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Abstract

In this paper, we give a generalization of Hardy's theorems for the Dunkl transform &D on Rd. More
precisely for all a > 0, b > 0 and p, q e [ 1, +oo], we determine the measurable functions / on Rd such
that e"1"2/ e L"k(R

d) and e"M2&D(f) € Lq
k(WLd), where iJ(R") are the Lebesgue spaces associated

with the Dunkl transform.

2000 Mathematics subject classification: primary 35C8O, 51F15, 43A32.
Keywords and phrases: Dunkl transform, Hardy's theorem.

1. Introduction

A famous theorem of Hardy [8] asserts that a measurable function / on R and its
Fourier transform / cannot be both 'very rapidly decreasing'. More precisely, if
\f(x)\< Ce-"*2 and \f(y)\ < Ce~by2 for some constants C > 0, a > 0 and b > 0,
then/ = 0 a.e. if ab > 1/4 and there exists nonzero/ if ab < 1/4. An Lp version
of this result, obtained by Cowling and Price [2] states that for p, q e [1, +oo], and
at least one of them is finite, if He"2/ \\p < +oo and We*"2/1|, < +oo then / = 0
a.e. if ab > 1/4. Generalizations of this result to the Heisenberg group and the
motion group have been proved in [6, 15]. In this paper we study an analogue of
the theorem of Cowling and Price for the Dunkl transform &D on Rd. For a > 0,
b > 0 and p, q e [1, +oo], we determine the measurable functions/ on Rd such that
^Uiy € ^([Rrf) a n d eb\y\2&D(f) € Lq

k(R
d), where Lp

k(R
d) are the Lebesgue spaces

associated with the Dunkl transform. We note that our results, announced in [7], are
related to an analogue of the classical Heisenberg-Weyl uncertainty principle for the
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Dunkl transform due to Rosier [14]. The Dunkl transform is associated to differential-
difference operators corresponding to a finite group of reflections of the Euclidean
space Krf. They provide a useful tool in the study of special functions with root systems
[5, 9] and they play an important role in the algebraic description of exactly solvable
quantum many body systems of Calogero-Moser-Sutherland type (see [10, 11]).

The contents of the paper is as follows: In Section 2 we recall some basic facts
from Dunkl's theory, we describe Dunkl operators and we give the main results about
Dunkl transform &D which generalizes the classical Fourier transform & on Rd.

We introduce, in the third section, the intertwining Dunkl operator V defined by
Dunkl in [5] and studied by de Jeu, Rosier and Trimeche in [3, 13, 16]. We also
consider in this section the transposed operator ' V of V. These operators V and ' V
are respectively topological automorphisms of <f (Rd) (the space of "^-functions on
Krf) and ®{W) (the subspace of/ e £(Rd) which are compactly supported) and
they transmute the Dunkl operators into the partial derivatives. We will give more
properties of the operator ' V which plays an important role in the proofs of the main
results of the paper. In particular, in Theorem 3.1 we prove that it can be extended to
the Lebesgue space Ll

k(R
d) associated with Dunkl theory and satisfies the fundamental

relation &D = & o ' V.
In Section 4 we give two lemmas from the complex variable theory which are an Lp

version of the Phragmen-Lindelof theorem and will be used in the sequel. Section 5
is devoted to the V version of Hardy's theorem for the Dunkl transform &D. The
proof of this result requires both tools introduced in sections two and three.

In the last section, an analogue of the classical Hardy's theorem is obtained for the
Dunkl transform.

2. Dunkl transform

In this section, we recall some basic results from Dunkl's theory which we will use
in the sequel.

2.1. Reflection groups and root systems We consider Rd equipped with the usual
scalar product {•, •> and the Euclidian norm ||* || = *J{x,x).

For a e Rd\{0], let Ha C W be the hyperplane orthogonal to a and

o-a(x)=x-(2(a, jc) | |a | r2)a ( i 6 « ' ) ,

the reflection with respect to Ha. A finite set R c D?.rf\{0} is called a root system if
R n Ka = {±a} and oaR = R for all a e R.

For a given root system R, the reflections aa, a e R, generate a finite group W C
O(d), called the reflection group associated with R and for a given ft e Rd\ {JaeR Ha,
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we fix the positive subsystem R+ = {a e R; {a, ft) > 0}, then for each a e R either
a or —a belong to R+.

