha} - \sum_{i=1}^{n} w_i |f_i - u_i| \right| + \left| \sum_{i=1}^{n} w_i |g_i - u_i|^{1 + \alpha} - \sum_{i=1}^{n} w_i |g_i - u_i| \right|$$

Now we use the same technique as was used in [5, Lemma 3] to obtain an $\alpha_1 > 0$ such that (9) holds for all $\alpha \in (0, \alpha_1)$.

For the second summand in (8) we give more details following the same line of proof in [5, Lemma 3]. So let $x = \tau_1(\overline{u})$. Then

$$0 < x = \sum_{i=1}^{n} w_i(|f_i - u_i| + |g_i - u_i|)$$

$$< \sum_{i=1}^{n} w_i(2b + 2b) = 4b = B^*.$$

Define G by

$$G(x, \alpha) = x^{1/(1+\alpha)} - x.$$

Then $\partial G/\partial x = (1+\alpha)^{-1} x^{-\alpha/(1+\alpha)} - 1 = 0$ only when $x = x_0 = (1+\alpha)^{-(1+1/\alpha)}$, and $G(x_0, \alpha) = (1+\alpha)^{-1/\alpha} - (1+\alpha)^{-1(+1/\alpha)} = (1+\alpha)^{-1/\alpha} (1-(1-\alpha)^{-1}) = -\alpha(1+\alpha)^{-(1+1/\alpha)}$ so $\lim_{\alpha \to 0} G(x_0, \alpha) = 0$. Let

$$T(\alpha) = 2 \max\{|G(x_0, \alpha)|, |B^* - B^{*^{1/(1+\alpha)}}|\}$$

Then $\sup\{|G(x, \alpha)|: 0 < x < B^*\} < T(\alpha)$. But $\lim_{\alpha \downarrow 0} G(x_0, \alpha) = 0$, and $\lim_{\alpha \downarrow 0} \left|B^* - B^{*^{1/(1+\alpha)}}\right| = 0$ implies the existence of $\alpha_2 > 0$ such that $|T(\alpha)| < \varepsilon/2$ for all $\alpha \in (0, \alpha_2)$. Consequently

$$|G(x, \alpha)| = \left|x^{1/(1+\alpha)} - x\right| < \varepsilon/2$$

which is what we need when we substitute for $x = \tau_1(\overline{u})$.

Finally take $\alpha_0 = \min(\alpha_1, \alpha_2)$ and the proof of (5) is complete. To obtain (6) take $\overline{u} = (u, u, \dots, u)$ in (5). This establishes the lemma.

Remark. Let M_n denote the space M as defined in the beginning of this section. For $1 \leq p < \infty$, let

$$d_n(p) = \inf\{w \| f - \overline{u} \|_p + w \| g - \overline{u} \|_p : \overline{u} \in M_n\}$$

= $\inf\{w \| f - \overline{u} \|_p + w \| g - \overline{u} \|_p : \overline{u} \in M_n \cap [a, b]^n\}$

Then it follows from (7) that

(10)
$$\lim_{p \downarrow 1} d_n(p) = d_n(1).$$

By putting $\overline{u} = (u, u, \ldots, u)$ it also follows that

(11)
$$\lim_{p \ge 1} d(p) = d(1)$$

where

$$d(p) = \inf\{_{w} \|f - u\|_{p} +_{w} \|g - u\|_{p} : u \in [a, b]\}.$$

THEOREM 2. For $p \in (1, \infty)$, let y_p be the unique minimiser of κ_p . Then $\lim_{p \downarrow 1} u_p = u_1$ exists. Moreover u_1 is a minimiser of κ_1 .

PROOF: Minor changes are needed on the proof of [5, Theorem 4] to obtain the desired results.

THEOREM 3. The solution h_p (given by (4)) which satisfies (3) converges as $p \downarrow 1$ to a solution $h_1 = \{h_{1,i} : i = 1, 2, ..., n\}$ satisfying

(12)
$$\sum_{i=1}^{n} w_i(|f_i - h_{1,i}| + |g_i - h_{1,i}|) \leq \sum_{i=1}^{n} w_i(|f_i - h_i| + |g_i - h_i|)$$

for all $h = \{h_i : i = 1, ..., n\} \in M_n$.

PROOF: Similar to the proof of Theorem 5 in [5] with the role of g_p played by h_p .

