Bull. Austral. Math. Soc.
Vol. 39 (1988) [401-411]

ON THE MONOTONE SIMULTANEOUS APPROXIMATION ON [0,1]

Salem M.A. Sahab

Abstract

Let Ω denote the closed interval $[0,1]$ and let $b A$ denote the set of all bounded, approximately continuous functions on Ω. Let Q denote the Banach space (sup norm) of quasi-continuous functions on Ω. Let M denote the closed convex cone in Q comprised of non-decreasing functions. Let $h_{p}, 1<p<\infty$, denote the best L_{p}-simultaneaous approximation to the bounded measurable functions f and g by elements of M. It is shown that if f and g are elements of Q, then h_{p} converges uniformly to a best L_{1}-simultaneous approximation of f and g. We also show that if f and g are in $b A$, then h_{p} is continuous.

1. Introduction

Let f and g be bounded measurable functions on $[0,1]$. It was shown in [4] that if $f \notin M$ or $g \notin M$, then there exists a unique $h_{p} \in M$ such that

$$
\begin{equation*}
\left[\left\|f-h_{p}\right\|_{p}^{p}+\left\|g-h_{p}\right\|_{p}^{p}\right]^{1 / p}=\inf _{h \in M}\left[\|f-h\|_{p}^{p}+\|g-h\|_{p}^{p}\right]^{1 / p} \tag{1}
\end{equation*}
$$

We call h_{p} the best L_{p}-simultaneous approximation to f and g by elements of M and abbreviate this to b.s.a. In [6] it was shown that if f and g are in Q, then they have the so-called simultaneous Polya property, that is h_{p} converges uniformly as $p \rightarrow \infty$. In this paper we show that they have also the simultaneous Polya-one property, that is, h_{p} converges uniformly as p decreases to one to a best L_{1}-simultaneous approximation.

To establish this property, we start in Section 2 with the case when f and g are finite real vlaued functions. In Section 3 we generalise the results of Section 2 to the space of step functions, and then to the space of quasi-continuous functions.

In Section 4 we establish the continuity of h_{p} when both of f and g are in $b A$.
Throughout this paper we assume either f or g is not in M, unless otherwise stated.

2. Convergence of B.S.A. on a finite set

Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be a finite subset of \mathbf{R} with $x_{1}<x_{2}<\ldots<x_{n}$. Let $B=B(X)$ be the linear space of bounded real functions on X and $M=M(X)$ the closed convex cone of nondecreasing functions in B, that is functions h satisfying
$h(x) \leqslant h(y)$ whenever $x, y \in X$ and $x \leqslant y$. For each $p, 1<p<\infty$, define a weighted L_{p} - $\operatorname{norm}_{w}\|\cdot\|_{p}$ by

$$
\begin{equation*}
w\|f\|_{p}=\left(\sum_{i=1}^{n} w_{i}\left|f_{i}\right|^{p}\right)^{1 / p} \tag{2}
\end{equation*}
$$

where $f=\left\{f_{i}\right\}_{i=1}^{n}=\left\{f\left(x_{i}\right)\right\}_{i=1}^{n} \in B$, and $w=\left\{w_{i}\right\}_{i=1}^{n}>0$ is a given weight function satisfying $\sum_{i=1}^{n} x_{i}=1$.

Let $f=\left\{f_{i}\right\}_{i=1}^{n}$ and $g=\left\{g_{i}\right\}_{i=1}^{n}$ in B be fixed. For each $p, 1<p<\infty$, we call a function $h_{p}=\left\{h_{p, i}\right\}_{i=1}^{n} \in M$ the best weighted L_{p}-simultaneous approximation if

$$
\left(w\left\|f-h_{p}\right\|_{p}^{p}+w\left\|g-h_{p}\right\|_{p}^{p}\right)^{1 / p}=\inf \left\{\left(w\|f-h\|_{p}^{p}+w\|g-h\|_{p}^{p}\right)^{1 / p}: h \in M\right\}
$$

or,

$$
\begin{equation*}
\left[\sum_{i=1}^{n} w_{i}\left(\left|f_{i}-h_{p, i}\right|^{p}+\left|g_{i}-h_{p, i}\right|^{p}\right)\right]^{1 / p} \leqslant\left[\sum_{i=1}^{n} w_{i}\left(\left|f_{i}-h_{i}\right|^{p}+\left|g_{i}-h_{i}\right|^{p}\right)\right]^{1 / p}, \tag{3}
\end{equation*}
$$