A multiplicity function is a function k : R -> C defined on the root system R which
is invariant under the action of the reflection group W.

The index y of the root system is then defined by y = YlaeR ^(a)> a n ^ the weight
function is the ^-invariant and homogeneous (of degree 2y) function on Rd given by:

For d = 1 and W = 22, the multiplicity function k is a single parameter denoted
y > 0 and for all x e R: cok(x) = \x \2y.

In the general case, we will need the Mehta-type constant

(1) (j^2

which is known for all Coxeter groups W (see [3, 5, 9]).

2.2 . D u n k l o p e r a t o r s a n d D u n k l k e r n e l T h e D u n k l o p e r a t o r s 7} , j = I, ... ,d,
on U.d, associated with the finite reflection group W and multiplicity function it, are
given for a function / of class ^ ' on Rd by

(2) 7J/ (,) = — / (x) + E *(«)«,/ (x) + E * ( « ) « , •

In the case jfc = 0, the 7},./' = 1 , . . . , d, reduce to the corresponding partial derivatives.
In this paper we will assume throughout that k > 0.

For v e Rd , the system

I Tju(x) -yju(x) j -l,...,d;

u(0) = 1,

admits a unique analytic solution on Rd, denoted by K(x, y) and called Dunkl kernel.
This kernel admits a unique holomorphic extension to Cd x Cd (see [5]).

For example if d = 1 and W = Z2, the Dunkl operator and Dunkl kernel (see [5])
are given by

and for z, r e C ,

(4) Jf (z, t) = jy-
2 +

where for 5 > —1/2, y5 is the normalized Bessel function defined by
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with / , the Bessel function of the first kind and index s.
The Dunkl kernel possesses the following properties [3, 13]:

(i) For z,t e C, we have K(z,t) = K(t,z)\ K(z,0) = 1 and K(kz,t) =
K(z,kt) for a\\k <= C.

(ii) For all v eMd,x &Rd and z 6 C we have

(5) \Dv
zK(x,z)\ < | |x||Mexp(||jc|| | |Rez||),

wi thD; = 3|v|/(3zJ'' •••3Zrf')and|v| = v, H h vd. In particular, for all x, y e Rd,
we have \K(-ix, y)\ < 1.

(iii) The function K(x, z) admits for all x e Rd and z e Cd the following Laplace
type integral representation

(6) K(x,z)= e<>'z)dnx(y),

where fix is a probability measure on Rd with support in the closed ball Z?(0, ||JC ||) of
center 0 and radius ||A:|| (see [13]).

When d = 1 and W = Z2, for all x e K\{0} and z e C the representation (6) is of
the form (see [4])

FCv + 1/21)
K(x,z)= \

2.3. Dunkl transform We denote by

the space of •^""'-functions on Rd with compact support,
the space of <£"DO-functions on U.d which are rapidly decreasing together

with their derivatives.
- Lp

k(R
d), p e [1, +oo], the space of measurable functions/ on Krf such that

, = ([\fOc)\po)k{x)dx\ < +oo, if 1 < p < +oo,

oo = esssup|/(x)| <+oo .

The Dunkl transform of a function / € @{W) is given by

(7) Vye W,#Dif)(y) = f f(x)K(x, -iy)(ok(x)dx.

This transform has the following properties [3, 5]:

(i) F o r / € Ll(Rd), we have | |^D</) lkoc < 11/ IU,i-
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(ii) The transform J^D is a topological isomorphism from y(Rd) onto itself. The
inverse transform is given by

(8) Wx e W,&»\h){x) = ^r~d I h(y)K(x, iy)cok(y)dy.
JtLd

(iii) L e t / be in Lj(Rrf) such that the function &D{f) belongs to L\{W). Then
we have the following inversion formula for the Dunkl transform

c2 f
b / &D<J){y)K{xJy)a>k{y)dy, a.e.

3. The Dunkl dual intertwining operator

In this section we consider the Dunkl intertwining operator V and its dual' V and we
give their properties. Next we study the extension of the operator ' V to the functions

Let C(Rd) be the space of continuous functions on Rd. The Dunkl intertwining
operator V is the operator from C(Rrf) into itself given by

(10) V(f)(x) = f f(y)di*x(y), x e Krf,

where \LX is the measure given by the relation (6). In particular, we have

(11) (VJC g Kd, V z e C ) K(x,z)= V(e{'z))(x).