3. GENERALISATIONS OF QUASI-CONTINUOUS FUNCTIONS

DEFINITION: Let π be a finite partition of [0, 1] with points $\{t_i: 0, 1, \ldots, n\}$ such that $0 = t_0 < t_1 < \ldots < t_n = 1$. Let I_E denote the indicator function of a subset E of [0, 1]. Let S_{π} be the linear space comprised of all step functions of the form

$$f = f_i I_{[0,t_1]} + \sum_{i=2}^n f_i I_{(t_{i-1},t_i]},$$

where $f_i \in R$ for every *i*.

We recall the following four results from [6].

[5]

LEMMA 4. Let f and g be in S_{π} . Let h_p , $1 , be the b.s.a. to f and g by elements of M. Then <math>h_p \in S_{\pi}$.

LEMMA 5. Fix $p \in (1, \infty)$. Let f_1 , f_2 , g_1 and g_2 be elements of S_{π} . Let h_1 and h_2 be the b.s.a. to f_1 , g_1 and f_2 , g_2 respectively. If $f_1 \leq f_2$ and $g_1 \leq g_2$, then $h_1 \leq h_2$.

LEMMA 6. Let f and g be elements of S_{π} . If h_p is the b.s.a. to f and g, then $h_p + c$ is the b.s.a. to f + c and g + c.

THEOREM 7. Let f and g be elements of S_{π} given by

$$f = f_1 I_{[0,t_1]} + \sum_{i=2}^n f_i I_{(t_{i-1},t_i]},$$

and

$$g = g_1 I_{[0,t_1]} + \sum_{i=2}^n g_i I_{(t_{i-1},t_i]}.$$

For every $p \in (1, \infty)$, let $w_p = \{w_{p,i} : i = 1, ..., n\}$ be defined by

$$w_{p,i} = t_i - t_{i-1}$$

for all i. Let $h_p = \{h_{p,i} : i = 1, 2, ..., n\}$ be given by (4). Then the b.s.a. to f and g is given by

(13)
$$h_{p}^{*} = h_{p,i}I_{[0,t_{1}]} + \sum_{i=2}^{n} h_{p,i}I_{(t_{i-1},t_{i}]}.$$

The next theorem establishes the convergence of h_p^* as $p \to 1$.

THEOREM 8. Let f and g in S_{π} and h_p^* be as given in Theorem 7 above. Then h_p^* converges as $p \downarrow 1$ to the monotone non-decreasing function h_1^* in S_{π} given by

(14)
$$h_1^* = h_{1,i}I_{[t_0,t_1]} + \sum_{i=2}^n h_{2,i}I_{[t_{i-1},t_i]}$$

where $h_{1,i} = \lim_{p \downarrow 1} h_{p,i}$ is as described earlier in Theorem 3. Moreover, h_1^* is a best L_1 -simultaneous approximation of f and g by non-decreasing functions.

PROOF: For each i = 1, ..., n, let $x_i = (t_i + t_{i-1})/2$ and let $X = \{x_1, ..., x_n\}$. Consider $\{f_i = f(x_i): i = 1, 2, ..., n\}$ and $\{g_i = g(x_i): i = 1, 2, ..., n\}$ as finite real valued functions on X. Let $w = \{w_i: i = 1, ..., n\}$ be as defined above. Then Theorem 3 implies that h_p^* converges to h_1^* . Therefore $\lim_{p \downarrow 1} h_p^*$ exist and is given by (14).

For the second part of the theorem, notice that (12) holds for any positive weight function $w = \{w_i : i = 1, ..., n\}$ satisfying $\sum_{i=1}^n w_i = 1$. Thus for each $i, 1 \le i \le n$, let $w_i = 1/n$; then (12) implies that

$$\sum_{i=1}^{n} n^{-1}(|f_i - h_{1,i}| + |g_i - h_{1,i}|) \leq \sum_{i=1}^{n} n^{-1}(|f_i - h_i| + |g_i - h_i|)$$

for all $h = \{h_i : i = 1, ..., n\} \in M_n$. Hence

$$\sum_{i=1}^{n} \left(|f_i - h_{1,i}| + |g_i - h_{1,i}| \right) \leq \|f - h\|_1 + \|g - h\|_1$$

for all $h \in M_n$, so h_1^* is a best L_1 -simultaneous approximation to f and g by elements of S_{π} . Now let h be a non-decreasing function on [0, 1]. We show that there is a non-decreasing function $h^* \in S_{\pi}$ such that

$$\|f - h_1^*\|_1 + \|g - h^*\|_1 \leq \|f - h\|_1 + \|g - h\|_1$$

Indeed if h is not constant on (t_{i-1}, t_i) , assume without loss of generality that $f_i > g_i$. We have two different cases to consider:

