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CHARACTERIZATION OF C(n)

MERITXELL SÁEZ

Abstract. In this paper a new geometric characterization of the nth symmet-

ric product of a curve is given. Specifically, we assume that there exists a chain

of smooth subvarieties Vi of dimension i, such that Vi is an ample divisor in

Vi+1 and its intersection product with V1 is one; that the Albanese dimension

of V2 is 2 and the genus of V1 is equal to the irregularity of the variety. We

prove that in this case the variety is isomorphic to the symmetric product of a

curve.

§1. Introduction

The aim of this paper is to give a new characterization of the nth

symmetric product of a curve. Following the ideas introduced in the articles

[CCM98] and [MPP11], we prove a characterization of the nth symmetric

product of a curve by the existence of a chain of subvarieties with certain

properties. This generalizes the 2-dimensional case proved in the mentioned

references.

Let C be a smooth complex projective curve of genus g. For an integer

n> 1, the nth symmetric product of C is the quotient of the Cartesian

product by the action of the nth symmetric group. The action of Sn on

C × · · · × C is by permutation of the factors. It is well known that C(n)

is a smooth and projective variety of dimension n which parametrizes the

effective degree n divisors on C. Equivalently, it parametrizes the unordered

n-tuples of points of C.

Symmetric products of curves play a very important role both in the

theory of algebraic curves and in the theory of higher-dimensional algebraic

varieties. In the first topic, they are exploited by Brill–Noether theory

to study special divisors on curves. Moreover, the ith symmetric product

determines the curve C. In the second topic, they are particularly simple

examples of irregular varieties in any dimension.
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The square symmetric product of a curve can be described in a very

precise geometric way, simply by the existence of a divisor with certain

numerical properties.

Theorem 1.1. [MPP11] Let S be a smooth surface of general type with

irregularity q containing a 1-connected divisor D such that pa(D) = q and

D2 > 0. Then the minimal model of S is either

(1) the product of two curves of genus g1, g2 > 2 (g1 + g2 = q); or

(2) the symmetric product C(2), where C is a smooth curve of genus q, and

C2 = 1.

Furthermore, if D is 2-connected, only the second case occurs.

We remark that in the proof of this theorem the authors use the

characterization of C(2) given in [CCM98]. Namely, that C(2) is the only

minimal algebraic surface with irregularity q that is covered by curves of

genus q and self-intersection 1. These are the coordinate curves C2,P , P ∈ C,

that parametrize the degree two divisors in C which contain the point P .

In general, given a point P ∈ C, we define the divisor Cn,P of C(n) as

Cn,P =
{
P +Q | Q ∈ C(n−1)

}
.

That is, Cn,P is the image of the map iP : C(n−1)→ C(n) with iP (Q) =

P +Q. The divisor Cn,P is ample in C(n) (see [Pol03, p. 247]) and isomorphic

to C(n−1).

The numerical equivalence class of Cn,P is independent of P , and so, when

talking about numerical classes, the subindex P will not be significant. We

will call these divisors the coordinate divisors. When n= 2, they are

the usual coordinate curves in C(2). These coordinate divisors form a

1-dimensional family, C, of algebraically equivalent divisors in C(n) (not

linearly equivalent). Moreover, its numerical class determines the family.

That is, if an effective divisor of C(n) is numerically equivalent to Cn,P then

it belongs to the family C (see [CS93]).

The main result in this paper is the following theorem characterizing

symmetric products of curves.

Theorem 1.2. Let X be a smooth projective variety of dimension n.

Assume that there exists a chain of inclusions

X = Vn ⊃ Vn−1 ⊃ · · · ⊃ V2 ⊃ V1 = C
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such that

(1) Vi is a smooth irreducible variety with dim(Vi) = i;

(2) for i < n, Vi is an ample divisor in Vi+1;

(3) Vi · C = 1 inside Vi+1;

(4) the Albanese dimension of V2 is 2;

(5) q(X) = g(C).

Then X ∼= C(n). Moreover, Vi ∼= C(i) and it is a coordinate divisor inside

Vi+1 for i < n.

We prove this result by induction on the dimension of the variety. The

2-dimensional step is a consequence of Theorem 1.1. To prove the induction

step, we observe first that the Pic0 varieties of the elements in the chain are

isomorphic. Using these isomorphisms and generic vanishing results, we find

a 1-dimensional algebraic family of divisors which are birational to C(n−1).