for all $h=\left\{h_{i}: i=1, \ldots, n\right\} \in M$.
To compute h_{p} explicitly, we first define $L \subseteq X$ to be a lower subset if $x_{i} \in L$ and $x_{j} \in X, x_{j} \leqslant x_{i}$, implies that $x_{j} \in L$. Similarly $U \subseteq X$ is an upper subset if $x_{i} \in L$ and $x_{j} \in X, x_{j} \geqslant x_{i}$, implies that $x_{j} \in U$. For simplicity we will write $i \in Y \subseteq X$ instead of $x_{i} \in Y$. Fix $p \in(1, \infty)$. If $L \cap U$ is non-empty, define $\mu_{p}(L \cap U)$ to be the unique real number minimising $\sum_{j}\left\{w_{j}\left[\left|f_{j}-u\right|^{p}+\left|g_{j}-u\right|^{p}\right]: j \in L \cap U\right\}$. Let $h_{p}=\left\{h_{p, i}: i=1,2, \ldots, n\right\}$ be the function defined on X by

$$
\begin{align*}
h_{p, i} & =\max _{\{U: i \in U\}\{L: i \in L\}} \min _{p}(L \cap U), \tag{4}\\
& =\min _{\{L: i \in L\}\{U: i \in U\}} \max _{p}(L \cap U) .
\end{align*}
$$

It is shown in [6] that h_{p} is the unique solution satisfying (3).
Definition: Let $a=\min \left\{-\|f\|_{\infty},-\|g\|_{\infty}\right\}$ and $b=\max \left\{\|f\|_{\infty},\|g\|_{\infty}\right\}$, and define functions

$$
\begin{aligned}
& \tau_{p}(\bar{u})=\sum_{i=1}^{n} w_{i}\left(\left|f_{i}-u_{i}\right|^{p}+\left|g_{i}-u_{i}\right|^{p}\right) \\
& \kappa_{p}(u)=\sum_{i=1}^{n} w_{i}\left(\left|f_{i}-u\right|^{p}+\left|g_{i}-u\right|^{p}\right)
\end{aligned}
$$

where $\bar{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in[a, b]^{n}$ and $u \in[a, b]$.

Remark. By [5 , Lemma 2], for each $p \in(1, \infty), \kappa_{p}$ is strictly convex and has a unique minimiser $u_{p} \in[a, b]$.

Lemma 1. Under the above hypothesis, we have

$$
\begin{equation*}
\lim _{p \downarrow 1}\left(\tau_{p}(\bar{u})\right)^{1 / p}=\tau_{1}(\bar{u}), \tag{5}
\end{equation*}
$$

and,

$$
\begin{equation*}
\lim _{p \downarrow 1}\left(\kappa_{p}(u)\right)^{1 / p}=\kappa_{1}(u) \tag{6}
\end{equation*}
$$

the convergence being uniform on the compact sets $[a, b]^{n}$ and $[a, b]$ respectively.
Proof: For $\bar{u} \in[a, b]^{n}, 1 \leqslant i \leqslant n$ and $p<2$ we have

$$
\left|f_{i}-u_{i}\right|^{p} \leqslant 2^{p}\left[\left|f_{i}\right|^{p}+\left|u_{i}\right|^{p}\right] \leqslant 2^{p+1} b^{p} \leqslant B,
$$

where $B=2^{3} \max \left\{b^{2}, 1\right\}$. Similarly

$$
\left|g_{i}-u_{i}\right|^{p} \leqslant 2^{p+1} b^{p} \leqslant B .
$$

Let $\varepsilon>0$ be given. We show that for $\bar{u} \in[a, b]^{n}$, there exists $\alpha_{0} \in(0,1)$ such that

$$
\begin{equation*}
\left|\left(\tau_{1+\alpha}(\bar{u})\right)^{1 /(1+\alpha)}-\tau_{1}(\bar{u})\right|<\varepsilon \tag{7}
\end{equation*}
$$

whenever $\alpha \in\left(0, \alpha_{0}\right)$.
Notice that

$$
\begin{align*}
\left|\left(\tau_{1+\alpha}(\bar{u})\right)^{1 /(1+\alpha)}-\tau_{1}(\bar{u})\right| & \leqslant\left|\left(\tau_{1+\alpha}(\bar{u})\right)^{1 /(1+\alpha)}-\left(\tau_{1}(\bar{u})\right)^{1 /(1+\alpha)}\right| \tag{8}\\
& +\left|\left(\tau_{1}(\bar{u})\right)^{1 /(1+\alpha)}-\tau_{1}(\bar{u})\right|
\end{align*}
$$