Case 1. If $g_i \leq h(t_{i-1}^+) < h(t_i) \leq f_i$, then clearly taking $h^* = c$ for any $c \in [g_i, f_i]$ will imply

$$\int_{t_{i-1}}^{t_i} (|f_i - c| + |g_i - c|) dt = \int_{t_{i-1}}^{t_i} (|f_i - h(t)| + |g_i - h(t)|) dt.$$

Case 2. If $h(t_i^-) > f_i$, then $h(t) > f_i$ on a sub-interval $(t_i - \delta, t_i]$, whence taking $h^* = h$ on $(t_{i-1}, t_i - \delta]$ and $h^* = f_i$ on $(t_i - \delta, t_i]$ implies

$$\int_{t_{i-1}}^{t_i} \left(|f_i - h^*| + |g_i - h^*| \right) dt < \int_{t_{i-1}}^{t_i} \left(|f_i - h(t)| + |g_i - h(t)| \right) dt.$$

The case $h(t_{i-1}^+) < g_i$ is similar. All other cases are treated similarly. This establishes the theorem.

We finish this section with an outline of the case when f and g are quasicontinuous, that is, functions having discontinuities of the first kind only. More precisely we shall assume that $f \in Q$ if $f(0) = f(0^+)$ and $f(x) = f(x^-), 0 < x \leq 1$.

[7]

DEFINITION: Let f be a bounded measurable function on [0, 1], and let π be a partition of [0, 1]. Then \overline{f}_{π} in S_{π} is defined by

$$\overline{f}_{\pi}(x) = \left\{egin{array}{ll} \sup\{f(y)\colon \ 0\leqslant y\leqslant t_1\}, & x\in [0,\,t_1] \ \sup\{f(y)\colon t_{i-1}< y\leqslant t_i\}, & x\in (t_{i-1},\,t_i]\,,\,i>1. \end{array}
ight.$$

 \underline{f}_{π} is defined similarly by replacing sup with inf. A bounded function f is in Q if and only if, for any $\varepsilon > 0$, there exists a partition π of [0, 1] such that $0 \leq \overline{f}_{\pi} - \underline{f}_{\pi} < \varepsilon$. Thus $\lim_{\pi} \overline{f}_{\pi} = \lim_{\pi} \underline{f}_{\pi} = f$. This characterisation enables us to use the previous results for step functions.

To this end we adapt the proofs of Lemma 6 and Theorem 4 of [6] which were based on the results of [3] to yield the principal result of this section.

THEOREM 9. Let f and g be in Q. Let $\overline{f}_{\pi}, \overline{g}_{\pi}, \underline{f}_{\pi}, \underline{g}_{\pi}$ be as defined above, and let $\overline{h}_{\pi,p}, \underline{h}_{\pi,p}$ be the best L_p -simultaneous approximations of $\overline{f}_{\pi}, \overline{g}_{\pi}$ and $\underline{f}_{\pi}, \underline{g}_{\pi}$ respectively. If h_p is the b.s.a. to f and g, then $\lim_{\pi} \overline{h}_{\pi,p} = \lim_{\pi} \underline{h}_{\pi,p} = h_p$, and $\lim_{p \downarrow 1} h_p = h_1$ exists. Moreover h_1 is a best L_1 -simultaneous approximation to f and g.

Remark. Theorem 5 in [6] shows that the continuity of f and g implies that of h_p for all $p \in (1, \infty)$. Since $h_p \to h_1$ uniformly, then h_1 is continuous in this case.

4. Approximate continuity of f and g

DEFINITION: If A is a measurable subset of Ω and I is a subinterval of Ω , the relative measure of A in I is defined by

$$m(A, I) = m(A \cap I)/m(I).$$

The upper metric density of A at $x \in \Omega$ is defined by

$$\overline{m}(A, x) = \lim_{n \to \infty} \sup_{I} \{m(A, I) : I \text{ is an interval}, x \in I \text{ and } mI < \frac{1}{n} \}.$$

The lower metric density $\underline{m}(A, x)$ is defined similarly, with sup replaced by inf. A has a metric density at x only when $\overline{m}(A, x) = \underline{m}(A, x) = m(A, x)$.