This family allows us to construct a birational map between our variety and

C(n). The image of this family by the morphism is the family C of coordinate

divisors. Finally, we deduce that the map is an isomorphism.

Notation. We work over the complex numbers. All varieties considered

are projective and irreducible. For a smooth variety X we denote by

q(X) = h0(X, Ω1
X) its irregularity. The Albanese dimension of a variety is

the dimension of its image by the Albanese morphism.

§2. Proof of the main theorem

First, we remind some results that are useful for the proof of Theorem 1.2.

Lemma 2.1. Let X be an algebraic variety of dimension n> 3 and let D

be an ample effective reduced divisor. Then, the restriction map Pic0(X)→
Pic0(D) is injective.

Proof. By the Lefschetz Theorem for Picard Groups [Laz04], we have

that the restriction morphism Pic0(X)→ Pic0(D) has trivial kernel.

We remind some results on generic vanishing theory. The main objects of

interest are the cohomological support loci.

Definition 2.2. Let X be an irregular (smooth) variety of dimension

d. The cohomological support loci of OX are the algebraic sets

V i(X) = V i(X,OX) = {η ∈ Pic0(X) | hi(X,OX ⊗ η) 6= 0},

where i= 1, . . . , d.
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The main result about the structure of the cohomological support loci

was proved by Green and Lazarsfeld, with an important addition due to

Simpson (the fact that the translations are given by torsion elements).

Theorem 2.3. [GL87, GL91, Sim93] Let X be an irregular variety of

dimension d, then V i(X) is formed by translates of subtorus of Pic0(X) by

torsion elements. Moreover,

codimPic0(X)V
i(X)> dim a(X)− i

where a(X) is the image of X by its Albanese morphism.

In particular, hi(X, L) = 0 for general L ∈ Pic0(X) and i < dim a(X).

We define the index of a family of divisors:

Definition 2.4. Given an irreducible family D ⊂B ×X, with dimen-

sion 1 (dimB = 1), of effective divisors in a projective variety X, the index

i= i(D) of D is the degree of the projection, p2 :D→X. Equivalently, it is

the number of divisors of D containing the general point of X.

Notice that the family of coordinate divisors in C(n) has index n. Now,

we have all the necessary tools to prove our main theorem.

Proof of Theorem 1.2. We prove the theorem by induction. First, we

observe that since C ⊂ V2 is an irreducible smooth curve it is 2-connected.

Moreover, its self-intersection is one and hence, following the proof of

Theorem 1.1, we deduce that S := V2 is birational to C(2). Furthermore,

since the divisor C is ample in S, in fact S ∼= C(2), because any exceptional

divisor would have intersection product 0 with C. Hence, the case n= 2

is already known. By the proof of Theorem 1.1 (see [MPP11], Proposition

4.3), we have that there exists a 1-dimensional family in Pic0(S)

W := {η̃ ∈ Pic0(S) | h0(S,OS(C)⊗ η̃) = 1}.

It is the image of

W1(C) = {η ∈ Pic0(C) | h0(C,OC(C)⊗ η) = 1}

by the isomorphism Pic0(S)∼= Pic0(C) given by the restriction map. That

is, we consider W1(C) as the image of C by the natural map C→ Pic0(C)

defined as p→OC(p− C|C).

Furthermore, C = {Cη, η ∈W} is the family of coordinate curves in C(2),

where Cη is the curve such that OS(Cη) =OS(C)⊗ η.
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We observe that since V1 = C is algebraically equivalent to a coordinate

curve in V2 ∼= C(2), it is, in fact, a coordinate curve and thus 0 ∈W.

We assume now that n> 3 and that the result is proven for all dim(X)6
n− 1. We are going to prove the theorem for dim(X) = n. We consider

S := V2 for the inductive process.

Since Vi is ample in Vi+1 and q(X) = g(C), by Lemma 2.1 we obtain the

following chain of isomorphisms given by the restriction maps:

Pic0(X)∼= Pic0(Vn−1)∼= · · · ∼= Pic0(Vi)∼= · · · ∼= Pic0(S)∼= Pic0(C).

We add the following statement to the inductive process:

The image of W in Pic0(Vi) by this chain of isomorphisms parametrizes

the family of coordinate divisors in Vi ∼= C(i) for i < n.