The operator' V defined on ^(W1) by the relation

(12) [ 'V(fKy)g(y)dy= f V(g)(x)f {x)cok(x)dx,
J J

where/ g @(Rd) and g e C(Rd) is called the Dunkl dual intertwining operator (see
[16]). This operator has the following integral representation

(13) 'V(f)(y)= f f(x)dvy(x) (f
J

where for all y e Rrf, vy is a positive measure on Rd whose support is contained in the
set [x e Rd, \\x\\ > \\y\\}. Moreover, 'V is a topological isomorphism from d

(respectively j7(Rd)) onto itself satisfying the transmutation relations

Off e 9(Rd),Vy e
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and the following property (see [16])

(14) &D(f) = &°'V(f), Vfey(R"),

where & is the classical Fourier transform on Rd given by

(15)

EXAMPLE 1. If d = 1 and W = Z2, the operators V and' V are given for g e C(K)
and/ € 0(R) by (see [4, 16])

T(v + 1/2) fw

V(g)(x)= VY /'\x\-2Y \ (\x\-yy-\\x\+yYg{y)dy, Wx € R\{0},

and

'V(f)(y)= r (^t! / f ) / (\x\-yy-l(\x\ + yYf(x)dx, Vy e R.

In the following result we extend the operator' V to the functions in Ll(Rd).

THEOREM 3.1. Let (vy)y€^, be the family of measures defined in formula (13) and
let f e Ll

k(R
d). Then for almost all y (with respect to Lebesgue measure on Kd), /

is Vy-integrable, the function

y^Vy(f)= f f(x)dvy(x),

which will also be denoted by ' V(f) is defined almost everywhere on Rd and is
Lebesgue integrable. Moreover for all bounded continuous functions g on Rd, we
have the formula

(16) I 'V(f)(y)g(y)dy= f f (x)V(g)(x)cok(x)dx.
J J

PROOF. We will divide the proof in five steps.
(i) Let us show that the family of measures (vy)y^d is vaguely continuous. More

precisely, we will show that for a l l / e Cc(R
d) (the space of/ e C(W) with compact

support), the function

y -> 'V(f)(y) = I f(x)dvy(x) = Vy(f),

belongs to Cc(K
d).

Let / 6 Cc(R
d) and (pn)n>o an approximate identity belonging to @(Rd). There is

a closed ball 5(0, r) of Rd of center 0 and radius r big enough such that it contains all
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the supports of the functions / and pn*f ,n > 0 (where * is the classical convolution
on Rd) and a non negative function <p e @(Rd) such that cp(x) > 1 for all x e B(0,r).
For all y e Rd, we then have

\'V(f)(y)-'V(pn*f)(y)\< I \f{x)-Pn*f(x)\dvy{x)

JB(0,r)

<\\f -Pn*f\U\'V(<p)\\«>,
where || • Ĥ  denotes the sup norm, and this implies immediately that ' V(pn * / )
converges uniformly to 'V(f). This shows that 'V(f) is continuous but it is also
clearly compactly supported. Thus ' V(f) e Cc(K

rf).
(ii) Let g > 0 be a continuous and bounded function on Rd. Let us show that the

family of measures (vy)y^j is g{y) dy integrable (for the definition see [1, page 17]).
Let (pn)n>o be the approximate identity used in (i). For all / € Cc(R

d), by formula
(12), we have

= f (Pn
J9.d

vy(pn*f)g{y)dy= f (Pn*fKx)V(g)(x)cok(x)dx.
J9.d

But the functions pn*f,n>0, have their supports in a fixed closed ball B(0, r) and
as in step (i), there is a fixed nonnegative cp e D(Rd) such that for all n > 0 we have
\Pn * / I <<P and |' V(pn * / ) | < ' V{<p) on Rd. Then letting n -> +oo and using the
dominated convergence theorem we obtain immediately

(17) / vy(f)g{y)dy= [ f{x)V{g)(x)cok(x)dx.

(iii) We consider g > 0 a continuous and bounded function on !Rd. If/ is an
integrable function on Kd with respect to the measure V(g)(x)a>k(x)dx, the points (i),
(ii) and Bourbaki's integration of measures theorem [1, page 17] shows that the
function y -> vy(f) exists for almost all y e U.d with respect to the measure g(y)dy,
is integrable with respect to this measure and the relation (17) remains valid for this
function / .