DEFINITION: A function $f: \Omega \to R$ is said to be approximately continuous at $x \in \Omega$ if, for any $\varepsilon > 0$, the set

$$A_{\epsilon} = \{y \colon |f(y) - f(x)| < \epsilon\}$$

has metric density equal to 1 at x; f is said to be approximately continuous on Ω if it is approximately continuous at each point in Ω . Notationally we write $f \in bA$.

https://doi.org/10.1017/S0004972700027787 Published online by Cambridge University Press

THEOREM 10. Let f and g be elements of bA. Then for all $p \in (1, \infty)$, $h = h_p$ is continuous.

PROOF: Suppose first that both f and g are in $M \cap bA$. Then both have at most discontinuities of the first kind, that is, for any $y \in (0, 1)$ the left and right hand limits exist. Thus $f(y^-) = \lim_{x \uparrow y} f(y)$ and $f(y^+) = \lim_{x \downarrow y} f(y)$ both exist. So if f is not continuous at y, then $f(y^-) < f(y^+)$, and so $f \notin bA$. This is a contradiction. Therefore f must be continuous and so is g. By [6, Section 4] we may consider f and g as limits of non-decreasing step functions having their mean as their best L_p -similtaneous approximations. Taking limits as in [6], we conclude that the b.s.a. to f and g is nothing but (f+g)/2 which is clearly in $M \cap bA$. Hence (f+g)/2 = h is continuous. A similar argument works out if h = f or h = g.

For the general case we have $f \notin M$, $g \notin M$. So $f \neq h \neq g$. We start with points $y \in (0, 1)$ where g(y) < h(y) < f(y). The case f(y) < h(y) < g(y) is similar. Suppose $f(y) - h(y) = \varepsilon_1 > \varepsilon_2 = h(y) - g(y)$. We may assume that

$$h(y) = \lim_{x \to y^+} h(x)$$
$$= h(y^+).$$

Let $\varepsilon = (\varepsilon_1 - \varepsilon_2)/5 > 0$. Let $Q \in (0, 1)$ be a fixed real number which we specify later. Since f is approximately continuous at y, there exists $\delta_1 = \delta_1(Q) > 0$ such that

$$\mu(\{x: f(x) > f(y) - \varepsilon\}, I) > Q,$$

for any interval I containing y and $I \subseteq B(y, \delta_1) = (y - \delta_1, y + \delta_1)$. Similarly there exists $\delta_2 = \delta_2(Q)$ such that

$$\mu(\{x\colon |g(x)-g(y)|<\varepsilon\},\,I)>Q,$$

for any interval I containing y and $I \subseteq B(y, \delta_2) = (y - \delta_2, y + \delta_2)$. Let $1 > \delta = \min(\delta_1, \delta_2)$ and $I = (y - \delta, y]$. Let

$$F = I \cap \{x \colon f(x) > f(y) - \varepsilon\},$$

and

$$G = I \cap \{x \colon |g(x) - g(y)| < \varepsilon\}.$$

Then both F and G have measures greater than δQ .

Suppose h is not continuous at y. We show this assumption yields a contradiction. Let $\eta = \min\{h(y) - h(y^-), \epsilon\} > 0$. Define $h^* \colon \Omega \to R$ by

$$h^*(x) = \left\{egin{array}{ll} h(x) + \eta, & ext{if } x \in (y-\delta,y), \ h(x), & ext{otherwise.} \end{array}
ight.$$

Apply the Mean Value Theorem to the functions $s \mapsto s^p$ where p > 1, so there exists $u \in (s, s + \sigma)$ such that

(15)
$$(s+\sigma)^p - s^p = pu^{p-1}\sigma \geqslant ps^{p-1}\sigma,$$

or,

(16)
$$(s+\sigma)^p - s^p \leq p(s+\sigma)^{p-1}\sigma.$$

Hence for $t \in F$, we obtain by applying (15)

$$|f(t) - h(t)|^{p} - |f(t) - h^{*}(t)|^{p} \ge p |f(t) - h^{*}(t)|^{p-1} \eta,$$

whence

(17)
$$\int_{F} |f-h|^{p} - \int_{F} |f-h^{*}|^{p} \ge p\eta \int_{F} |f-h^{*}|^{p-1}.$$