Since the map $s \mapsto s^{1 /(1+\alpha)}$ is continuous for $x \geqslant 0$, there exists $\delta>0$ such that

$$
\left|x^{1 /(1+\alpha)}-y^{1 /(1+\alpha)}\right|<\varepsilon / 2
$$

whenever

$$
\begin{equation*}
|x-y|<\delta . \tag{9}
\end{equation*}
$$

Let $x=\tau_{1+\alpha}(\bar{u})$ and $y=\tau_{1}(\bar{u})$. Then the first summand of (8) is less that $\varepsilon / 2$ provided we show there is α small enough to satisfy (9). Indeed

$$
\begin{aligned}
|x-y| & =\left|\sum_{i=1}^{n} w_{i}\right| f_{i}-\left.u_{i}\right|^{1+\alpha}+\sum_{i=1}^{n} w_{i}\left|g_{i}-u_{i}\right|^{1+\alpha}-\sum_{i=1}^{n} w_{i}\left|f_{i}-u_{i}\right|-\sum_{i=1}^{n} w_{i}\left|g_{i}-u_{i}\right| \mid \\
& \leqslant\left|\sum_{i=1}^{n} w_{i}\right| f_{i}-\left.u_{i}\right|^{1+\alpha}-\sum_{i=1}^{n} w_{i}\left|f_{i}-u_{i}\right|\left|+\left|\sum_{i=1}^{n} w_{i}\right| g_{i}-u_{i}\right|^{1+\alpha}-\sum_{i=1}^{n} w_{i}\left|g_{i}-u_{i}\right| \mid
\end{aligned}
$$

Now we use the same technique as was used in [5, Lemma 3] to obtain an $\alpha_{1}>0$ such that (9) holds for all $\alpha \in\left(0, \alpha_{1}\right)$.

For the second summand in (8) we give more details following the same line of proof in [5, Lemma 3]. So let $x=\tau_{1}(\bar{u})$. Then

$$
\begin{aligned}
0<x & =\sum_{i=1}^{n} w_{i}\left(\left|f_{i}-u_{i}\right|+\left|g_{i}-u_{i}\right|\right) \\
& <\sum_{i=1}^{n} w_{i}(2 b+2 b)=4 b=B^{*}
\end{aligned}
$$

Define G by

$$
G(x, \alpha)=x^{1 /(1+\alpha)}-x .
$$

Then $\partial G / \partial x=(1+\alpha)^{-1} x^{-\alpha /(1+\alpha)}-1=0$ only when $x=x_{0}=(1+\alpha)^{-(1+1 / \alpha)}$, and $G\left(x_{0}, \alpha\right)=(1+\alpha)^{-1 / \alpha}-(1+\alpha)^{-1(+1 / \alpha)}=(1+\alpha)^{-1 / \alpha}\left(1-(1-\alpha)^{-1}\right)=$ $-\alpha(1+\alpha)^{-(1+1 / \alpha)}$ so $\lim _{\alpha \downarrow 0} G\left(x_{0}, \alpha\right)=0$. Let

$$
T(\alpha)=2 \max \left\{\left|G\left(x_{0}, \alpha\right)\right|,\left|B^{*}-B^{*^{1 /(1+\alpha)}}\right|\right\} .
$$

Then $\sup \left\{|G(x, \alpha)|: 0<x<B^{*}\right\}<T(\alpha)$. But $\lim _{\alpha \not 0} G\left(x_{0}, \alpha\right)=0$, and $\lim _{\alpha \perp 0}\left|B^{*}-B^{*^{1 /(1+\alpha)}}\right|=0$ implies the existence of $\alpha_{2}>0$ such that $|T(\alpha)|<\varepsilon / 2$ for all $\alpha \in\left(0, \alpha_{2}\right)$. Consequently

$$
|G(x, \alpha)|=\left|x^{1 /(1+\alpha)}-x\right|<\varepsilon / 2
$$

which is what we need when we substitute for $x=\tau_{1}(\bar{u})$.
Finally take $\alpha_{0}=\min \left(\alpha_{1}, \alpha_{2}\right)$ and the proof of (5) is complete. To obtain (6) take $\bar{u}=(u, u, \ldots, u)$ in (5). This establishes the lemma.