(iv) In the particular case where g = 1 on Rd, the point (iii) shows that if / €
L\(Rd), the function v -> vy(f) — ' V(f)(y) exists almost everywhere, is Lebesgue
integrable on Rd and we have

(18) / 'V(f)(y)dy= I f(x)cok(x)dx.

(v) We deduce easily from the points (iii) and (iv) that for all / € Ll
k(R

d) and
all bounded g e C(Rrf) formula (16) is true, which completes the proof of the
theorem. •
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COROLLARY 3.2. For all f e L^R*), we have:

(19) &D(f)(y) = &°'V(fKy), yeRd.

PROOF. We obtain the result by applying (16) to the function g(x) = e~i{x-y) and
using the relation (11). D

4. An Lp version of the Phragmen-Lindelof theorems

The proofs of some theorems in this paper depend on the two complex-variable
lemmas which will be presented in the following section.

LEMMA 4.1. Let h be an entire function on Cd such that

d

(20) Vz eCrf, \h(z)\ < cY[ea(Rez)\ and V* e Rd, \h(x)\ < C,

for some a > 0 and C > 0. Then h is constant on Cd.

PROOF. We fix x2,.. •, xd e R. The entire function z\ —> h(z\, x2,..., xd) is
O(ea(Rez')2) in the quadrant A = {z\ — xx + iy\\xx >0,yx > 0} and is bounded
on the sides of A, then by a slight modification of the method used in [2, page 445]
it is bounded on A. Applying the same method to the functions h(—z\,x2, . . . , xd),
h(l\,x2, ... ,xd) and h(—z\,x2,...,xd) we deduce that h(zi,x2,. • •, xd) is bounded
on C, therefore by the Liouville theorem we have

h(z\,x2,...,xd) = h(0,x2, ...,xd), V z i e C .

Now by analytic extension we deduce that

h ( z i , Z 2 , • . - . Z d ) = h ( 0 , z 2 , . . . , Z d ) , V z i , . . . , Z d e C ,

and by induction, h is a constant function. •

LEMMA 4.2. Let p e [I, +oo[ and h an entire function on Cd. We suppose

(i) there exists j 6 { 1 , . . . , d] such that

(21) j j

for some a > 0 and M a positive function on €d.
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(ii)

(22) HVIkP < +°°>

Then h = 0.

PROOF. From (22) the Fubini's theorem yields that there is a set E C Rd~\ with
Ec of Lebesgue measure zero such that for all ( j c l t . . . , Xj-\,Xj+l, ..., xd) € £ we
have

/ \ h ( x u . . . , X j - U x , x J + u . . . , x d ) \ p a ) k ( x u . . . , X j - u X , x j + u . . . , x d ) d x < + 0 0 .

Let us write for x e K,

h ( x ) = h ( x u .. . , X j _ x , x , X j + i, . . . , x d ) a n d

COk(x) = (Ok(Xi, . . . ,Xj_i,X,Xj + \, . . . ,Xd).

Clearly Zk(x) is of the form a>k{x) = Y\azR+ \a« + 0Cjx\2k(a), where aa = ["[,•/./ a>x>

and there are three cases

(i) Zk (x) is identically zero on K. This case occurs if and only if aa = 0 and a, = 0
for some a e R+ and can be disregarded because points {x\,..., Xj _i, Xj+1, . . . , xd)
such that aa = 0 for some a e R+ are in a set of Lebesgue measure zero in Kd~' and
then they can be supposed to belong to Ec.