Similarly, for $t \in G$, we obtain by applying (16)

(18)
$$\int_{G} |g - h^*|^p - \int_{G} |g - h|^p \leq p\eta \int_{G} |g - h^*|^{p-1}.$$

Subtracting (17) from (18) we obtain

(19)
$$\int_{F} |f - h^{*}|^{p} + \int_{G} |g - h^{*}|^{p} \leq \int_{F} |f - h|^{p} + \int_{G} |g - h|^{p} - p\eta B,$$

where $B = \int_{F} \left| f - h^{*} \right|^{p-1} - \int_{G} \left| g - h^{*} \right|^{p-1} > 0$. Notice also in general that

$$||f(t) - h^*(t)|^p - |f(t) - h(t)|^p| \le p(2 ||f||_{\infty})^{p-1} |h^*(t) - h(t)|,$$

thus,

(20)
$$\int_{I-F} |f-h^*|^p \leq \int_{I-F} |f-h|^p + p(2 ||f||_{\infty})^{p-1} \eta \mu (I-F).$$

Similarly

(21)
$$\int_{I-G} |g-h^*|^p \leq \int_{I-G} |g-h|^p + p(2k)^{p-1} \eta \mu (I-F),$$

where $k = \max(\|g\|_{\infty}, \|h^*\|_{\infty})$. After observing that $\mu(I-F) < \delta(1-Q) < 1-Q$ we add (19), (20) and (21) to get

$$\begin{split} \int_{I} |f - h^{*}|^{p} + \int_{I} |g - h^{*}|^{p} &< \int_{I} |f - h|^{p} + \int_{I} |g - h|^{p} - p\eta B \\ &+ p\eta (1 - Q) [(2 \, \|f\|_{\infty})^{p-1} + (2k)^{p-1}], \\ &< \int_{I} |f - h|^{p} + \int_{I} |g - h|^{p}, \end{split}$$

provided Q was chosen so that

$$(1-Q)[(2 ||f||_{\infty})^{p-1} + (2k)^{p-1}] < B,$$

or,

$$1 > Q > 1 - B/[(2 ||f_{\infty}||)^{p-1} + (2k)^{p-1}] > 0.$$

Thus, h^* is a better simultaneous approximation to f and g. This is a contradiction. This verifies the continuity of h at y in this case.

For the case when $\varepsilon_1 \leq \varepsilon_2$ we argue similarly on $[y, y + \delta)$ to obtain a contradiction by lowering the value of h.

If f(y) = h(y) or g(y) = h(y) and h is not continuous at y, then $h(y) - h(y^-) = 3\varepsilon > 0$. We apply again a similar argument on $(y - \delta, y]$ when $h(y) = g(y) \leq f(y)$ and on $[y, y + \delta)$ when f(y) = h(y) > g(y).

This establishes the theorem.

References

- A.M. Bruckner, Differentiation of Real Functions, Lecture Notes in Mathematics, No. 659 (Springer-Verlag, Berlin, Heidelberg, New York, 1978).
- [2] R.B. Darst and R. Huotari, 'Best L₁-approximation of bounded approximately continuous functions on [0, 1] by nondecreasing functions', J. Approx. Theory 43 (1985), 178-189.
- [3] R.B. Darst and S. Sahab, 'Approximation of continuous and quasi-continuous functions by monotone functions', J. Approx. Theory 38 (1983), 9-27.
- [4] D.S. Goel, A.S.B. Holland, C. Nasim and B.N. Sahney, 'Characterization of an element of best l^p-simultaneous approximation', S. Ramanujan Memorial Volume, Madras (1984), 10-14.
- [5] R. Huotari, 'Best L₁-approximation of quasi-continuous functions on [0, 1] by non-decreasing functions', J. Approx. Theory 44 (1985), 221-229.
- [6] S. Sahab, Best L_p-simultaneous approximation of quasi-continuous functions on [0, 1] by monotone functions, (Center for Approximation Theory, Report No. 155 Department of Mathematics, Texas A & M University, College Station, Texas.), 1987.

Mathematics Department King Abdulaziz University P.O. Box 9028 Jeddah 21413 Saudi Arabia

[11]

https://doi.org/10.1017/S0004972700027787 Published online by Cambridge University Press