Remark. Let M_{n} denote the space M as defined in the beginning of this section. For $1 \leqslant p<\infty$, let

$$
\begin{aligned}
d_{n}(p) & =\inf \left\{w\|f-\bar{u}\|_{p}+_{w}\|g-\bar{u}\|_{p}: \bar{u} \in M_{n}\right\} \\
& =\inf \left\{w\|f-\bar{u}\|_{p}+_{w}\|g-\bar{u}\|_{p}: \bar{u} \in M_{n} \cap[a, b]^{n}\right\} .
\end{aligned}
$$

Then it follows from (7) that

$$
\begin{equation*}
\lim _{p \downarrow 1} d_{n}(p)=d_{n}(1) \tag{10}
\end{equation*}
$$

By putting $\bar{u}=(u, u, \ldots, u)$ it also follows that

$$
\begin{equation*}
\lim _{p \downarrow 1} d(p)=d(1) \tag{11}
\end{equation*}
$$

where

$$
d(p)=\inf \left\{w\|f-u\|_{p}+_{w}\|g-u\|_{p}: u \in[a, b]\right\}
$$

Theorem 2. For $p \in(1, \infty)$, let y_{p} be the unique minimiser of κ_{p}. Then $\lim _{p \downarrow 1} u_{p}=$ u_{1} exists. Moreover u_{1} is a minimiser of κ_{1}.

Proof: Minor changes are needed on the proof of [5, Theorem 4] to obtain the desired results.

Theorem 3. The solution h_{p} (given by (4)) which satisfies (3) converges as $p \downarrow 1$ to a solution $h_{1}=\left\{h_{1, i}: i=1,2, \ldots, n\right\}$ satisfying

$$
\begin{equation*}
\sum_{i=1}^{n} w_{i}\left(\left|f_{i}-h_{1, i}\right|+\left|g_{i}-h_{1, i}\right|\right) \leqslant \sum_{i=1}^{n} w_{i}\left(\left|f_{i}-h_{i}\right|+\left|g_{i}-h_{i}\right|\right) \tag{12}
\end{equation*}
$$

for all $h=\left\{h_{i}: i=1, \ldots, n\right\} \in M_{n}$.
Proof: Similar to the proof of Theorem 5 in [5] with the role of g_{p} played by h_{p}.

3. Generalisations of quasi-continuous functions

Definition: Let π be a finite partition of $[0,1]$ with points $\left\{t_{i}: 0,1, \ldots, n\right\}$ such that $0=t_{0}<t_{1}<\ldots<t_{n}=1$. Let I_{E} denote the indicator function of a subset E of $[0,1]$. Let S_{π} be the linear space comprised of all step functions of the form

$$
f=f_{i} I_{\left[0, t_{1}\right]}+\sum_{i=2}^{n} f_{i} I_{\left(t_{i-1}, t_{i}\right]},
$$

where $f_{i} \in R$ for every i.
We recall the following four results from [6].

Lemma 4. Let f and g be in S_{π}. Let $h_{p}, 1<p<\infty$, be the b.s.a. to f and g by elements of M. Then $h_{p} \in S_{\pi}$.

Lemma 5. Fix $p \in(1, \infty)$. Let f_{1}, f_{2}, g_{1} and g_{2} be elements of S_{π}. Let h_{1} and h_{2} be the b.s.a. to f_{1}, g_{1} and f_{2}, g_{2} respectively. If $f_{1} \leq f_{2}$ and $g_{1} \leq g_{2}$, then $h_{1} \leq h_{2}$.

Lemma 6. Let f and g be elements of S_{π}. If h_{p} is the b.s.a. to f and g, then $h_{p}+c$ is the b.s.a. to $f+c$ and $g+c$.

Theorem 7. Let f and g be elements of S_{π} given by

$$
f=f_{1} I_{\left[0, t_{1}\right]}+\sum_{i=2}^{n} f_{i} I_{\left(t_{i-1}, t_{i}\right]}
$$

and

$$
g=g_{1} I_{\left[0, t_{1}\right]}+\sum_{i=2}^{n} g_{i} I_{\left(t_{i-1}, t_{i}\right]}
$$