(ii) 5* (x) is a constant if for all a e R+, c^ = 0 .
(iii) Zk(x) vanishes only on a finite number of points, precisely for x = —aa/aj,

a 6 R+ and c^ ^ 0. In this case the set {a>k < 1} = {* e R; St(j:) < 1} is compact.
Now we have

I \h{x)\" dx = I \h{x)\"dx+ f \h{x)\" dx
JR J[wk<\) •/{54>1)

\h{x)\pdx+f \h(x)\pZk(x)dx < +00.
\) J {Zk>\)

Indeed, the first integral in the right hand side of the above inequality is finite because
x -*• \h(x)\p is continuous on the compact set {Zk < 1} and the second integral is also
finite by the initial hypothesis. Therefore we have proved that

/ \h(xu . . . ,Xj-Ux,xj+\,... ,xd)\
p dx < +00,

Jo.

for almost all (xu ... , JC/_I, xj+i,... ,xd) e Rd~x. Clearly in case (ii) this is also
true.
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Now using (21) and applying the same method as in [2] to the function

Zj -*• h(X\, . . . , Xj_i, Zj;, Xj + i, . . . , Xd)

w e see tha t it is z e r o on C for a l m o s t all (xu ••• , * ; - i , - X j + i . . . . ,xd) e Rd~\ T h e

cont inu i ty of h a n d ana ly t ic ex tens ion imp ly that h is ze ro on €d. •

5. An Lp version of Hardy's theorem

THEOREM 5.1. Letf be a measurable function on U.d such that

(23) Ik*"2/IU,, <+oo and \\e»M2&D(f)\\k,q<+oo,

for some constants a>0, b>0, l<p,q< +oo and at least one of p and q is
finite. Then

— ifab> 1/4, we have / = 0 almost everywhere.
- ifab < 11'4, for all S s ]a, l/4b[,

the functions of the form f (x) — P(;c)e~*i|j:|1 , where P is an arbitrary polynomial on
Rd, satisfy (23).

To prove this result we need the following three lemmas.

LEMMA 5.2. Let a > 0. For all y e Rd, we have

(24) ' V(e-"M2)(y) = Ce~aM2,

where C = 22y+dad/2ck~
ln~d/2 with ck the constant given by (1).

PROOF. AS the function x ->• e~alxil belongs to y(Rd), the relation (14) shows
that' V(e-a||j:||2)(>') = &-lo&D(e—Ml)(y).

But from [12, page 535], we have

and we obtain the result of the lemma by applying the classical inverse Fourier
transform to relation (25). •

LEMMA 5.3. Let p € [1, +oo] and f a measurable function on Rd such that
\eaMlf\kp < +oo, for some a > 0. Then: \\eaM2'V(f)\\p < +oo, where || • \\p is
the norm of the usual Lebesgue space

https://doi.org/10.1017/S1446788700014518 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014518


[11] An V version of Hardy's theorem 381

PROOF. From the hypothesis it follows t h a t / € L\(Rd). Then by Theorem 3.1,
the function ' V(f) is defined almost everywhere on Rd. Now we consider two cases.

(i) If /? e [1, +oo[ , we have

||eaW|2'V(/)r < / e""^ ( I e"M2\f(y)\e-aMldvAy)) dx.

Applying Holder's inequality in the middle integral we obtain

\\eaM2'V(f)\\p < f e^

a
e

\ PIP'

dvx{y)\ dx,

where p' is the conjugate exponent of p. By Lemma 5.2 we deduce that the right hand
side of the precedent inequality is equal to (C(p')d/2y/p' / R , ' V((e"W|2|/ | ) ' ) (JC) dx,
where C is the constant in formula (24). Using the relation (18), we have

(O|p {p")W\\e^f\\kp < +oo.

(ii) If p = +oo, we have

and from Lemma 5.2, we obtain efl|W|2|' V(f)(x)\ < C | e a | W 7 \\koo < +00, where C
is the constant of (24). This completes the proof. •

LEMMA 5.4. Let p e [1, +00] and f a measurable function on Rd such that

II £°IW|2/ ||t < +00 for some a > 0. Then the function defined on Cd by

(26) &o(f)(z)= I f(x)K(x,-iz)cok(x)dx,

is well defined and entire on Cd. Moreover there exists a positive constant C such that
for all %,T) e Rd, we have

(27) | ^ D ( / ) ( ^ + ^) |<Ce l l " l | 2 / 4 f l .