We remind that by the induction hypothesis, Vi−1 is a coordinate divisor

in Vi ∼= C(i) for all i < n.

In what follows, we denote by N the divisor associated to the line bundle

OVn−1(Vn−1|Vn−1).

Claim. There exists α ∈ Pic0(X) such that

α|Vn−1 =OVn−1(Vn−2 −N)

and V n
n−1 = 1.

Consider OS(Vn−2|S −N |S). We observe that Vn−1
∼= C(n−1) and S ∼=

C(2) with the inclusion S ↪→ Vn−2 given by a point in C(n−4) (when n= 3,

Vn−2 is just C). Therefore, Vn−2|S is algebraically a coordinate curve C2,Q

in S ∼= C(2).

Moreover, N |S · C = Vn−1|S · C = 1 and hence

(Vn−2|S −N |S) · C = (C2,Q − Vn−1|S) · C = 0

and

(Vn−2|S −N |S)2 = (C2,Q − Vn−1|S)2

= C2
2,Q − 2C2,Q · Vn−1|S + (Vn−1|S)2 =−1 + (Vn−1|S)2 > 0

because Vn−1 is ample in Vn.

Since C is ample in S, by the Hodge index Theorem, we deduce that

Vn−2|S −N |S is numerically trivial. In fact, it is algebraically trivial, because

there is no torsion in H2(C(2), Z) (see [Mac62]).
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By the Lefschetz Theorem for Picard Groups applied to the chain of Vi’s

we have that the restriction map gives an injective morphism Pic(Vn−1) ↪→
Pic(S). Then, from the isomorphism Pic0(Vn−1)∼= Pic0(S) and

OS(Vn−2|S −N |S) ∈ Pic0(S)

we deduce that

OVn−1(Vn−2 −N) ∈ Pic0(Vn−1).

Consequently, by the isomorphism between the Pic0’s, there exists an α as

claimed.

Finally, since Vn−2 and N are numerically equivalent, we obtain that

1 = V n−1
n−2 =Nn−1 = (Vn−1|Vn−1)n−1 = V n

n−1. ♦
Now, consider the exact sequence

(1) 0→OX →OX(Vn−1)→OVn−1(Vn−1)→ 0.

Let Wn be the image of W by the isomorphism Pic0(Vn−1)∼= Pic0(S)

and η ∈Wn a general element. We tensor (1) with α⊗ η and get

0→ α⊗ η→ α⊗ η ⊗OX(Vn−1)→OVn−1(Vn−2)⊗ η|Vn−1 → 0.

We take cohomology and obtain

0 → H0(X, α⊗ η)→H0(X, α⊗ η ⊗OX(Vn−1))

→ H0(Vn−1,OVn−1(Vn−2)⊗ η|Vn−1)→H1(X, α⊗ η)→ · · ·

First of all, we observe that H0(X, α⊗ η) = 0 since α⊗ η ∈ Pic0(X) is

nontrivial.

Second, we notice that the image of the Albanese morphism of X has

dimension greater than or equal to two. Indeed, we know that the image

of the Albanese morphism of S ∼= C(2) is a 2-dimensional subvariety of

Alb(S) = J(C). By the identification of Pic0’s, this subvariety of J(C)

lives inside the image of the Albanese morphism of X; hence, it is of

dimension at least two. We can apply generic vanishing results and deduce

that V 1(X) = {ς ∈ Pic0(X) | h1(X, ς)> 0} is the union of finitely many

translates of proper abelian subvarieties.

Furthermore, we know that W1(C) generates Pic0(C); hence, its image by

the identification Pic0(X)∼= Pic0(C) generates Pic0(X). When we translate

it by a fixed element α ∈ Pic0(X) it still generates, so by the generic
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vanishing results, it cannot be contained in V 1(X). Hence, for a general

η ∈Wn we obtain that α⊗ η /∈ V 1(X) and thus H1(X, α⊗ η) = 0.

Therefore, for η ∈Wn general we have that

h0(X, α⊗ η ⊗OX(Vn−1)) = h0(Vn−1,OVn−1(Vn−2)⊗ η|Vn−1) = 1> 0.

And by semicontinuity, h0(X, α⊗ η ⊗OX(Vn−1))> 0 for all η ∈Wn.