For every $p \in(1, \infty)$, let $w_{p}=\left\{w_{p, i}: i=1, \ldots, n\right\}$ be defined by

$$
w_{p, i}=t_{i}-t_{i-1}
$$

for all i. Let $h_{p}=\left\{h_{p, i}: i=1,2, \ldots, n\right\}$ be given by (4). Then the b.s.a. to f and g is given by

$$
\begin{equation*}
h_{p}^{*}=h_{p, i} I_{\left[0, t_{1}\right]}+\sum_{i=2}^{n} h_{p, i} I_{\left(t_{i-1}, t_{i}\right]} \tag{13}
\end{equation*}
$$

The next theorem establishes the convergence of h_{p}^{*} as $p \rightarrow 1$.
Theorem 8. Let f and g in S_{π} and h_{p}^{*} be as given in Theorem 7 above. Then h_{p}^{*} converges as $p \downarrow 1$ to the monotone non-decreasing function h_{1}^{*} in S_{π} given by

$$
\begin{equation*}
h_{1}^{*}=h_{1, i} I_{\left[t_{0}, t_{1}\right]}+\sum_{i=2}^{n} h_{2, i} I_{\left(t_{i-1}, t_{i}\right]} \tag{14}
\end{equation*}
$$

where $h_{1, i}=\lim _{p \downarrow 1} h_{p, i}$ is as described earlier in Theorem 3. Moreover, h_{1}^{*} is a best L_{1}-simultaneous approximation of f and g by non-decreasing functions.

Proof: For each $i=1, \ldots, n$, let $x_{i}=\left(t_{i}+t_{i-1}\right) / 2$ and let $X=\left\{x_{1}, \ldots, x_{n}\right\}$. Consider $\left\{f_{i}=f\left(x_{i}\right): i=1,2, \ldots, n\right\}$ and $\left\{g_{i}=g\left(x_{i}\right): i=1,2, \ldots, n\right\}$ as finite real valued functions on X. Let $w=\left\{w_{i}: i=1, \ldots, n\right\}$ be as defined above. Then

Theorem 3 implies that h_{p}^{*} converges to h_{1}^{*}. Therefore $\lim _{p \downarrow 1} h_{p}^{*}$ exist and is given by (14).

For the second part of the theorem, notice that (12) holds for any positive weight function $w=\left\{w_{i}: i=1, \ldots, n\right\}$ satisfying $\sum_{i=1}^{n} w_{i}=1$. Thus for each $i, 1 \leqslant i \leqslant n$, let $w_{i}=1 / n$; then (12) implies that

$$
\sum_{i=1}^{n} n^{-1}\left(\left|f_{i}-h_{1, i}\right|+\left|g_{i}-h_{1, i}\right|\right) \leqslant \sum_{i=1}^{n} n^{-1}\left(\left|f_{i}-h_{i}\right|+\left|g_{i}-h_{i}\right|\right)
$$

for all $h=\left\{h_{i}: i=1, \ldots, n\right\} \in M_{n}$. Hence

$$
\sum_{i=1}^{n}\left(\left|f_{i}-h_{1, i}\right|+\left|g_{i}-h_{1, i}\right|\right) \leqslant\|f-h\|_{1}+\|g-h\|_{1}
$$

for all $h \in M_{n}$, so h_{1}^{*} is a best L_{1}-simultaneous approximation to f and g by elements of S_{π}. Now let h be a non-decreasing function on $[0,1]$. We show that there is a non-decreasing function $h^{*} \in S_{\pi}$ such that

$$
\left\|f-h_{1}^{*}\right\|_{1}+\left\|g-h^{*}\right\|_{1} \leqslant\|f-h\|_{1}+\|g-h\|_{1} .
$$

Indeed if h is not constant on (t_{i-1}, t_{i}], assume without loss of generality that $f_{i}>g_{i}$. We have two different cases to consider:

Case 1. If $g_{i} \leqslant h\left(t_{i-1}^{+}\right)<h\left(t_{i}\right) \leqslant f_{i}$, then clearly taking $h^{*}=c$ for any $c \in\left[g_{i}, f_{i}\right]$ will imply

$$
\int_{t_{i-1}}^{t_{i}}\left(\left|f_{i}-c\right|+\left|g_{i}-c\right|\right) d t=\int_{t_{i-1}}^{t_{i}}\left(\left|f_{i}-h(t)\right|+\left|g_{i}-h(t)\right|\right) d t
$$

Case 2. If $h\left(t_{i}^{-}\right)>f_{i}$, then $h(t)>f_{i}$ on a sub-interval $\left(t_{i}-\delta, t_{i}\right]$, whence taking $h^{*}=h$ on $\left(t_{i-1}, t_{i}-\delta\right]$ and $h^{*}=f_{i}$ on $\left(t_{i}-\delta, t_{i}\right]$ implies

$$
\int_{t_{i-1}}^{t_{i}}\left(\left|f_{i}-h^{*}\right|+\left|g_{i}-h^{*}\right|\right) d t<\int_{t_{i-1}}^{t_{i}}\left(\left|f_{i}-h(t)\right|+\left|g_{i}-h(t)\right|\right) d t
$$

The case $h\left(t_{i-1}^{+}\right)<g_{i}$ is similar. All other cases are treated similarly. This establishes the theorem.