PROOF. The first assertion follows from the hypothesis on the function / and
Holder's inequality using (5) and the derivation theorem under the integral sign. We
will now prove (27).
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As the function / e L{(Rd), we deduce from (19) that for all f, rj e Krf, we have

= f
Thus

and using Holder's inequality and Lemma 5.3, we obtain

Or \ 1/P'

R<< /

where p' is the conjugate exponent of p. Then (27) clearly follows. •
PROOF OF THEOREM 5.1. We will divide the proof in several steps.
Step 1. ab > 1/4.
Consider the function h defined on Cd by

(28)

This function is entire on Cd and using (27) we obtain

(29) !*(£ + »?)I < Cem2/4a,

for all | € Rd and t] 6 Kd. In the following we consider two cases,
(i) If q < +oo, we have

= f
JVLJ

Using the fact that ab > 1/4 and the hypothesis (23), we obtain

(30) HVIk* < \\ehMi^D(f)\kq < +oo.

From relations (29) and (30), it follows from Lemma 4.2 that h(z) = 0 for all z e C.
Thus &D(f)(y) = 0 for all y e Rd. The injectivity of &D then implies the result of
the theorem in this case.
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(ii) Assume q = +00. As ab > 1/4, then from (23) we obtain

(31) II Vlkoo < \\ebM2^D(f)h.oo < +00.

From (29), (31) and Lemma 4.1, it follows that there exists a positive constant C such
that for all y e Rd, h(y) = C. On the other hand, from (28) we have

(32) &D(f)(y) = C£?HW2/4a, Vy e R'.

But the assumption on &D (f) is expressed as

(33) |^D</)(>0l <M<TW | 2 a.e.,

for some constant M > 0. The continuity of &o(f) o° ^d shows that inequality (33)
holds everywhere. Then we must have Ce(6~(1/4a))ll:vl12 < M everywhere by (32)
and (33). This is impossible since ab > 1/4, unless C = 0. Thus J?D(f)(y) = 0
everywhere and then / = 0 a.e. on Rd.

Step 2. ab = 1/4.
(i) If 1 < p < +00 and 1 < q < +00, with the same proof as for the point (i) of

the first step, we obtain / = 0 a.e. on Kd.
(ii) If 1 < p < +00 and q = +00, we deduce from Lemma 5.3, Corollary 3.2 and

(23) that the function ' V(f) satisfies

2 < + 0 0 and I^ '^CVC/"))^ < +00.

Then using [6, page 66], we see that' V(f)(x) = 0 a.e. on Rd. Thus &D(f)(y) = 0
for all y e Krf, which implies that/ = 0 a.e. and the proof is complete.

Step 3. ab < 1/4.
Let £? be the algebra of polynomial functions on Rd. By considering the gen-

eralized Hermite polynomials on Rd studied by Rosier in [12] we deduce that the
Dunkl transform of a function / (x) = P(x)e~J||jt|12, where P e &, is of the form
&D(f){y) = Q(y)e~Ml/u for some Q e &. These functions clearly satisfy the
conditions (23). The proof of Theorem 5.1 is complete. •

6. An analogue of Hardy's theorem

In this section we determine the functions / satisfying (23) in the special case
p = q = +00. The result we obtain, is an analogue for the Dunkl transform of the
classical Hardy's theorem.
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THEOREM 6.1. Let f be a measurable function on U.d such that

(34) \f(x)\ < Me'""2 and \&D(f)(y)\ < Me~bw\

almost everywhere for x, y € W and for some constants a > 0, b > 0 and M > 0.
Then

(i) If ab > 1/4, we have f — 0 a.e.
(ii) //"ab = 1/4, the function f is of the form f (x) = Coe~aM , for some real

constant Co.
(iii) If ab < 1/4, there are infinitely many nonzero functions f satisfying (34).

PROOF, (i) If ab > 1/4, the point (ii) of the first step of the proof of Theorem 5.1
gives also the result.

(ii) From (34), Lemma 5.2 and Corollary 3.2, the function ' V(f) satisfies

\'V(f)(x)\ < CMe-"m2 and \&('V(f))(y)\ < Me~aM\

for almost all x, y e Rd, where C is the constant in formula (24). Using Hardy's
theorem for the classical Fourier transform (see [15, page 137]) we obtain: ' V(f)(x) =
de"""*"2, wnere C\ is a real constant. We deduce from (19) that there exists C 2 e l
such that: J^COOO = C2e-w|2/4fl. Thus by using (25) we have/(x) = Coe-"M\
with Co a real constant and the result of point (ii) is proved.

(iii) If ab < 1/4, the functions defined in the third step of the proof of Theorem 5.1
clearly satisfy also the conditions (34). This completes the proof of Theorem 6.1. •
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