Thus, we have a 1-dimensional family, D in X, of effective divisors

algebraically equivalent to Vn−1. Let Hη denote the effective divisor in X

such that OX(Hη) =OX(Vn−1)⊗ α⊗ η. We make some observations.

First, Vn−1 ·Hη = (Vn−2)η. Indeed,

OVn−1(Hη) =OVn−1(N)⊗ α|Vn−1 ⊗ η =OVn−1(Vn−2)⊗ η

where we consider η ∈ Pic0(Vn) or Pic0(Vn−1) indistinctively by the isomor-

phism given by the restriction map.

Second, since Hη is algebraically equivalent to Vn−2, we have that Hη

is ample and Hn
η = 1. Hence, Pic0(X)∼= Pic0(Hη)∼= Pic0(C). In particular,

when Hη is smooth, q(Hη) = g(C).

Finally, if Hη is smooth, since Vn−1 ·Hη = (Vn−2)η ∼= C(n−2), we can

apply the induction hypothesis to Hη and deduce that Hη
∼= C(n−1). In

addition, we obtain that in Pic0(Hη) there is a 1-dimensional family

{ς ∈ Pic0(Hη) | h0(Hη,OHη((Vn−2)η)⊗ ς)> 0} which is the image of W via

the identification Pic0(Hη)∼= Pic0(C).

Assume for a moment that Hη is smooth for η generic.

Since C(i) deforms in an algebraic family only as the ith symmetric

product of a curve, we deduce that the general element in D is birational to

C(n−1). Moreover, since Vn−1 ·Hη = (Cn−2)η we obtain that the restriction

of D to a general divisor in the family is the family of coordinate divisors

in Hη ≈ C(n−1).

Consequently, since the index of the family of coordinate divisors on

C(n−1) is n− 1, we deduce that the index of D in X is n. Indeed, given

a general point in Hη, we have n− 1 other elements of D containing it, that

together with Hη are a total of n elements of the family.

Next, we see that indeed X ∼= C(n).

Let Q ∈X be a general point and let H1, . . . , Hn be the divisors in

D containing Q. Let D1 = Vn−1 ·H1, then D1 is a coordinate divisor in

Vn−1
∼= C(n−1); hence, it is of the form C(n−2) + P1, for certain P1 ∈ C. In
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a similar way, Hi · Vn−1 = C(n−2) + Pi. Thus, we have a birational map

X 99K C(n)

Q 99K P1 + · · ·+ Pn.

In fact, X ∼= C(n). Indeed, any curve contracted by the birational map

would have product 0 with Vn−1, which is not possible since Vn−1 is ample

in X. Observe finally that if Vn−1 ·Hη = C(n−2) + P , then Hη = Cn,P , the

coordinate divisor with base point P , and hence, Wn parametrizes the

coordinate divisors in C(n).

Finally, we study the possible singularities of the hypersurfaces Hη to

prove that indeed the general one is smooth.

First, Hη does not contain a curve of singularities. Otherwise, since Vn−1

is ample, this curve would cut Vn−1 in a point, and then (C(n−2))η should be

singular, contradicting our hypothesis. Hence, each Hη has at most a finite

number of singularities.

Second, the possible singularities do not deform with the divisors in

the family. Otherwise, there would be some curves {Bi} such that the

intersection point of Bi and Hη would be a singular point of Hη. Since

Vn−1 is ample, a curve Bi would intersect Vn−1 in a point P ∈ (C(n−2))η for

a certain η, and then (C(n−2))η should be singular.

Third, there is no base curve for the family D. Otherwise, this curve

would intersect Vn−1, and the family Dn−2 of coordinate divisors in C(n−1)

would have a base point.

Finally, there is no singularity Q common to all Hη ∈ D. Otherwise, the

point Q would be a base point of the family, and all varieties would have

multiplicity at least two at this point; therefore, V n
n−1 > 2, contradicting

V n
n−1 = 1.

Therefore, not all elements Hη ∈ D are singular; in fact, the general one

is smooth, and those singular have at most isolated singularities.

From the theorem we deduce the following result, less general but simpler

in its hypothesis.

Corollary 2.5. Let X be a smooth projective variety of dimension n.

Assume that there exists a divisor D isomorphic to C(n−1) such that, if C

denotes a coordinate curve in D ∼= C(n−1), then D · C = 1. Assume also that

q(X) = g(C). Then X ∼= C(n).
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