We finish this section with an outline of the case when f and g are quasicontinuous, that is, functions having discontinuities of the first kind only. More precisely we shall assume that $f \in Q$ if $f(0)=f\left(0^{+}\right)$and $f(x)=f\left(x^{-}\right), 0<x \leqslant 1$.

Definition: Let f be a bounded measurable function on $[0,1]$, and let π be a partition of $[0,1]$. Then \bar{f}_{π} in S_{π} is defined by

$$
\bar{f}_{\pi}(x)=\left\{\begin{array}{lc}
\sup \left\{f(y): \quad 0 \leqslant y \leqslant t_{1}\right\}, & x \in\left[0, t_{1}\right] \\
\sup \left\{f(y): t_{i-1}<y \leqslant t_{i}\right\}, & x \in\left(t_{i-1}, t_{i}\right], i>1
\end{array}\right.
$$

\underline{f}_{π} is defined similarly by replacing sup with inf. A bounded function f is in Q if and only if, for any $\varepsilon>0$, there exists a partition π of $[0,1]$ such that $0 \leqslant \bar{f}_{\pi}-\underline{f}_{\pi}<\varepsilon$. Thus $\lim _{\pi} \bar{f}_{\pi}=\lim \underline{f}_{\pi}=f$. This characterisation enables us to use the previous results for step functions.

To this end we adapt the proofs of Lemma 6 and Theorem 4 of [6] which were based on the results of [3] to yield the principal result of this section.

Theorem 9. Let f and g be in Q. Let $\bar{f}_{\pi}, \bar{g}_{\pi}, \underline{f}_{\pi}, \underline{g}_{\pi}$ be as defined above, and let $\bar{h}_{\pi, p}, \underline{h}_{\pi, p}$ be the best L_{p}-simultaneous approximations of $\bar{f}_{\pi}, \bar{g}_{\pi}$ and $\underline{f}_{\pi}, \underline{g}_{\pi}$ respectively. If h_{p} is the b.s.a. to f and g, then $\lim _{\pi} \bar{h}_{\pi, p}=\lim _{\pi} \underline{h}_{\pi, p}=h_{p}$, and $\lim _{p \downarrow 1} h_{p}=h_{1}$ exists. Moreover h_{1} is a best L_{1}-simultaneous approximation to f and g.

Remark. Theorem 5 in [6] shows that the continuity of f and g implies that of h_{p} for all $p \in(1, \infty)$. Since $h_{p} \rightarrow h_{1}$ uniformly, then h_{1} is continuous in this case.

4. Approximate continuity of f and g

Definition: If A is a measurable subset of Ω and I is a subinterval of Ω, the relative measure of A in I is defined by

$$
m(A, I)=m(A \cap I) / m(I)
$$

The upper metric density of A at $x \in \Omega$ is defined by

$$
\bar{m}(A, x)=\lim _{n \rightarrow \infty} \sup _{I}\left\{m(A, I): I \text { is an interval, } x \in I \text { and } m I<\frac{1}{n}\right\} .
$$

The lower metric density $\underline{m}(A, x)$ is defined similarly, with sup replaced by inf. A has a metric density at x only when $\bar{m}(A, x)=\underline{m}(A, x)=m(A, x)$.

Definition: A function $f: \Omega \rightarrow R$ is said to be approximately continuous at $x \in \Omega$ if, for any $\varepsilon>0$, the set

$$
A_{\varepsilon}=\{y:|f(y)-f(x)|<\varepsilon\}
$$

has metric density equal to 1 at $x ; f$ is said to be approximately continuous on Ω if it is approximately continuous at each point in Ω. Notationally we write $f \in b A$.

Theorem 10. Let f and g be elements of bA. Then for all $p \in(1, \infty), h=h_{p}$ is continuous.

Proof: Suppose first that both f and g are in $M \cap b A$. Then both have at most discontinuities of the first kind, that is, for any $y \in(0,1)$ the left and right hand limits exist. Thus $f\left(y^{-}\right)=\lim _{x \uparrow y} f(y)$ and $f\left(y^{+}\right)=\lim _{x \downarrow y} f(y)$ both exist. So if f is not continuous at y, then $f\left(y^{-}\right)<f\left(y^{+}\right)$, and so $f \notin b A$. This is a contradiction. Therefore f must be continuous and so is g. By [6 , Section 4] we may consider f and g as limits of non-decreasing step functions having their mean as their best $L_{p^{-}}$ simltaneous approximations. Taking limits as in [6], we conclude that the b.s.a. to f and g is nothing but $(f+g) / 2$ which is clearly in $M \cap b A$. Hence $(f+g) / 2=h$ is continuous. A similar argument works out if $h=f$ or $h=g$.

For the general case we have $f \notin M, g \notin M$. So $f \neq h \neq g$. We start with points $y \in(0,1)$ where $g(y)<h(y)<f(y)$. The case $f(y)<h(y)<g(y)$ is similar. Suppose $f(y)-h(y)=\varepsilon_{1}>\varepsilon_{2}=h(y)-g(y)$. We may assume that

$$
\begin{aligned}
h(y) & =\lim _{x \rightarrow y^{+}} h(x) \\
& =h\left(y^{+}\right) .
\end{aligned}
$$

Let $\varepsilon=\left(\varepsilon_{1}-\varepsilon_{2}\right) / 5>0$. Let $Q \in(0,1)$ be a fixed real number which we specify later. Since f is approximately continuous at y, there exists $\delta_{1}=\delta_{1}(Q)>0$ such that

$$
\mu(\{x: f(x)>f(y)-\varepsilon\}, I)>Q
$$

for any interval I containing y and $I \subseteq B\left(y, \delta_{1}\right)=\left(y-\delta_{1}, y+\delta_{1}\right)$. Similarly there exists $\delta_{2}=\delta_{2}(Q)$ such that

$$
\mu(\{x:|g(x)-g(y)|<\varepsilon\}, I)>Q,
$$

for any interval I containing y and $I \subseteq B\left(y, \delta_{2}\right)=\left(y-\delta_{2}, y+\delta_{2}\right)$. Let $1>\delta=$ $\min \left(\delta_{1}, \delta_{2}\right)$ and $I=(y-\delta, y]$. Let

$$
F=I \cap\{x: f(x)>f(y)-\varepsilon\},
$$

and

$$
G=I \cap\{x:|g(x)-g(y)|<\varepsilon\} .
$$

Then both F and G have measures greater than δQ.
Suppose h is not continuous at y. We show this assumption yields a contradiction. Let $\eta=\min \left\{h(y)-h\left(y^{-}\right), \varepsilon\right\}>0$. Define $h^{*}: \Omega \rightarrow R$ by

$$
h^{*}(x)= \begin{cases}h(x)+\eta, & \text { if } x \in(y-\delta, y) \\ h(x), & \text { otherwise }\end{cases}
$$

Apply the Mean Value Theorem to the functions $s \mapsto s^{p}$ where $p>1$, so there exists $u \in(s, s+\sigma)$ such that

$$
\begin{equation*}
(s+\sigma)^{p}-s^{p}=p u^{p-1} \sigma \geqslant p s^{p-1} \sigma, \tag{15}
\end{equation*}
$$

or,

$$
\begin{equation*}
(s+\sigma)^{p}-s^{p} \leqslant p(s+\sigma)^{p-1} \sigma \tag{16}
\end{equation*}
$$

Hence for $t \in F$, we obtain by applying (15)

$$
|f(t)-h(t)|^{p}-\left|f(t)-h^{*}(t)\right|^{p} \geqslant p\left|f(t)-h^{*}(t)\right|^{p-1} \eta,
$$

whence

$$
\begin{equation*}
\int_{F}|f-h|^{p}-\int_{F}\left|f-h^{*}\right|^{p} \geqslant p \eta \int_{F}\left|f-h^{*}\right|^{p-1} \tag{17}
\end{equation*}
$$

Sinilarly, for $t \in G$, we obtain by applying (16)

$$
\begin{equation*}
\int_{G}\left|g-h^{*}\right|^{p}-\int_{G}|g-h|^{p} \leqslant p \eta \int_{G}\left|g-h^{*}\right|^{p-1} \tag{18}
\end{equation*}
$$

Subtracting (17) from (18) we obtain

$$
\begin{equation*}
\int_{F}\left|f-h^{*}\right|^{p}+\int_{G}\left|g-h^{*}\right|^{p} \leqslant \int_{F}|f-h|^{p}+\int_{G}|g-h|^{p}-p \eta B \tag{19}
\end{equation*}
$$

where $B=\int_{F}\left|f-h^{*}\right|^{p-1}-\int_{G}\left|g-h^{*}\right|^{p-1}>0$.
Notice also in general that

$$
\| f(t)-\left.h^{*}(t)\right|^{p}-|f(t)-h(t)|^{p}\left|\leqslant p\left(2\|f\|_{\infty}\right)^{p-1}\right| h^{*}(t)-h(t) \mid,
$$

thus,

$$
\begin{equation*}
\int_{I-F}\left|f-h^{*}\right|^{p} \leqslant \int_{I-F}|f-h|^{p}+p\left(2\|f\|_{\infty}\right)^{p-1} \eta \mu(I-F) . \tag{20}
\end{equation*}
$$

Similarly
(21)

$$
\int_{I-G}\left|g-h^{*}\right|^{p} \leqslant \int_{I-G}|g-h|^{p}+p(2 k)^{p-1} \eta \mu(I-F)
$$

where $k=\max \left(\|g\|_{\infty},\left\|h^{*}\right\|_{\infty}\right)$.
After observing that $\mu(I-F)<\delta(1-Q)<1-Q$ we add (19), (20) and (21) to get

$$
\begin{aligned}
\int_{I}\left|f-h^{*}\right|^{p}+\int_{I}\left|g-h^{*}\right|^{p} & <\int_{I}|f-h|^{p}+\int_{I}|g-h|^{p}-p \eta B \\
& +p \eta(1-Q)\left[\left(2\|f\|_{\infty}\right)^{p-1}+(2 k)^{p-1}\right] \\
& <\int_{I}|f-h|^{p}+\int_{I}|g-h|^{p}
\end{aligned}
$$

provided Q was chosen so that

$$
(1-Q)\left[\left(2\|f\|_{\infty}\right)^{p-1}+(2 k)^{p-1}\right]<B
$$

or,

$$
1>Q>1-B /\left[\left(2\left\|f_{\infty}\right\|\right)^{p-1}+(2 k)^{p-1}\right]>0 .
$$

Thus, h^{*} is a better simultaneous approximation to f and g. This is a contradiction. This verifies the continuity of h at y in this case.

For the case when $\varepsilon_{1} \leqslant \varepsilon_{2}$ we argue similarly on $[y, y+\delta)$ to obtain a contradiction by lowering the value of h.

If $f(y)=h(y)$ or $g(y)=h(y)$ and h is not continuous at y, then $h(y)-h\left(y^{-}\right)=$ $3 \varepsilon>0$. We apply again a similar argument on $(y-\delta, y]$ when $h(y)=g(y) \leqslant f(y)$ and on $[y, y+\delta)$ when $f(y)=h(y)>g(y)$.

This establishes the theorem.

References

[1] A.M. Bruckner, Differentiation of Real Functions, Lecture Notes in Mathematics, No. 659 (Springer-Verlag, Berlin,Heidelberg,New York, 1978).
[2] R.B. Darst and R. Huotari, 'Best L_{1}-approximation of bounded approximately continuous functions on [0, 1] by nondecreasing functions', J. Approx. Theory 43 (1985), 178-189.
[3] R.B. Darst and S. Sahab, 'Approximation of continuous and quasi-continuous functions by monotone functions', J. Approx. Theory 38 (1983), 9-27.
[4] D.S. Goel, A.S.B. Holland, C. Nasim and B.N. Sahney, 'Characterization of an element of best ${ }^{1 P}$-simultaneous approximation', S. Ramanujan Memorial Volume, Madras (1984), 10-14.
[5] R. Huotari, 'Best L_{1}-approximation of quasi-continuous functions on [0,1] by non-decreasing functions', J. Approx. Theory 44 (1985), 221-229.
[0] S. Sahab, Best L_{p}-simultaneous approximation of quasi-continuous functions on $[0,1]$ by monotone functions, (Center for Approximation Theory, Report No. 155 Department of Mathematics, Texas A \& M University, College Station, Texas.), 1987.

[^0]
[^0]: Mathematics Department
 King Abdulaziz University
 P.O. Box 9028

 Jeddah 21413
 Saudi Arabia

